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Abstract: Since the outbreak of the COVID-19 pandemic in spring 2020, the concept of test,
trace, and isolate (TTT) was used as a non-pharmaceutical intervention against further spreading
of the disease. Hereby, recent contact partners of newly confirmed SARS-CoV-2 infected persons
were identified and isolated along with the originally detected case to avoid potential secondary
infections. While the policy is, given the compliance of the traced persons, generally deemed
efficient, not much is known about network-specific impact factors.

In this work, we aim to evaluate the effectiveness of the TTI strategy when used (1) for diseases
with different infectiousness levels and (2) on different contact networks. For the prior, we vary
the infection probability per contact, for the latter, we analyse different clustering coefficients.
Our goal is to test the validity of two hypotheses: First, we expect the policy to be more efficient
if the infectiousness of the disease is small, since the time delay for isolating persons is crucial.
Second, due to the implications of the friendship paradox, we expect the policy to be more
effective if the clustering coefficient of the underlying contact network is high.

We make use of an agent-based network model consisting of three intertwined model parts: an
epidemiological SEIR model, a quarantine model and a contact-tracing model. To test the
hypotheses, the disease parameters and the clustering coefficient of the underlying contact
network are varied.

The simulation results show that, indeed, tracing seems to have a slightly larger containment
impact for networks with higher clustering, in particular for fast-spreading diseases. Yet, the
effects are small compared to the impact of the infectiousness of the disease. Therefore, we find a
significant decrease of the policy effectiveness the higher the transmission probability. The latter
implies that the containment impact of tracing and isolating contacts becomes more efficient,
if supported by additional measures that limit the infection probability or if applied in periods
with low negative seasonality effects.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: COVID-19, SARS-CoV-2, epidemiology, contact-tracing, agent-based modelling,
network modelling, discrete-event simulation, clustering

1. INTRODUCTION

Test, trace and isolate (T'TI) is a well established counter-
measure to reduce the chances of secondary infections and,
as a result, the overall number of transmissions in an epi-
demic situation. Due to the spread of SARS-CoV-2 in 2020
and 2021 many countries in the world have established
rigorous tracing programs to reduce the reproduction rate
of the disease (84 countries by Sep 15* 2021 Ritchie et al.

are isolated as well. Although it is well established that
neither TI nor TTT alone are sufficient to contain a fast
spreading pandemic Contreras et al. (2021); He et al.
(2021); Bicher et al. (2021), these measures yet provide
a proven reduction of the effective reproduction number
which does not rely on limiting everyone’s occupational
and social live. Therefore, TT and TTI can be an important
contribution to a well working containment strategy.

(2020)).

TTT involves four steps of which the first two are usually
regarded as test and isolate (TI) strategy: (1) a new
infected case is detected, (2) the case is isolated, (3)
contact partners are traced, and (4) contact partners

* The study was partially funded by the Austrian Research Promo-
tion Agency (FFG) Covid19 Emergency Call

The timeframe for detecting and putting individuals under
quarantine is crucial for TI and TTI strategies (Grantz
et al. (2021); Smith et al. (2021)). The faster newly
infected individuals can be isolated, the more secondary
infections can be prevented. Usually some delay is involved
consisting of time to detect and isolate the index case, time
to find the contact partners, and time to notify and isolate
them. Vice versa, keeping the delay constant, the policies

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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can prevent fewer secondary infections if the infectiousness
of the disease was higher, since the serial interval, the
average time between primary and secondary infection,
decreases. Following this idea we would expect that TI
and TTI strategies become less effective the higher the
infectiousness. This also implies that the policies have a
greater impact if they are supported by other measures
that limit the virus transmission or when infectivity is
reduced due to external influences (e.g. during summer)
which we refer to as low seasonality (Liu et al. (2021)).

Moreover, both secondary infections and contact tracing
depend on a person’s contact network. Consequently, the
structure of the contact network of the underlying popu-
lation has direct implications for the spread of the disease
and the effectiveness of TTI. For the prior, the authors in
Lee et al. (2019) have already shown that a higher cluster-
ing coefficient of the underlying contact network causes
lower disease prevalence. Implications of the clustering
coefficient for the effectiveness of TT and TTT have not
yet been investigated.

The famous friendship paradox supports the hypothesis
that a high clustering coefficient of the underlying contact
network increases the effectiveness of contact tracing.
The friendship paradox Feld (1991) is an observation
discovered by Scott Feld in the early 1990s and entails
that your friends, on average, have more friends than
you which can directly be transferred to contact partners.
This seemingly paradoxical observation can be proven
via probability/graph theory and becomes stronger the
higher the friendship network is clustered. The paradox
becomes more intuitive by considering the fact that you
are more likely to be a friend of a person with more
friends than of a person with few friends. Clearly, this idea
can be directly transferred to epidemiological applications.
Famously, strategies for specific vaccination programs are
known since (at least) the early 2000s Holme (2004);
McGail et al. (2022). Also case surveillance strategies exist
Amaku et al. (2015).

Yet, so far, the paradox has not yet been investigated
for its impact on TTI. Since potentially infectious contact
partners are more likely to have more contacts than the
index case, TTI might benefit from the paradox. Isolating
contact partners would prevent more secondary infections
in a highly clustered contact network than it would in a
homogeneous one.

The goal of this work is to test the two stated hypotheses
about the impact of infectiousness and network structure
using an agent-based network model. Varying the disease
parameters and the clustering coefficient of the contact
network, we measure the benefit of using a TI or a TTI
strategy and compare the results with a simulated disease
outbreak without containment strategies.

2. METHODS
2.1 Model Definition

We use an agent based model where agents are members
of a randomly generated social network, only interacting
with connected individuals. These agent interactions are
described as discrete events and are simulated in a Monte

Carlo setting. Three different model parts, which allow
application of different strategies, are combined to model
the epidemic:

(1) An epidemiological SEIR-model which describes the
general infection dynamics

(2) A quarantine module where TI counter measures are
incorporated into the infection dynamics

(3) A tracing module which additionally allows for track-
ing secondary infections.

The three settings we focus on are the disease spread when
no measures are being taken, when TI counter measures
are employed or when TTI is applied.

Agents  The agents in this model are described as nodes
on a graph g = (V, E), where V is the set of nodes and
FE is the set of edges between nodes. Two agents vy, v
connected by an edge {vi,ve} € E are called neighbours
and correspond to two individuals in the model who know
each other and may have potentially infectious contacts.

Each agent has the attributes InfectionState and Contac-
tHistory. The attribute InfectionState tracks the current
state the agent is in with regards to the pathogen (suscep-
tible, exposed,...) whereas the ContactHistory is a list of
contacted agents that can be used for tracing.

Initialisation  The graph ¢ is initialised as an instance
of a G(n,p) Erdés-Rényi random network, meaning a
network with n nodes where each pair of nodes is con-
nected with probability p Gilbert (1959). Such Erdé&s-
Rényi random networks are unrealistic models for social
networks; scale-free networks such as the graph model of
Barabdsi and Albert (1999) would better fit real networks.
However, these scale-free models, as implemented in the
library NetworkX Hagberg et al. (2008), allowed too little
control over the observed clustering, making them unfit
for our purposes.

At initialisation, only random networks which are con-
nected graphs are accepted (i.e. there is a path between
any two nodes in the graph). Disconnected networks are
rejected in order to get comparable infection dynamics
between different networks.

As observed in Oliveira et al. (2018), there are two common
definitions of the clustering coefficient which are often used
interchangeably, even though it can be shown that their
values differ in some graphs. We use the definition of the
local clustering coefficient C(g) of a graph g provided in
Oliveira et al. (2018): C(g) is the average, measured over
all nodes v of g, of the fraction of pairs of neighbours of v
which are connected (and thus form a triangle with v).

The expected clustering of a G(n,p) random network
is p. After sampling the network we use a heuristic to
artificially alter the clustering coefficient: Let 7 be the
target clustering coefficient value. Select two different
nodes a, b € V at random, and let d(a) > d(b). If C(g) < T,
remove a random edge from b and move it to a (while
assuring that the number of edges in the graph remain
constant and the graph stays connected). This will lead to
higher clustering around a, which in the majority of cases
has a bigger effect than the loss of triangles around b,
thus increasing C'(g). Vice versa, in the case of C(g) < 7,
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Graph ¢ with C(g) = 0.01

Fig. 1. Graph visualisation for different clustering coeffi-
cients.

moving an edge from a to b will decrease the clustering
coefficient. The heuristic terminates once the clustering
coefficient is sufficiently close to the target value. An
example is visualised in Figure 1, where the same network
is treated with the heuristic to create different amounts
of clustering. It is noticeable that the second network has
a higher degree of clustering, as the number of complete
triangles is higher and the nodes appear to be much less
homogeneously connected. The number of edges is the
same in both networks.

All agents in the network initially have InfectionState <
susceptible (meaning they can contract the disease) and
get an empty ContactHistory.

Disease Spread Module  For interactions between agents,
discrete event simulation (DES) is used. Temporal aspects
of the infection dynamics are modelled as exponentially
distributed random variables ¢ ~ Exp(u). The following
event types and their event routines describe the base
disease spread model:

(1) infection: The incubation period begins and the
agent’s InfectionState becomes exposed. An infectious
event is scheduled after ¢t ~ Ezp(t;) days.

(2) infectious: The agent becomes infectious and two
events are scheduled, a contact event after t ~ Exp(t.)
days and a recover event after t ~ FExp(t,) days.
InfectionState « infectious.

(3) contact: All neighbouring agents are contacted. For
each contact partner, a Bernoulli experiment with
probability p; decides if the contact leads to a new
infection. If the Bernoulli experiment succeeds, a new
infection event is scheduled for the contacted agent
(at current time). In any case, a new contact event is
scheduled after t ~ Ezp(t.) days.

(4) recover: The agent recovers from the illness and
InfectionState < recovered. All scheduled contact
events for this agent are cancelled.

A specific event is then identified with a tuple of the
scheduled event time %, the event type and the unique
ID of the acting agent. Scheduled events are saved in an
event list and processed in order of their event time ¢. For
efficiency, we use a priority queue as event list.

At simulation start, three agents are initially infected by
scheduling corresponding infection events.

Quarantine Module In order to model TI counter mea-
sures, additional event types are necessary. We define
additional event types:

(5) quarantine: The agent is isolated, triggering the as-
signment InfectionState < isolated. An
end-quarantine event is scheduled after a fixed time
tq. Until this event resolves, edges connecting the
agent to others are deactivated. The quarantine event
is additionally scheduled as part of the infection event
routine described above, t ~ Exp(ty) days after infec-
tion with a certain probability p; (meaning not all
cases are detected).

(6) end-quarantine: The isolation is discontinued and
edges are re-enabled.

These additional events, together with the base infection
events described above, allow modelling the pandemic with
TT counter measures.

Tracing Module  Combining the events above with a
new event routine tracing lets us simulate TTI infection
dynamics:

(7) tracing: At time of the detection of an infection,
this event is scheduled additionally. At completion
it schedules quarantine events for each agent v; €
ContactHistory after t; ~ Exp(t;) days. Each of these
events get scheduled only with a certain probability
pe due to the difficulty of effective tracing.

Implementation  The model is simulated in Python. The
reproducible source code for all experiments conducted as
part of this work can be found on GitHub!.

2.2 Parameter Values and Experiment Design

The focus of this work lies on a qualitative analysis of the
network’s clustering on the effectiveness of TI and TTI
counter measures. It is noted that the parameter values
for this model are neither calibrated nor parameterized
through systematic literature research, but are instead
fixed to reasonably realistic values manually. The results
should therefore be seen as purely qualitative examples

1 https://github.com/figlerg/NetTraceSim
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Table 1. Parameter values for base model

Parameter | Value | Unit Description
n 500 # number of agents
t; 2 days avg. incubation time
te 1 days avg. time between contacts
tr 10 days avg. recovery time
tq 6 days avg. detection time
tq 14 days quarantine time
tt 1 days avg. tracing time
Di 0.2 prob. | prob. of infection after contact
Pd 0.5 prob. prob. of detection
Pt 0.75 prob. prob. of successful tracing
P 0.01 prob. edge prob. in random graph

in order to test the hypothesis in general networks. The
parameter values can be seen in Table 1.

The experimental results are products of Monte Carlo
simulations, where the resulting time series of multiple
simulation runs are used to get an average system be-
haviour. Since the generation of random networks is slow
in the library that is used, networks are only re-sampled
every five iterations of the Monte Carlo simulation.

Variables of Interest ~We define two different variables
of interest of the severity of an epidemic curve in order to
evaluate the effectiveness of different strategies: The peak
point prevalence of the pandemic «, defined as maximum
fraction of infected individuals at any given time, as well as
the overall period prevalence 3, the fraction of individuals
that were infected over the full course of the pandemic.
When evaluating any specific counter measure, we use the
ratio of the prevalence without counter measures to those
with counter measures enabled. This gives the effectiveness
in terms of an improvement factor when compared to
the base simulations, where lower numbers mean a higher
improvement.

Since a and S originate from the quotient of two stochastic
simulation results, we need to emphasise that simply di-
viding the estimated peak and prevalence from the sample
means of the Monte Carlo runs would result in a biased
estimator. To avoid this bias and allow for quantitative
uncertainty estimation, we defined the following process:

We calculate prevalence and peak of every experiment and
calculate sample mean © and standard deviation & over
all Monte Carlo runs. Since the (point-wise) sample mean
of the Monte Carlo simulation with N independent runs
is approximately Gaussian distributed with mean @ and
standard deviation @/v/N (Central Limit Theorem), the
quantities o and S can be estimated as the quotient of two
normally distributed random variables. The corresponding
ratio distribution is estimated numerically, leading to
mean value and confidence intervals for the two variables
of interest.

3. RESULTS

The effect of the clustering variation on the modelled epi-
demic curves (mean values of the Monte Carlo simulation)
for p; = 0.2 can be seen in Figure 2. Hereby, the baseline
strategy without policies is shown in the uppermost sub-
plot and the results for TT and TTT are displayed in the two
subplots below. The curves show that the disease generally
spreads more slowly on a highly clustered network than on
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Fig. 2. Epidemic curves for p; = 0.2 and varied clustering
coefficients. The uppermost image displays the results
without policies, below the results of the TT and TTI
policy are shown.

a lower clustered one, which is a well known phenomenon.
Moreover, the variables of interest are evaluated by deter-
mining peak and prevalence of the displayed curves and
by dividing the ones from the results with the investigated
policy by the corresponding ones from the baseline results.
These are displayed in Figures 3 and 4.

4. DISCUSSION

The results displayed in Figure 3 show a clear trend
with respect to the decrease of the policy impact when
increasing the infectiousness. This observation is almost
independent of the clustering structure of the network
and fully confirms the first hypothesis. For the impact of
the clustering coefficient displayed in Figure 4, the results
are less conclusive. The expected trend towards a more
effective policy for increasing clustering coeflicient can only
be seen for the TTT strategy but not for the TI strategy,
which supports the validity of the hypothesis. Yet, for the
TTI strategy only the results with higher infectiousness
(p; > 0.2) display the expected behaviour.

Comparing the results for different p; in Figure 3, we find
that the TTT policy can reduce the overall prevalence from
about 75% with p; = 0.6 to about 10% with p; = 0.05,
mostly independent of the network structure. The cor-
responding reductions on the peak are very similar. Fol-
lowing this trend, halving the infection probability would
cause the policy to reduce the prevalence or peak height
by an additional 20 to 30%. This observation has wide-
ranged consequences on disease containment in reality.
The results would imply that in European countries TTI
could work significantly better during the summer months.
In Engelbrecht and Scholes (2021) authors estimate that
during the summer months the infectivity of the virus is
up to 25 — 40% smaller than in winter, which would make
TTI about 10 — 20% more effective. These ideas are also
applicable to any other measure that reduces the infection
probability, for example increasing hygiene and wearing
face masks.
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s

peak ratio

peak ratio () overall ratio (3)

overall ratio ()

Fig.

455

I ==, <
—/-‘—)\v:_ —_ N
0.754 ==~ >
0.50 A
0.25 1
0.00 T T T T T T
0.01 0.02 003 0.04 0.05 0.06
1.00 T ea— S
-— \——N~"\:’v§,’ _\.\";\’ /;‘"\ P
0.75 1
0.50 A
0.25 1
000 T T T T T T
0.01 0.02 0.03 004 0.05 0.06
1.00
0.75 1
0504 = T e
—_ T —— A
R
0.00 T T T T T T
0.01 0.02 0.03 0.04 0.05 0.06
1.00
0.75-\.\._,v/\__
0.50 et
025 e P PR
0.00 -—= ; ; , l
0.01 0.02 003 0.04 0.05 0.06
C(g)
= quar.: p;=0.05 = trac.: p;=0.05
=== quar.: p;=0.1 === trac.: p;=0.1
----- quar.: p;=0.2 =r=e+ trac.: p;=0.2
—-= quar.: p;=0.4 —-= trac.: p;=0.4
- quar.: p;=0.6 - trac.: p;=0.6

4. Variables of interest for the TI and TTT strategy.
We varied p; between 0.05 and 0.6 and the clustering
coefficient of the network between 0.01 (low clustered)
and 0.06 (highly clustered). The shaded areas display
a 90% confidence interval of the quantities with re-
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Considering the impact of the clustering coefficient, the
results for the TTI strategy with p; > 0.1 show a trend
towards being more effective for larger clustering. The
results with p; < 0.1 surprisingly don’t show this trend
which might be due to the fact that the disease is already
very close to extinction in these scenarios. Nevertheless,
even for those results where the trend is visible, the slope
of the curve is comparably small, in particular compared
to the plots which vary the infection probability. Thus, the
friendship paradox applies in these cases, but its impact
on the effectiveness of the policy is very weak.

Interestingly, also the results for the TIT strategy do not
seem entirely independent of the clustering coefficient.
The results show a decrease of the policy effectiveness
when comparing a very loosely clustered network to a
network with high clustering. The authors did not find a
fully convincing argument to explain this behaviour, but it
might originate from the nonlinear nature of the outcome
variables for very high peaks, since the effect is particu-
larly significant for low clustering and high infectiousness.
Corresponding results for the TTT strategy show a similar
but less distinct behaviour, which supports this idea.

The results of the study also imply that both TI and TTI
are important measures to contain the epidemic and are
capable of reducing prevalence of an epidemic outbreak.
The latter, namely the variables of interest and the setup
of the simulation experiment, also pose for the biggest lim-
itation of this modelling and simulation study. Considering
a synthetic contact network with a full epidemic outbreak
of the disease is not a realistic situation since additional
policies would be applied to prevent a full outbreak. More-
over, the baseline scenario is not a valid reference, since
“no-policy” is not a valid alternative in the real system. In
order to solve this problem, a similar strategy as shown in
Bicher et al. (2021) could be applied instead. In this work,
the effectiveness of contact tracing is quantified based on
how many additional contact reduction policies need to be
active at the same time to reach R.fs = 1. This strategy,
yet, exceeded the scope of the present study. Considering
the different setup, model complexity and defined outcome
variables, the results of the two studies are not comparable.
Generally, comparison with measured SARS-CoV-2 case
data is difficult, since the metrics of the real contact net-
work are not understood. With estimates for the clustering
coefficient of real networks, a comparison e.g. between TTT
effectiveness in different countries would be possible.

In this study we developed an agent-based simulation
model for the purpose of comparing the impact of TI
and TTT for different parameters. Hereby, we varied the
infectiousness of the disease and the clustering coefficient
of the underlying network. We conclude that both TT and
TTTI tend to become more effective, the less infectious the
disease. The impact of clustering is less significant and
only applies if infectiousness is also comparably high.
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