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Abstract

Growing evidence supports a role of the neuropeptide oxytocin in promoting social cognition 

and prosocial behavior, possibly via modulation of the salience of social information. The effect 

of intranasal oxytocin administration on the salience network, however, is not well understood, 

including in the aging brain. To address this research gap, 42 young (22.52 ± 3.02 years; 24 

in the oxytocin group) and 43 older (71.12 ± 5.25 years; 21 in the oxytocin group) participants 

were randomized to either self-administer intranasal oxytocin or placebo prior to resting-state 

functional imaging. The salience network was identified using independent component analysis 

(ICA). Independent t-tests showed that individuals in the oxytocin compared to the placebo 

group had lower within-network resting-state functional connectivity, both for left amygdala (MNI 

coordinates: x = −18, y = 0, z = −15; corrected p < 0.05) within a more ventral salience network 

and for right insula (MNI coordinates: x = 39, y = 6, z = −6; corrected p < 0.05) within a more 

dorsal salience network. Age moderation analysis furthermore demonstrated that the oxytocin-

reduced functional connectivity between the ventral salience network and the left amygdala was 

only present in older participants. These findings suggest a modulatory role of exogenous oxytocin 

on resting-state functional connectivity within the salience network and support age-differential 

effects of acute intranasal oxytocin administration on this network.
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1. Introduction

Originally known for its role in childbirth and lactation (Crowley and Armstrong, 1992; 

Erickson and Emeis, 2017), the neuropeptide oxytocin has attracted attention for its 

modulatory effects on social cognition (Bartz et al., 2011; Horta et al., 2019). Mainly 

synthesized in the hypothalamus, oxytocin travels along long axonal projections to different 

brain regions, such as the amygdala, the hippocampus, and the nucleus accumbens (Andreas 

et al., 2011), where it acts as neuromodulator (Baribeau and Anagnostou, 2015; Jurek and 

Neumann, 2018) on a diverse array of social capacities, including emotion identification 

(Horta et al., 2019), social memory (Tse et al., 2018), social perception (Yao et al., 

2018a), and empathy (Geng et al., 2018; Hurlemann et al., 2010; Shamay-Tsoory, 2011). 

Oxytocin’s mechanisms of action in the human brain, however, are currently not well 

understood. Only more recently has the use of functional magnetic resonance imaging 

(fMRI) combined with pharmacological intervention via intranasal oxytocin administration

—through which oxytocin can circumvent the blood–brain barrier (Quintana et al., 2018)—

allowed the examination of oxytocin effects on the central nervous system in vivo in humans 

(Heinrichs and Domes, 2008). Studies utilizing this approach support oxytocin modulation 

in specific brain regions of interest (ROIs; Riem et al., 2011). For example, intranasal 

oxytocin compared to placebo resulted in lower amygdala activity during recognition 

of facial fear (Domes et al., 2007). Similarly, clinical research suggested that intranasal 

oxytocin compared to placebo attenuated brain activity in the anterior cingulate cortex and 

the amygdala to threatening social cues in generalized social anxiety disorder (Labuschagne 

et al., 2010; 2012).

In line with evidence that brain regions do not operate in isolation but in networks of 

interconnected nodes (van den Heuvel and Hulshoff Pol, 2010), previous research supported 

oxytocin-altered functional connectivity between brain regions (Dodhia et al., 2014; Ebner 

et al., 2016). In particular, using a task-related approach, intranasal oxytocin administration 

relative to placebo resulted in attenuated functional connectivity of the left globus pallidus 

with reward- and attachment-related regions in fathers in response to pictures of their own 

child (Wittfoth-Schardt et al., 2012). However, Riem et al. (2011, 2012) found enhanced 

functional connectivity between amygdala and orbitofrontal cortex, anterior cingulate cortex, 

hippocampus, precuneus, and the middle temporal sulcus in response to infant crying and 

laughing.

Similarly, the few extant studies on oxytocin modulation during resting-state functional 

connectivity generated mixed evidence. In particular, a literature synthesis suggests four 

broader findings supporting: (i) oxytocin-decreased coupling within the salience network; 

(ii) oxytocin-increased coupling within the salience network; (iii) no oxytocin modulation 

on within-salience-network coupling; and (iv) oxytocin-modulated coupling between the 
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salience network and other large-scale networks (e.g., the default mode network; see 

Supplementary Materials Table S2 for overview). For example, in a study by Procyshyn 

et al. (2020), single-dose intranasal oxytocin (24 IUs; vs. placebo) decreased resting-state 

functional connectivity among social brain regions (amygdala, insula) in 23 healthy young 

adults (28.3 ± 8.8 years; see also Dodhia et al., 2014; Kumar et al., 2015 for similar 

findings). In contrast, Kovács and Kéri (2015) reported increased resting-state functional 

connectivity between the right amygdala and the dorsal anterior cingulate cortex after a 

single dose of intranasal oxytocin compared to placebo (35.2 ± 17.4 IUs) in 82 healthy 

young adults (25.55 ± 9.27 years); while, for example, Fan et al. (2014) reported no 

modulation by single-dose intranasal oxytocin admininstration (24 IUs; vs. placebo) on 

functional coupling among regions of the salience network in 18 healthy young men (27.8 ± 

4.4 years) with high early life stress (see also Xin et al. (2018) for similar findings). Thus, 

the plurality of previous studies that directly examined regions within the salience network 

support oxytocin-decreased functional coupling at rest.

Of note, these previous studies examined oxytocin-modulation on functional coupling at 

rest limited to (mostly two) brain regions using a seed-based approach. Large-scale network 

approaches, in contrast, determine coupling between multiple brain regions within larger 

neural networks and are typically considered more robust to head motion and to variations 

in participants’ mental state during the resting-state scan (Buckner et al., 2013). Given 

oxytocin’s long projections and likely widespread impact on the brain (Meyer-Lindenberg et 

al., 2011), a large-scale network approach (e.g., independent component analysis; ICA) may 

be better suited to determine oxytocin brain modulation. Furthermore, unlike seed-based 

approaches that are based on a-priori assumptions, ICA is a data-driven approach that is 

not dependent on prior assumptions and seed-voxel choice (Marrelec and Perlbarg, 2008; 

Vincent et al., 2007), and offers a more stringent noise control by separating noise-related 

independent components (Bhaganagarapu et al., 2013; McKeown et al., 2003; Tohka et al., 

2008).

In fact, so far, only four studies have examined intranasal oxytocin effects on large-scale 

brain networks Brodmann et al. (2017)., for example, observed reduced coupling of 

regions within the default mode network but increased coupling within regions of the 

cingulo-opercular network involved in salience processing at rest in young men after a 

single dose of 24 IUs intranasal oxytocin Bethlehem et al. (2017)., in contrast, reported 

that a single dose of 24 IUs intranasal oxytocin increased between-network resting-state 

functional connectivity in networks associated with social-communication, reward, and 

emotion processing in young women (see also Xin et al., 2018; Wu et al., 2018, for 

studies examining resting-state coupling between the salience network and other large-scale 

networks; Supplementary Materials Table S2).

In sum, research on oxytocin modulation of within-salience-network functional coupling is 

limited. That is particularly surprising as the salience network is implicated in enhancing 

detection, processing, and integration of social and emotional stimuli and associated 

behavior (Averbeck, 2010; Levy et al., 2016; Menon, 2015; Uddin, 2015) and regions of 

the salience network, including the amygdala and the insula as key nodes (Menon, 2015), 

emerge quite consistently as targets for oxytocin modulation (Ebner et al., 2016; Kovács and 
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Kéri, 2015; Riem et al., 2011; Zhao et al., 2019). This combined with the growing literature 

that oxytocin modulates socioemotional processes (Clark-Elford et al., 2014; Kirsch, 2015; 

Labuschagne et al., 2012), including in aging (Horta et al., 2020) and evidence of age-related 

change in functional connectivity within the salience network (Horta et al., 2019), renders 

the examination of oxytocin modulation on salience network functional connectivity in 

aging particularly relevant.

Importantly, current work on the effects of intranasal oxytocin on social cognition and 

underlying brain processes has been almost exclusively conducted with young adults (see 

Ebner et al., 2013; Riem et al., 2013; 2012). Only recently has the field started to examine 

age-related differences and has found age and age-by-sex variations in oxytocin modulation 

on brain and behavior (Campbell et al., 2014; Ebner et al., 2016, 2015; Frazier et al., 2021; 

Gao et al., 2016; Horta et al., 2019; Luo et al., 2017; but see Grainger et al., 2019). For 

example, intranasal oxytocin relative to placebo improved emotion recognition (Campbell et 

al., 2014) and attention to feelings (Ebner et al., 2015) in an age- (and sex-) differential 

fashion. In addition, intranasal oxytocin increased resting-state functional connectivity 

between the amygdala and the mPFC, specifically in older men and young women (Ebner 

et al., 2016), and age-differentially affected neural response patterns, including in main 

nodes of the salience network (i.e., amygdala and anterior insula), during facial expression 

identification (Horta et al., 2019). This evidence of age-related differences in effects of 

intranasal oxytocin on social cognition and oxytocin modulation of nodes within the salience 

network combined with evidence that age is associated with altered social cognition (Ebner 

and Fischer, 2014) as well as altered functional connectivity within the salience network 

(He et al., 2014) warrants thorough examination of intranasal oxytocin administration on the 

salience network, including in older adults, as addressed in the present research.

The primary goal of the present analysis was to determine effects of intranasal oxytocin 

on functional connectivity within the salience network during rest in a sample of generally 

healthy young and older men and women. The study furthermore explored age-related 

differences in oxytocin modulation on resting-state functional connectivity within the 

salience network. We used the same data set as Ebner et al. (2016) for the present analysis 

but significantly extended this previous analysis and prior work reported in the literature 

by applying a large-scale network data-driven approach (i.e., ICA) to determine oxytocin 

modulation in young and older adults on resting-state functional connectivity within the 

salience network, a likely, but currently understudied, target of oxytocin’s brain action.

Based on our literature synthesis, the plurality of previous studies that directly examined 

regions within the salience network support oxytocin-decreased functional coupling at rest 

(see Supplementary Materials Table S2 for details). Therefore, we predicted that intranasal 

oxytocin administration would decrease functional connectivity within the salience network 

(Hypothesis 1). Furthermore, based on emerging evidence of age-differential effects of 

intranasal oxytocin, including on the brain (Horta et al., 2019; see also Ebner et al., 2013; 

Horta et al., 2020 for overviews), we predicted that oxytocin modulation on functional 

connectivity within the salience network would vary by age (Hypothesis 2).
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2. Materials and methods

2.1. Participants

Data for the present analysis was collected between August 2013 and October 2014 in 

the Department of Psychology, Institute on Aging, and McKnight Brain Institute at the 

University of Florida as part of a larger project (see Ebner et al., 2016, 2015, 2019; 

Frazier et al., 2021; Horta et al., 2019; Lin et al., 2018; Plasencia et al., 2019; for details 

and published data). Participants were recruited via university participant pools, registries, 

and recruitment services, through fliers across campus, town, and county, and via word-of-

mouth. Volunteers were screened over the phone for study eligibility. Among exclusion 

criteria were non-native English speaking, pregnant or breastfeeding, psychological disorder, 

severe or progressive medical illness, non-normal neurological history, excessive smoking 

or drinking, and contraindications regarding oxytocin administration and MRI. All older 

women were postmenopausal. Older individuals were screened for cognitive status using the 

Telephone Interview of Cognitive Status (scores cut off < 30; Brandt et al., 1988).

The larger project comprised 105 participants. Of those, 20 did not complete the MRI visit 

or their resting-state data was not acquired (e.g., due to time limitations) or had to be 

discarded due to technical difficulties, image corruption, or a large extent of head motion 

(i.e., transfer in one of the directions x, y, or z was > 2 mm; or rotation around one of 

the axes was > 2°; Guo et al., 2015). The final sample for analysis therefore comprised 

85 participants,1 including 42 young (M = 22.52 years, SD = 3.02, range = 18–31, 52.4% 

males) and 43 older (M = 71.12 years, SD = 5.25, range = 63–81, 44.2% males) participants. 

Of those, 24 young (M = 21.88 years, SD = 2.74, range = 19–31, 54.2% males) and 21 older 

(M = 71.05 years, SD = 5.88, range = 63–80, 47.6% males) participants were randomly 

assigned to the experimental group (oxytocin administration), while 18 young (M = 23.37 

years, SD = 3.25, range = 18–30, 50% males) and 22 older (M = 71.18 years, SD = 4.72, 

range = 63–81, 40.9% males) participants were randomly assigned to the control group 

(placebo administration). Seven young women were on oral contraception.

As shown in Table 1, there were no significant age-group differences in height, weight, years 

of education, negative affect, or self-reported physical and mental health (all ps > 0.05). 

In line with the literature (Biss and Hasher, 2012; Briggs et al., 1999), older compared to 

young participants were slower in sensorimotor processing speed (F = 85.54, p < 0.001, 

partial η2 = 0.51), had poorer short-term verbal learning memory (F = 11.83, p = 0.001, 

partial η2 = 0.13), and reported higher positive affect (F = 28.21, p < 0.001, partial η2 = 

0.26). The treatment groups (oxytocin vs. placebo) did not differ in any of the demographic, 

cognitive, affective, and health variables (all ps > 0.05) and there were no interaction effects 

between age and treatment for height, weight, years of education, sensorimotor processing 

speed, short-term verbal learning memory, positive affect, or mental health (all ps > 0.05). 

However, there were significant interaction effects of age and treatment for negative affect 

1Note that both this paper and Ebner et al. (2016) were based on the same original dataset. However, the present paper applied slightly 
different criteria for image quality assurance and removal of images with excessive head motion than the Ebner et al. (2016) paper. 
This was the case because in the present paper we used ICA, which offers a more stringent noise control by separating noise-related 
independent components and thus allowed use of more liberal criteria during preprocessing (Bhaganagarapu et al., 2013; McKeown et 
al., 2003; Tohka et al., 2008).
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(F = 5.55, p = 0.02, partial η2 = 0.07) and physical health (F = 2.60, p = 0.11, partial 

η2 = 0.03). Any variables with significant age main or interaction effects were entered as 

covariates in the moderation models (see below).

2.2. Procedure

The larger clinical trial that this data analysis was embedded in was registered under 

NCT01823146. The Institutional Review Board at the University of Florida approved the 

study protocol and all participants provided written informed consent. The study adopted 

a randomized, double-blind, placebo-controlled, between-subject design and followed 

standardized procedures for intranasal oxytocin self-administration (Guastella et al., 2013). 

The placebo contained identical ingredients except the oxytocin. The principal investigator 

worked directly with the pharmacist on coordinating prescriptions and dispensing of the 

intranasal spray. The pharmacist assigned the treatment conditions. Neither the pharmacist 

nor the principal investigator directly interacted with any of the participants. All study 

personnel involved in recruitment and scheduling and who engaged directly with study 

participants, and the participants themselves, were blinded to the treatment condition. No 

consistent adverse side effects were reported.

In the following, only measures with direct relevance to the present data analysis are 

reported in detail (for more information about the larger project see Ebner et al., 2016, 2015, 

2019; Frazier et al., 2021; Horta et al., 2019; Lin et al., 2018; Plasencia et al., 2019). In 

particular, the study included a phone prescreening to assure general study eligibility and 

safety, followed by a screening visit on campus to obtain consent and collect urine and 

blood (primarily for pre-screening purposes to assure acceptable sodium and osmolality 

levels before spray administration) as well as assess brief demographic, cognitive, and health 

measures (see Table 1). Two to ten days later, participants returned to campus to complete 

a brief measure on current affect (see Table 1) and to self-administer a single dose (24 

IUs; only one puff per nostril was needed with the highly concentrated formulation used 

in this study (as per IND# 100,860) to administer the targeted dose of 24 IUs) of either 

oxytocin or placebo via nasal spray. Promptly after oxytocin (or placebo) administration, 

participants were transported to the imaging facility and settled into the MRI scanner and 

T1-weighted anatomical images were acquired. This was followed by task-evoked functional 

image acquisition (a social decision-making task and two face processing tasks; Frazier et 

al., 2021; Horta et al., 2019; Lin et al., 2018 under review), and the resting-state functional 

scan (see also Ebner et al., 2016).

During the resting-state scan, which took place 70–90 min after spray administration, 

participants were asked to relax and look at a white fixation cross on a black screen. The 

procedure was standardized for all participants and thus should not have influenced the 

group (treatment or age) differentially. Previous work also did multiple MRI scans before 

a resting-BOLD sequence (Sripada et al., 2013; Weng et al., 2010). Moreover, previous 

studies demonstrated that the effects of intranasal oxytocin could last for more than 90 

min (Daughters et al., 2015; Gossen et al., 2012), thus within our assessment window. The 

session concluded with a test battery covering various socioemotional measures, followed by 

debriefing and reimbursement. For both campus visits, participants were instructed to stay 
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hydrated as well as avoid food, exercise, and sexual activity for 2 h and smoking, caffeine, 

alcohol, and recreational drugs for 24 h before the visit. The visits began in the morning, 

usually around 9:00 a.m.

2.3. MRI acquisition

Brain images were acquired on a 3T Philips Achieva MR Scanner (Philips Medical 

Systems, Best, The Netherlands). A 32-channel head coil was used with foam padding to 

reduce head motion. High-resolution T1-weighted anatomical images were acquired using a 

magnetization-prepared rapid gradient echo (MP-RAGE) sequence (sagittal slice orientation, 

FOV = 240 mm × 240 mm × 240 mm, in plane resolution = 1 mm × 1 mm, slice thickness 

= 1 mm without skip). Resting-state functional images were acquired using a gradient-echo-

planar imaging (EPI) sequence with a total of 38 interleaved slices (TR = 2 s, TE = 30 ms, 

FOV = 252 mm × 252 mm × 133 mm, flip angle = 90°, transverse slice orientation, in plane 

resolution = 3.15×3.15 mm, slice thickness = 3.5 mm without skip). Two-hundred and forty 

functional images were acquired during the 8-min resting-state scan.

2.4. MRI data preprocessing

Resting-state MRI images were preprocessed using CONN functional connectivity toolbox 

(v.18.b; Whitfield-Gabrieli and Nieto-Castanon, 2012) in conjunction with SPM12 software 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) on MATLAB R2018a (MathWorks 

Inc., Natick, MA, USA). All preprocessing steps were conducted using the default 

preprocessing pipeline for volume-based analysis (to MNI space; Montreal Neurological 

Institute, Canada). Functional image preprocessing included realignment, outlier detection 

(head motion > 0.5 mm), unwrapping, slice-timing correction (interleaved bottom-up), 

coregistration with structural data, spatial normalization into MNI space, and smoothing 

using a Gaussian kernel of 8 mm full-width at half-maximum (FWHM). Following the 

literature (Hoekzema et al., 2014; Meier et al., 2012), we did not remove the first few 

volumes of the resting-state data; we also did not band-pass filter or apply preprocessing 

on the time courses for each of the independent components (ICs), to avoid removing any 

information that the ICA approach may use to separate the ICs (Rachakonda et al., 2007).

2.5. Voxel-based morphometry (VBM)

As age has been associated with gray matter volume reduction (Good et al., 2001; 

Jernigan et al., 2001; Tisserand et al., 2002), we measured whole-brain gray matter volume 

in our sample. We preprocessed structural MRI images using SPM8 software (https://

www.fil.ion.ucl.ac.uk/spm/) and the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) 

following the standard preprocessing pipeline (Liu and Feng, 2017). Whole-brain gray 

matter volume was calculated using the MATLAB script “get_totals” provided by 

Ridgway (http://www0.cs.ucl.ac.uk/staff/gridgway/vbm/get_totals.m). Young participants 

(M = 625.99 ml, SD = 60.28 ml) had greater whole-brain gray matter volume than older 

participants (M = 571.34 ml, SD = 61.11 ml; F = 16.98, p < 0.001, partial η2 = 0.17). 

Therefore, whole-brain gray matter volume was entered as covariate in the age moderation 

models (see below).
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2.6. Independent component analysis (ICA)

We utilized the ICA protocol developed by Calhoun and colleagues (Calhoun et al., 2001, 

2009) and widely used in the field (Assaf et al., 2010; Calhoun and Adali, 2012; De Luca 

et al., 2006). ICA has several methodological advantages over ROI-based or other functional 

connectivity methods. For example, it allows for control of motion artifacts by considering 

head motion in a separate component, and thus reduces data loss (Uddin et al., 2010). It also 

avoids bias from seed-voxel choice in traditional functional connectivity methods (Marrelec 

and Perlbarg, 2008).

The protocol comprises two phases: (i) component identification and (ii) component 

selection. These are described next as they applied to the present data analysis.

Component identification.—First, group spatial ICA was conducted across all 85 

participants using Group ICA of the fMRI Toolbox (GIFT; http://icatb.sourcefttkorge.net/, 

version v4.0b; (Calhoun et al., 2009). After subject-wise data concatenation in time, ICA 

was performed in four steps: (1) Principal component analysis (PCA) was used to reduce the 

size or dimensionality of the fMRI data across all participants. (2) Maximally independent 

components were estimated using ICA infomax algorithm (Bell and Sejnowski, 1995) and 

the data were decomposed into 38 independent components (as determined by the minimum 

description length (MDL) criterion applied in the current data; Rissanen, 1983). (3) Back 

reconstruction was conducted for each individual participant’s data to generate time courses 

and spatial maps. Finally, (4) a spatial map for each IC across all participants was computed 

(Z-scores) and submitted to a one-sample T test using a threshold of p < 0.01, false 

discovery rate (FDR) corrected, to obtain the significant sample-specific spatial maps. The 

transformed Fisher’s Z-score value of each voxel in these IC spatial maps reflected the fit 

(i.e., degree of correlation) of the blood-oxygen-level-dependent (BOLD) signal time course 

from a given voxel with the average BOLD time course across all voxels within this IC 

(Greicius et al., 2007).

Component selection.—The selection of the salience network followed four steps: (1) 
Visual inspection of each of the 38 estimated ICs resulted in selection of a subset of 

ICs whose patterns of correlated signal change were largely constrained to gray matter 

(Naveau et al., 2012). We computed correlations (element-wise multiplication) between 

each component’s sample-specific IC map (converted to a binary mask) and a-priori binary 

mask maps of gray matter, white matter, and cerebrospinal fluid as provided by the WFU 
Pickatlas (Maldjian et al., 2003; http://fmri.wfubmgc.edu/cms/software). We dropped ICs 

with high spatial correlations to white matter or cerebrospinal fluid (top 10% of ICs were 

dropped). We also dropped ICs with low spatial correlations to gray matter masks (bottom 

10% were dropped). This step left us with 30 ICs. (2) We repeated the Infomax ICA 
algorithm (Bell and Sejnowski, 1995) 20 times in ICASSO 3 to test the reliability of the 

signal decomposition (Himberg et al., 2004). The quality of IC clusters was quantified using 

the index Iq, which ranges from 0 to 1 and reflects the difference between intra-cluster 

and extra-cluster similarity (Himberg et al., 2004). All ICs (except IC #38) had a cluster 

quality index greater than 0.8, indicating stable ICA decomposition. (3) Of the remaining 29 

ICs, 13 ICs were dropped based on visual inspection suggesting that they represented eye 
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movements, head motion, or a cardiac-induced pulsatile artifact at the brain base. (4) Among 

the remaining 16 ICs (see Supplementary Materials, Fig. S1), we selected those representing 

the salience network using spatial correlation (r > 0.1, small effect size) to a set of a-priori 

defined network templates provided by GIFT (Chen et al., 2010; Li et al., 2017; Shi et al., 

2018; Ye et al., 2014). In the present analysis, a threshold of r > 0.1 was used following 

Cohen’s convention that a correlation coefficient of 0.1 represents the minimum value of a 

small effect size (Chen et al., 2010). This same threshold convention was applied in other 

papers that used a comparable approach to ours (see Li et al., 2017; Shi et al., 2018; Ye et 

al., 2014).

This four-step component selection process resulted in two relevant ICs (IC #4, presented 

in Fig. 1, Panel A; and IC #11, presented in Fig. 1, Panel B). In line with the literature 

(Menon, 2015; Peters et al., 2016; Taylor et al., 2009), both ICs comprised the main nodes 

of the salience network, including the insula, anterior cingulate cortex, and inferior frontal 

gyrus; IC #4 additionally included the amygdala, hippocampus, superior temporal gyrus, 

and thalamus; IC #11 additionally included the supplementary motor area and supramarginal 

gyrus. Preclinical work has suggested a functional dissociation of the salience network into 

a more ventral sub-network and a more dorsal sub-network (Touroutoglou et al., 2012). The 

ventral salience network includes the right ventral anterior insula (MNI coordinates: x = 28, 

y = 17, z = −15) as key node and has been shown to be involved in processing of salience 

during intense affective experience (Touroutoglou et al., 2012). The dorsal salience network, 

in contrast, includes the right dorsal anterior insula (MNI coordinates: x = 36, y = 21, z = 

1) as key node and has been shown to be involved in the processing of salience during tasks 

unrelated to emotion (Chand et al., 2017; Touroutoglou et al., 2012). Our data supported this 

functional differentiation of two salience sub-networks, in that we identified a more ventral 

salience network (IC #4) which included the ventral insula, the amygdala, and the anterior 

cingulate cortex; in addition to a more dorsal salience network (IC #11) which included the 

dorsal insula, the anterior cingulate cortex, and the supplementary motor area.

2.7. Statistical analysis

The individual spatial maps of IC #4 and IC #11 served as the two outcome variables, 

representing resting-state functional connectivity between each voxel within the salience 

network and the whole salience network. To test Hypothesis 1, we compared the treatment 

groups (oxytocin vs. placebo) on these two individual maps (IC #4 and IC #11) in two 

separate second-level General Linear Models (GLMs; independent t-tests) in SPM 12. 

Connectivity was computed in GIFT as the signal synchronization or coherency pattern 

of each voxel to the network this voxel belonged to (Calhoun et al., 2009). Two strategies 

were applied for multiple comparison correction: First, based on previous evidence that the 

amygdala and the insula constitute key targets of oxytocin effects (i.e., a-priori prediction 

of ROIs; Bethlehem et al., 2017; Ebner et al., 2016), we applied small volume correction 

based on a spherical mask with 6 mm radius (or cluster) surrounding the peak voxel (defined 

by the WFU PickAtlas; Gougelet et al., 2018; Schmitz and Johnson, 2006): for amygdala 

the peak MNI coordinates were x= ±20, y = 0, z = −8 (Kirsch, 2005) and for insula the 

peak MNI coordinates were x = ±30, y = 14, z = −2 (Rilling et al., 2014). Second, to reveal 

unpredicted effects in brain regions other than the amygdala and the insula, we applied p 
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< 0.05 with family-wise error rate (FWE) correction across all voxels within the salience 

network. We used xjView (http://www.alivelearn.net/xjview) to visualize the results.

Hypothesis 2 predicted an age moderation in the effect of intranasal oxytocin on resting-

state functional connectivity within the salience network. To test this hypothesis, we 

extracted the resting-state functional connectivity value from the spherical ROIs (radius 

= 6 mm) around the peak voxel of the cluster that showed significant treatment effects under 

Hypothesis 1 (oxytocin > placebo or oxytocin < placebo), for IC #4 and IC #11, respectively. 

These extracted parameter estimates represented resting-state functional connectivity within 

the given networks IC #4 and IC #11 respectively and served as outcome variables for 

the two separate moderation models; with treatment (oxytocin vs. placebo) as independent 

variable and age (young vs. older) as moderator (Preacher et al., 2007; model number = 1, 

confidence interval = 95%, number of bootstrap sample = 5000). The analyses reported here 

were secondary in nature and not pre-registered.

2.8. Data availability

The data and code can be found at GitHub and OpenNeuro (upon publication of the 

manuscript).

3. Results

3.1. Treatment effect on resting-state functional connectivity within the salience network

For IC #4, the oxytocin compared to the placebo group showed less functional coupling 

between the left amygdala (peak MNI coordinates: x = −18, y = 0, z = −15, peak t value 

= 3.2; corrected p = 0.02, number of voxels = 38) and the salience network; no region 

showed larger functional coupling in the oxytocin than the placebo group. Similarly, for IC 

#11, the oxytocin compared to the placebo group showed less functional coupling between 

the right insula (peak MNI coordinate: x = 33, y = 9, z = 0, peak t value = 3.5; corrected 

p = 0.003, number of voxels = 31) and the salience network; again, no region showed 

larger functional coupling in the oxytocin than the placebo group. The results2 supported 

Hypothesis 1 that intranasal oxytocin (relative to placebo) reduced resting-state functional 

connectivity between the salience network and the amygdala and the insula, respectively, as 

its key notes.

3.2. Age moderation of treatment effect on resting-state functional connectivity within the 
salience network

For IC #4, the age moderation was significant (t (81) = −2.01, p = 0.048, confidence interval 

= −2.38 – −0.01, Cohen’s f = 0.22, BFinclusion (treatment × age interaction) = 5.47; see 

Fig. 2, Panel A): older participants in the oxytocin group showed less resting-state functional 

connectivity between the salience network and the left amygdala than older participants in 

the placebo group (t (41) = −3.76, p = 0.0003, confidence interval = −2.39 – −0.74, Cohen’s 

d = 1.03), while there was no treatment group difference among young participants (t (40)= 

−0.87, p = 0.39, confidence interval = −1.22 – 0.48, Cohen’s d = 0.32). These results 

2These results survived Bonferroni correction for two separate GLMs (IC #4 and IC #11; corrected ps < 0.025).
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partially supported Hypothesis 2 that the effects of intranasal oxytocin on resting-state 

functional connectivity within the salience network (i.e., coupling between the salience 

network and the left amygdala) varied by age. For IC #11, however, age did not moderate 

the effect of treatment on resting-state functional connectivity of the salience network and 

the right insula (t (81) = 0.28, p = 0.78, confidence interval = −0.48 – 0.63, Cohen’s f = 

0.03, BFinclusion (treatment × age interaction) = 0.69; see Fig. 2, Panel B): both young (t 

(41)= −2.19, p = 0.01, confidence interval = −0.82 – −0.04, Cohen’s d = 0.92) and older (t 

(40) = −2.55, p = 0.03, confidence interval = −0.90 – −0.11, Cohen’s d = 0.59) participants 

in the oxytocin group showed less resting-state functional connectivity between the salience 

network and the right insula than young and older participants in the placebo group.3 Further 

corroborating these findings, Bayesian ANOVA was conducted and the result supported 

these findings.4

3.3. Exploratory analysis of treatment effect and age moderation of treatment effect on 
resting-state functional connectivity within the default mode network

The literature has identified the default mode network as another large-scale network 

relevant regarding oxytocin’s action in the brain (Brodmann et al., 2017; Wu et al., 2018; 

2022). We therefore explored the treatment effect and its age modulation on resting-state 

functional connectivity within the default mode network by conducting parallel analyses 

to those described for the salience network. Results from these analyses showed oxytocin-

reduced coupling between the right angular gyrus (MNI coordinates: x = 33, y = −66, z = 

36; uncorrected p < 0.001) and the default mode network (IC #26); with the age modulation 

of this effect not significant (p = 0.29; see Fig. S4 in the Supplementary Materials for 

details). This finding is in line with work suggesting the temporoparietal junction (TPJ; 

Wu et al., 2018) and the superior temporal gyrus (STG; see Grace et al., 2018; for a 

meta-analysis) as target areas for oxytocin mechanisms of action in the brain.

4. Discussion

Utilizing ICA for a data-driven large-scale network approach, the present study, for the 

first time, demonstrated a modulatory role of intranasal oxytocin on resting-state functional 

connectivity within the salience network in a sample of healthy young and older adults. 

Additionally, we found an age moderation of these brain-modulatory effects of intranasal 

oxytocin on resting-state salience network coupling. These novel findings are discussed 

next.

3Results were comparable after (i) removing outliers, i.e., values above/below 2.5 SDs of the grand mean of the whole dataset; (ii) 
removing the seven young women on oral contraception; and (iii) controlling for sensorimotor processing speed, short-term verbal 
learning memory, positive affect, negative affect, sex, menstrual cycle, whole-brain gray matter volume, physical health in individual 
covariate analyses.
4Bayesian ANOVA showed substantial support in favor of including the treatment × age interaction in the model on functional 
connectivity between the salience network and the amygdala, compared to models without inclusion of this interaction term 
(BFinclusion = 3.69; Jeffreys, 1998). In contrast, there was only very weak evidence for the treatment × age interaction in the 
model on functional connectivity between the salience network and the insula (BFinclusion = 0.53; Held & Ott, 2016).
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4.1. Intranasal oxytocin administration reduced resting-state functional connectivity 
within the salience network

In support of Hypothesis 1, intranasal oxytocin (compared to placebo) resulted in reduced 

functional connectivity at rest within the salience network. In particular, we found lower 

functional connectivity for both the left amygdala (IC #4) and the right insula (IC #11) 

with the salience network in the oxytocin relative to the placebo group. Both the amygdala 

and the insula are involved in novel and emotional stimulus detection (Blackford et al., 

2010; LeDoux, 1995) – processes essential for social-cognitive and affective tasks like 

empathy and interoception (Craig, 2009; Critchley et al., 2013). The present study’s result 

of attenuated crosstalk for both the amygdala and the insula with the rest of the salience 

network after intranasal oxytocin aligns with this previous evidence of amygdala and insula 

involvement in stimulus salience as well as oxytocin-reduced amygdala and insula response 

to (particularly negative) emotional information (Kumar et al., 2015; Labuschagne et al., 

2010; I. 2012). These findings are also in accord with a two-level model regarding oxytocin 

modulation of social behavior and cognition put forth by Quintana et al. (2015). This model 

conceptualizes oxytocin as both an “anxiety reducer” (bottom-up level of processing) and a 

“salience information enhancer” (top-down level of processing) and builds on evidence of 

oxytocin effects on activation and functional connectivity of the amygdala, as a key region in 

anxiety and information salience (Bethlehem et al., 2013; Grace et al., 2018).

Quintana and Guastella (2020) furthermore recently proposed an allostatic theory of 

oxytocin. This theory describes the role of oxytocin as allostatic, in facilitating adaptation, 

consolidation, and stability in response to changing environments. In support of this account, 

intranasal oxytocin has for example been found to facilitate the rapid adaptation to fear 

signals (Eckstein et al., 2016). Our findings of oxytocin-reduced resting-state functional 

connectivity within the salience network could be reflective of this allostatic property 

of oxytocin and inform its function from a large-scale network perspective, highlighting 

oxytocin’s brain-modulatory potential for regulating stimulus sensitivity and/or allostatic 

approach/avoidance motivation.

Previous studies, including from our own group, suggested oxytocin-increased resting-state 

functional connectivity between the amygdala and the mPFC (Ebner et al., 2016; Sripada 

et al., 2013). The mPFC constitutes a key node in the default mode network (e.g., self-

referential processing; D’Argembeau et al., 2007; Di Simplicio et al., 2012; Kurczek et 

al., 2015), while the amygdala and the insula constitute key nodes in the salience network 

(e.g., recognition and understanding of others’ emotions; Luo et al., 2014; Menon, 2015). 

Our previous finding in Ebner et al. (2016) of oxytocin-enhanced resting-state functional 

connectivity between the mPFC and the amygdala may reflect increased communication 

between these two large-scale (default and salience) networks, i.e., enhanced between-

network connectivity. In contrast, the present paper’s finding reflects decreased within-

network connectivity after intranasal oxytocin relative to placebo administration.

That is, oxytocin may modulate both coupling within the salience network as well as 

coupling between individual key salience mode nodes (i.e., amygdala and insula) with 

regions outside the salience network (e.g., the mPFC) involved in complex social and 

emotional processing (Etkin et al., 2011). It is possible that intranasal oxytocin exert its 
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functions through two possible routes: (1) by reducing sensitivity to external negative 

social stimuli via decreasing functional connectivity within the salience network (a route 

supported by the present study’s findings); and/or (2) by enhancing “top-down” modulation 

of emotional processing via increasing functional connectivity between brain regions outside 

the salience network such as the mPFC (a route supported by findings from Ebner et al., 

2016). Future work is warranted to follow up on these differential functional routes of 

oxytocin action in the brain beyond the data available in the present study and Ebner et 

al. (2016; see also Procyshyn et al. (2020), which cannot be directly compared given that 

different research questions were addressed and different methodology was applied).

In contrast to our findings, Xin et al. (2018; see also Fan et al., 2014) did not find an effect 

of exogenous oxytocin on functional coupling within the salience network. In their study, 

Xin et al. used a single dose of 40 IUs intranasal oxytocin in young adults. The dose in the 

current study was lower (24 IUs), and we examined an age-heterogeneous sample. Again, 

methodological differences across studies may have contributed to divergent findings.

Our data support the notion of a division between two major neural systems within 

the salience network (IC #4: ventral salience network; IC #11: dorsal salience network) 

in line with preclinical work (Touroutoglou et al., 2012): a ventral system relevant for 

“hot” emotion-laden processing and a dorsal system relevant for “cold” executive control 

processing (Iordan et al., 2013). Our finding of oxytocin-reduced functional connectivity 

within both the ventral and the dorsal salience sub-networks suggests that oxytocin may 

impact stimulus salience both during “hot” and “cold” processing, in line with previous 

work of oxytocin’s effects on stimulus salience for both emotional and non-emotional 

information (Domes et al., 2007; Labuschagne et al., 2010). However, age-differential 

oxytocin modulation in our study varied for the two salience sub-networks, as discussed 

next.

4.2. Age moderated intranasal oxytocin effect on resting-state functional connectivity 
within the salience network

In support of Hypothesis 2, age moderated the oxytocin-modulation on functional 

connectivity between the more ventral salience network (IC #4) and the amygdala, while no 

age moderation was observed for oxytocin-modulation on functional connectivity between 

the more dorsal salience network (IC #11) and the insula. Given evidence that the ventral 

salience network is recruited during emotional salience processing, while the dorsal salience 

network is recruited during non-emotional salience processing (Touroutoglou et al., 2012), 

our finding supports the idea that aging may differentially influence oxytocin’s impact on 

affective vs. non-affective salience processing. This pattern of findings also generally aligns 

with the literature suggesting that age-related differences in information processing are 

more pronounced for emotional than neutral stimuli, possibly due to older adults’ greater 

focus on, and their reduced attentional shifting away from, emotional (and specifically 

negatively valenced) cues (Carstensen and DeLiema, 2018; Comblain et al., 2004; Mather 

and Carstensen, 2005; Reed et al., 2014; Yao et al., 2018b). The differences between young 

and older adults in oxytocin’s large-scale brain-modulation observed in the present study are 
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also in line with previous results reported by our group of age-differential recruitment of 

amygdala networks during dynamic face expression identification (Horta et al., 2019).

There are various possible explanations for the observed age-differential pattern. For 

example, research suggests that the estrogen/androgen ratio interacts with the oxytocin 

system by increasing oxytocin receptor expressivity (Bale and Dorsa, 1997; Vasudevan 

et al., 2001; see also Ebner et al., 2016, 2015 for a discussion). This coupled with age-

related effects on hormone concentrations (Gooren, 2003; Sherwin, 2006; e.g., relatively 

lower levels of androgens among older than young adults affecting the estrogen/androgen 

ratio) may underlie age variations in oxytocin’s brain-modulatory effects. Future research 

will benefit from systematic examination of the processes in age-differential functions of 

oxytocin, including the role of gonadal hormone levels.

In addition, compared to young adults, older adults may respond more strongly to intranasal 

oxytocin given their generally lower levels of androgens (Gooren, 2003; Sherwin, 2006), 

which may be associated with increased oxytocin receptor expressivity (Bale and Dorsa, 

1997; Li et al., 2018; Vasudevan et al., 2001). It is also possible that, similar to older 

adults’ reduced facial muscle activity that may limit their ability to regulate facial muscle 

reactivity using expressive suppression (Labuschagne et al., 2020), oxytocin-reduced within 

resting-state functional connectivity of the ventral salience network in older adults is a 

reflection of accommodation to an already reduced neurobiological response in aging.

Furthermore, the observed age-related differences of oxytocin effects on functional 

connectivity within the salience network can be interpreted in the context of Quintana and 

Guastella’s (2020) allostatic theory of oxytocin, which emphasizes oxytocin’s social effects 

as serving an allostatic function, adjusting cognition in reference to homeostatic demands. 

In particular, oxytocin-reduced resting-state functional coupling between the amygdala and 

the salience network in older (but not young) adults may be reflective of an age-related 

shift in primary motivations and emotion processing strategies, robustly demonstrated in 

the literature, that renders older adults particularly sensitive to social/emotional information 

(Carstensen and DeLiema, 2018).

4.3. Limitations

The present study had some limitations. First, three task-evoked functional scans preceded 

the resting-state scan in this study (see Frazier et al., 2021; Horta et al., 2019; Lin et 

al., under review). This same standardized sequence was applied to all participants and 

previous oxytocin studies used comparable protocols with multiple MRI scans before the 

resting-BOLD sequence (e.g., Brodmann et al., 2017; Dodhia et al., 2014). Moreover, it has 

been previously demonstrated (in young adults) that intranasal oxytocin effects could last for 

more than 90 min (Daughters et al., 2015; Gossen et al., 2012), thus within our assessment 

window. However, we acknowledge that engagement in prior scans could have impacted 

brain activity during the resting-state scan and future work is warranted in which the resting-

state scan is administered at first and more in line with the peak of oxytocin’s effects on the 

hemodynamic response (see Striepens et al., 2013) to exclude this possibility. Future work 

will also need to specifically determine age-related differences in the pharmacodynamics of 

oxytocin action. For example, it is possible that the time course of oxytocin action differs 
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with age and the age-group differences observed in our study could be due to differences in 

rate of effect decay or due to differences in peak effect.

Furthermore, given the growing literature about sex-dimorphic effects of oxytocin on brain 

activity (Domes et al., 2010; Ebner et al., 2016; Rilling et al., 2014) and social function 

(Campbell et al., 2014; Grainger et al., 2018; Luo et al., 2017; Reed et al., 2019), future 

studies will benefit from larger sample sizes that allow for systematic comparison between 

females and males among young and older adults (see Leppanen et al., 2017, for sample 

size guidelines in this field of investigation). Our sample size was based on sample sizes 

used in comparable studies in the field of aging neuroscience (e.g., Bach et al., 2021; Chaby 

et al., 2015; Leppanen et al., 2017; Noh and Isaacowitz, 2013) and intranasal oxytocin 

research (Barraza et al., 2013; Fan et al., 2014; Riem et al., 2014) at the time when this 

study was conducted (between 2013 and 2014). After completion of our data collection, 

a meta-analysis was published supporting a sample size of 64 participants in each group 

for between-subjects designs for a power of 0.80 to detect significant effects of oxytocin 

administration on social cognition (Leppanen et al., 2017). Future research with larger 

sample sizes will also be able to address key issues regarding low statistical power and 

unsuccessful replication in research on the effects of intranasal oxytocin (Mierop et al., 

2020; Walum et al., 2016).

Finally, moving forward, direct assessment of brain–behavior relationships pertaining to 

intranasal oxytocin in young and older adults will be fruitful such as by adding a social 

task to the study design. This extension of the current work will increase knowledge about 

oxytocin’s impact on the interplay between brain and behavior in social contexts in adults of 

different ages.

5. Conclusion

The present study advances understanding of oxytocin effects on the salience network and, 

for the first time, delineates these brain-modulatory effects in young and older adults. 

We found that a single-dose of intranasal oxytocin decreased resting-state functional 

connectivity within the salience network. More specifically, oxytocin altered coupling for 

left amygdala with a more ventral salience network and coupling for right insula with a more 

dorsal salience network, in line with a ventral–dorsal functional dissociation of the salience 

network. Furthermore, the effects of intranasal oxytocin on functional coupling between the 

left amygdala and the ventral salience network differed by age, with within-salience-network 

connectivity reduced for older but not young adults after oxytocin self-administration.

The observed modulatory role of exogenous oxytocin on resting-state salience network 

connectivity may constitute a neural mechanism underlying oxytocin’s effect on prosocial 

behavior (Singer et al., 2008; Theodoridou et al., 2009). Age-related differences in this 

large-scale brain-modulation via oxytocin could contribute to age-related differences of 

oxytocin’s effects on social-cognitive and socioemotional information processing and related 

behaviors (e.g., empathy, trust; Bailey et al., 2015; Sutter and Kocher, 2007; Sze et al., 

2012). Moving forward, it will be informative to determine behavioral impact as well as 

delineate the role of intranasal oxytocin on resting-state functional connectivity in other 
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large-scale brain networks (e.g., default mode network, executive control network) and 

to examine effects on coupling between large-scale brain network (e.g., salience network–

default mode network coupling; Dixon et al., 2017) in aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Graphical depiction of the salience network (IC #4 in Panel A and IC #11 in Panel B 

identified in the present sample (N = 85). Color bar represents t-values (one sample t-test 

that compares the functional connectivity of each voxel within the salience network against 

zero). MNI coordinates (x–z) are depicted.
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Fig. 2. 
Age moderation of oxytocin’s effect on resting-state functional connectivity between IC 

#4 (Panel A) and the left amygdala and IC #11 (Panel B) and the right insula. Each circle/

triangle represents a participant. Error bars represent the 95% confidence interval.
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