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Abstract: Therapeutic monoclonal antibodies (mAbs) have been a promising therapeutic approach
for several diseases and a wide variety of mAbs are being evaluated in clinical trials. To acceler-
ate clinical development and improve the probability of success, pharmacokinetics and pharma-
codynamics (PKPD) in humans must be predicted before clinical trials can begin. Traditionally,
empirical-approach-based PKPD prediction has been applied for a long time. Recently, modeling and
simulation (M&S) methods have also become valuable for quantitatively predicting PKPD in humans.
Although several models (e.g., the compartment model, Michaelis–Menten model, target-mediated
drug disposition model, and physiologically based pharmacokinetic model) have been established
and used to predict the PKPD of mAbs in humans, more complex mechanistic models, such as the
quantitative systemics pharmacology model, have been recently developed. This review summarizes
the recent advances and future direction of M&S-based approaches to the quantitative prediction of
human PKPD for mAbs.

Keywords: therapeutic monoclonal antibodies; pharmacokinetics; pharmacodynamics; modeling
and simulation; human prediction; TMDD; PKPD; PBPK; QSP; ADC

1. Introduction

Since the first therapeutic antibody, the anti-CD3 monoclonal antibody OKT3, was
approved by the FDA in the 1980s, the development of therapeutic monoclonal antibod-
ies (mAbs) has increased dramatically, especially over the last 10 years. Due to several
advantages of mAbs against other therapeutic modalities, such as their strong and se-
lective binding to the target antigen and their long half-life, mAbs have become major
prescription drugs for several diseases. Moreover, antibody engineering has been used to
expand upon the capabilities of conventional mAbs with the development of bispecific an-
tibody (BsAb) [1], antibody drug conjugate (ADC) [2], recycling/sweeping antibody [3–5],
and local tissue activable antibody [6–8]. MAbs will continue to be a major therapeutic
option in the future.

The molecular weight of most mAbs is approximately 150 kDa due to their im-
munoglobulin G (IgG) structure. Cell penetration and glomerular filtration are limited due
to this large molecular weight, leading to long half-life in blood after injection [9]. Moreover,
mAbs are reported to show a longer half-life than other proteins with similar or higher
molecular weights [10]. This is because mAbs are rescued from lysosomal degradation by
neonatal Fc receptor (FcRn)-mediated recycling system [11]. The Fc region can only bind
to FcRn at acidic pH. Thus, mAbs can hardly bind to cell surface FcRn in blood due to its
neutral pH. After pinocytosis, mAbs move to the early endosome with pH around 6.0, then
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bind to FcRn via the Fc region. After forming complexes with FcRn, mAbs are recycled
back to the cell surface together with FcRn from the endosome. Finally, they disassociate
from FcRn and are released into the blood due to the neutral pH. This FcRn-mediated
recycling system gives mAbs a long half-life in blood, around 5–30 days in humans [12].
To improve the efficiency of FcRn-mediated recycling and extend the half-life even fur-
ther, several amino acid mutations in the Fc region to increase FcRn-binding affinity at
acidic pH have been evaluated in animals and humans [13–15]. Among these mutations,
M428L/N434S (LS) and M252Y/S254T/T256E (YTE) have been extensively investigated
in several mAbs [5]. While conventional mAbs have a half-life of around 5–30 days in
humans, mAbs with LS or YTE mutations showed a half-life of 50–80 days [16–18]. Other
than modulating FcRn binding, reducing the isoelectric point (pI) or charge has also been
shown to extend the half-life of mAbs [19]. Since the cell surface is negatively charged,
mAbs with a lower pI or negative charge should be repulsed from the cell surface, slowing
down pinocytosis and extending the half-life. Modulating pharmacokinetics of mAbs
has been continually advanced by several engineering technologies. As with FcRn, the
effect of Fc gamma receptors (FcγRs) binding on the pharmacokinetics of mAbs has been
explored. Leabman et al. explored the effect of FcγR binding on the pharmacokinetics
of mAbs in cynomolgus monkeys [20]. In this study, both decreased FcγR binding by
mutagenesis and increased FcγR binding by afucosylation showed no influence on the
pharmacokinetics. Zelevsky et al. also investigated the effect of increased FcγR binding in
cynomolgus monkeys. This study showed that a 60-fold increase in FcγRIIIa binding did
not have an influence on the pharmacokinetics of mAbs. Since increased FcγR binding can
be an important approach to enhance the efficacy of mAbs, further investigation is required
to conclude the effect of FcγR binding on the pharmacokinetics. As described above, mAbs
have several unique characteristics beyond other therapeutic modalities. Although each
characteristic has been mechanistically investigated by several groups, further quantitative
and systemic analysis is needed for accelerating the development of mAbs.

Modeling and simulation (M&S) is applied in a variety of ways in drug discovery and
development. Among these, the prediction of human PKPD ahead of clinical trials is an
application that can greatly impact the success and efficiency of clinical development. In
the general drug discovery and development process, several in vivo animal studies and
in vitro studies are conducted to select clinical candidates. Then, before starting clinical
trials, the success rate of the selected clinical candidate must be predicted based on in vivo
animal data, in vitro data, and published clinical data. Although such data supports the
assessment of clinical candidates, quantitative decision making could be difficult without
M&S. M&S can quantitatively combine several types of data and extrapolate in humans,
enabling quantitative decision making of the discovery and development of mAbs.

M&S essentially requires optimal models that can be used to analyze and simulate a
variety of profiles, such as PKPD. Traditionally, the compartment model has been used to
capture the pharmacokinetics of mAbs, and Emax-based models such as the direct/indirect
response model and tumor growth inhibition model have been used for pharmacodynamics.
These models are highly useful since they can be applied to a wide variety of data. However,
detailed PKPD mechanisms are not incorporated into these models. Thus, mechanism-
based models are highly required to analyze and translate preclinical in vivo and in vitro
data to humans more accurately. Recently, new mechanistic models such as the target-
mediated drug disposition (TMDD) model, physiologically based pharmacokinetic (PBPK)
model, and quantitative systems pharmacology (QSP) model have been applied to mAbs.
These models can be used to translate preclinical in vivo/in vitro PKPD to humans. In this
review, we summarize how M&S can be used to quantitatively predict human PKPD for
therapeutic mAbs and discuss future directions.
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2. Traditional Model-Based Prediction of Human PKPD
2.1. Compartment-Model-Based Prediction of Linear Pharmacokinetics

The pharmacokinetic profile of mAbs is largely classified into two types: linear and
nonlinear. Generally, linear pharmacokinetics is governed mainly by nonspecific pinocyto-
sis and the FcRn-mediated recycling system. Since both processes have huge and unsatu-
rated capacity at realistic dosage, mAbs with linear pharmacokinetics such as bevacizumab
(approved anti-VEGF antibody) [21], adalimumab (approved anti-TNFα antibody) [22],
and mepolizumab (approved anti-IL-5 antibody) [23] show dose-dependent exposure and
a constant half-life in a dose-independent manner. Pharmacokinetic profiles of mAbs
with linear pharmacokinetics after intravenous injection have been reported to be biphasic
(distribution phase and elimination phase) [24,25]. Therefore, a two-compartment model
(Figure 1A) has been frequently used to capture the plasma mAbs concentration–time
profile after intravenous injection in both humans and animals [26,27]. Generally, the
two-compartment model uses only four pharmacokinetic parameters (CL, Q, Vc, and Vp,
or CL, Vc, k12, and k21). Since the elimination process directly affects CL, a wide variety
of CL values have been shown for several mAbs [28–30]. On the other hand, the tissue
distribution process affects Q, Vc, Vp, k12, and k21. Since the tissue distribution of mAbs is
limited due to their large molecular weight, a similar Q, Vc, and Vp has been reported for
several mAbs [29] in cynomolgus monkeys and humans [30]. The prediction of four phar-
macokinetic parameters can be used to predict the whole-plasma mAbs concentration–time
profile after intravenous injection in humans. This method can quantitatively contribute to
the decision of a project and design of a clinical trial.
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Figure 1. Basic model structure of (A). two-compartment model, (B). Michaelis–Menten model,
(C). target-mediated drug disposition model. CL; clearance, Q; inter-compartmental CL, Vc; volume
of distribution in the central compartment, Vp; volume of distribution in the peripheral compart-
ment, Km; Michaelis constant, Vmax; maximum rate of nonlinear elimination, ksyn; synthesis rate of
target antigen, CLtarget/kdeg; elimination clearance/rate constant of target antigen, CLcomplex/kint;
elimination clearance/internalization rate constant of complex, kon; association rate constant, koff;
dissociation rate constant.

Several animals (mice [31], rats [32], rabbits [33], dogs [34], pigs [35], and monkeys [36])
have been used to preclinically evaluate the pharmacokinetics of mAbs in vivo. Among
these, cynomolgus monkeys are the most widely used to predict the pharmacokinetics
of mAbs in humans because the two species have similar FcRn-binding affinity against
mAbs [37,38]. Several studies have shown that the clearance and volume of distribution
of mAbs in humans can be accurately predicted from that in cynomolgus monkeys using
the allometric scaling approach [39,40]. Deng et al. demonstrated that single species
allometric scaling using cynomolgus monkeys showed better prediction accuracy of human
pharmacokinetics than multiple-species allometric scaling [40]. This would be due to inter-
species difference of FcRn binding between rodents and humans. Although several case
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studies, such as BIIB059 (anti-BDCA2 antibody) [41], M701 (anti-CD3/EpCAM bispecific
antibody) [42], and JNJ-61178104 (anti-TNFα/IL-17A bispecific antibody) [43], have used
the allometric scaling approach with cynomolgus monkeys to predict two-compartment
model parameters in humans, each of these case studies used a different scaling exponent
without solid evidence for an optimal exponent. Thus, we established an optimal exponent
for the allometric scaling of all two-compartment model parameters of mAbs in humans
based on cynomolgus monkey data. We achieved this by comprehensively analyzing
pharmacokinetic data on 24 mAbs in cynomolgus monkeys and humans [44]. The optimal
exponents for CL, Q, Vc, and Vp were 0.8, 0.75, 1.0, and 0.95, respectively. Using cynomolgus
monkey data, our approach accurately predicted the whole-plasma mAbs concentration–
time profile after intravenous injection in humans. Furthermore, by combining parameters
predicted using the two-compartment model and subcutaneous absorption parameters
(bioavailability (F) and absorption rate constant (ka)), we were also able to accurately
predict the plasma mAbs concentration–time profile after subcutaneous injection in humans.
In this approach, subcutaneous F was predicted based on clearance in humans, and ka
was assumed to be a geometric mean of reported values for several mAbs. The two-
compartment-model-based prediction approach of human mAbs pharmacokinetics from
cynomolgus monkeys was successfully established using a validated optimal exponent.
Another compartment model approach to predict the plasma mAbs concentration–time
profile after subcutaneous injection in humans has also been reported [45]. Since the
plasma mAbs concentration–time profile after subcutaneous injection has been reported to
be captured by a one-compartment model with a first-order absorption and elimination
process, only three parameters (apparent CL (CL/F), apparent volume of distribution
(Vd/F), and ka) are sufficient for prediction. This analysis established optimal exponents
for scaling CL/F, Vd/F, and ka from cynomolgus monkeys to humans and accurately
predicted the plasma mAbs concentration–time profile of 13 mAbs after subcutaneous
injection in humans. This approach is simple and requires no intravenous injection data,
thus improving animal welfare and reducing costs. Additionally, Shivva et al. investigated
the inclusion of inter-individual variability for predicting human pharmacokinetics of
mAbs from non-human primates [46]. The application of scaled half-life from non-human
primates as covariates on parameters accurately predicted the inter-individual variability
of parameters in humans. This approach would contribute to more the efficient design of a
first-in-human study.

Although the cynomolgus monkey is known to be a useful animal for predicting the
pharmacokinetics of mAbs in humans, it is very expensive and evaluation requires a large
amount of mAbs. Recently, human FcRn transgenic mice (hFcRn Tgm), which express
human FcRn as a substitute for mouse FcRn, have been proposed as an alternative to
cynomolgus monkeys for the pharmacokinetic screening of mAbs and the prediction of
clearance in humans [47,48]. Generally, mice are a useful animal for in vivo screening candi-
date molecules because they are easy to handle, require only small amounts of molecules for
evaluation, and are better in terms of animal welfare [49]. However, inter-species differences
in FcRn binding have been reported between mice and humans [50]. In a surface plasmon
resonance (SPR) assay, mouse FcRn showed much stronger binding activity to human IgG
compared with human FcRn. Moreover, due to the poor correlation in the pharmacokinetics
of the two species, mice are inadequate for human prediction [47]. As previously men-
tioned, due to inter-species similarities in FcRn binding, cynomolgus monkeys are normally
used to predict mAbs pharmacokinetics in humans; however, hFcRn Tgm may also be
able to overcome the inter-species difference in FcRn binding. Betts et al. investigated the
use of hFcRn Tgm to predict the plasma mAbs concentration–time profile in humans [51].
This study demonstrated comparable prediction accuracy of two-compartment model
parameters in humans by allometric scaling from cynomolgus monkeys or hFcRn Tgm. Al-
though hFcRn Tgm cannot be used to evaluate the effect of target antigen binding on mAbs
pharmacokinetics, in many cases, due to no or weak cross-reactivity to the mouse target
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antigen, it would be useful for evaluating and predicting human linear pharmacokinetic
parameters of mAbs.

The two-compartment-model-based approach to predict human pharmacokinetics has
already been validated by several studies [44,51]. However, it usually requires preclinical
in vivo data from animals such as cynomolgus monkeys and hFcRn Tgm. An in vitro or
in silico-based prediction method would be more affordable, better for animal welfare,
and would speed up drug development. Since several mAbs have shown similar Q,
Vc, Vp among several mAbs in humans, prediction of only CL by an in vitro/in silico
approach would be sufficient to predict the whole-plasma mAbs concentration–time profile
in humans by fixing Q, Vc, and Vp. Additionally, the applicability of the current approach
to new engineered mAbs needs to be validated for each case. Since several molecular
formats have been developed, applicability should be carefully checked.

2.2. Michaelis–Menten-Model-Based Prediction of Nonlinear Pharmacokinetics

Nonlinear pharmacokinetics of mAbs has been frequently observed, especially when
affected by target antigen expression. Denosumab is an anti-RANKL monoclonal antibody
that showed nonlinear pharmacokinetics in humans [52]. Slower clearance observed at
the higher dose of denosumab would be due to the saturation of target-antigen-mediated
clearance. Nonlinear pharmacokinetics has been observed in humans for several mAbs,
i.e., cetuximab (anti-EGFR antibody) [53], volociximab (anti-α5β1 antibody) [54], lumilix-
imab (anti-CD23 antibody) [55], elotuzumab (anti-SLAMF7 antibody) [56], dalotuzumab
(anti-IGF-1R antibody) [57], TRC105 (anti-endoglin antibody) [58], icrucumab (anti-VEGFR-
1 antibody) [59], BIIB023 (anti-TWEAK antibody) [60], EMD 525797 (anti-αv-integrin
antibody) [61], and brodalumab (anti-IL-17R antibody) [62]. Nonlinear pharmacokinetics
of mAbs in humans was traditionally predicted from cynomolgus monkeys using the
species time-invariant method [63]. Although this approach is useful to simply translate
the pharmacokinetic profile of cynomolgus monkeys to humans, the predicted pharma-
cokinetics profile cannot be modified according to study design because it does not use a
mathematical model. Therefore, the human pharmacokinetic profile predicted using the
species time-invariant method was re-analyzed by the model; then, the pharmacokinetic
profiles for several situations were simulated in this approach.

To quantitively analyze the nonlinear pharmacokinetics of mAbs, Michaelis–Menten
(MM) (Figure 1B) and target-mediated drug disposition (TMDD) (Figure 1C) models
have been frequently used. The MM model generally uses the Michaelis constant (Km)
and the maximum rate of nonlinear elimination (Vmax) as nonlinear pharmacokinetic
parameters. Due to the simple structure of the equation without mechanistic parameters,
the MM model can be applied to a wide variety of situations even if the mechanism
of nonlinear pharmacokinetics or target antigen information is unknown. On the other
hand, even if there is an inter-species difference in mechanistic parameters, such as the
turnover of the target antigen or binding affinity between human and cynomolgus monkey,
prediction cannot be quantitatively adjusted by such factors in the MM model. Dong et al.
systemically investigated the prediction accuracy of human nonlinear pharmacokinetics
of mAbs from cynomolgus monkeys by the MM model using in total six mAbs [64].
Linear pharmacokinetic parameters in humans were predicted using the allometric scaling
approach with a fixed exponent. Km in humans was assumed to be the same in cynomolgus
monkeys and Vmax in humans was allometrically scaled with an exponent of 0.75 from that
in cynomolgus monkeys. Although plasma mAbs concentration–time profiles in humans
at high concentrations were reasonably predicted, those at low concentrations were poorly
predicted, suggesting the need to further improve the scaling methodology. The MM-
model-based approach has been applied to several mAbs such as E6011 (anti-CX3CL1
antibody) [65], MCLA-128 (anti-HER2/HER3 bispecific antibody) [66], and SI-B001 (anti-
EGFR/HER3 bispecific antibody) [67]. Recently, Singh et al. investigated the utility of
three approaches (species time-invariant method, MM model, and minimal physiologically
based pharmacokinetics (mPBPK) model) to predict the nonlinear pharmacokinetics of



Pharmaceuticals 2022, 15, 508 6 of 31

mAbs in humans from cynomolgus monkey data using five mAbs [68]. As a result of
the comparison analysis, the species time-invariant method and mPBPK model showed
better prediction accuracy for nonlinear pharmacokinetics in humans compared with
the MM model. According to several reports, although the MM model works for some
situations, mechanistic models would be more accurate for predicting nonlinear mAb
pharmacokinetics in humans.

2.3. Traditional Model-Based Prediction of Pharmacodynamics

Pharmacodynamics is one of the most important outputs to determine the value
of therapeutics. Therefore, prediction of pharmacodynamics in humans before starting
clinical trials can be crucial for the success of the selected clinical candidate. Traditionally,
pharmacodynamics was directly predicted from animal study data under the assumption
that the efficacious plasma mAbs concentration between humans and animals was the same.
Xiang et al. aimed to predict the clinical target dose of onartuzumab (anti-Met antibody)
from animal data [69]. First, they conducted a xenograft mouse efficacy study with a
human tumor cell line and estimated the tumoristatic concentration (TSC) of onartuzumab
using a tumor growth inhibition model. Then, the clinical efficacious dose was predicted to
maintain plasma trough concentration at a steady state above TSC. This approach assumes
a comparable exposure–anti-tumor activity relationship between the humans and xenograft
mouse model. A similar tumor-growth-inhibition-model-based approach has been reported
for PRO95780 (anti-DR5 antibody) [70], rhuMAb VEGF (anti-VEGF antibody) [71], SI-B001
(anti-EGFR/HER3 bispecific antibody) [67], and MCLA-128 (anti-HER2/HER3 bispecific
antibody). Since the mechanistic process is not incorporated into this model, it cannot
account for the mechanism-based inter-species differences in effective concentration. Thus,
selection of tumor cell lines and mouse models, such as the huNOG mouse model and
human PBMC injection mouse model, can be an important factor for the prediction accuracy
of this approach.

Traditional model-based pharmacodynamics prediction has been also conducted for
the treatment of diseases other than cancer. The pharmacodynamics of the anti-BDCA2
antibody BIIB059, a treatment for systemic lupus erythematosus (SLE), was predicted in hu-
mans from preclinical data [41]. An indirect response pharmacodynamics model was used
to capture the free BDCA2 level on plasmacytoid dendric cells (pDC) after BIIB059 injection
in cynomolgus monkeys. Then, EC50 was scaled from cynomolgus monkeys to humans by
considering the species difference in the number of pDC and BDCA2 expression level on
pDC. Other parameters were assumed to be the same in the two species. This approach
successfully predicted the observed pharmacodynamics of BIIB059 in a phase 1 study.
Indirect response pharmacodynamics model-based human prediction using cynomolgus
monkeys was also reported for the anti-FcRn antibody rozanolixizumab [72]. Additionally,
the clinically observed pharmacodynamics (muscle increment) of the anti-myostatin anti-
body MYO-029 was interpretated using a direct response model [73]. MYO-029 showed
insufficient efficacy in clinical trials. Therefore, the exposure–response relationship in mice,
monkeys, and humans was analyzed using the direct response model. Due to similarity
in myostatin expression and muscle physiology, the exposure–response relationship in
monkeys was selected for predicting human efficacy. As a result, if the exposure–response
relationship in humans was assumed to be same in monkeys, insufficient myostatin cover-
age of MYO-029 in clinical trials was shown. Translational human PKPD prediction can
be used to avoid this kind of case and improve the probability of success in clinic. These
traditional model-based predictions could be useful when the target antigen biology is
unclear or comparable in animals and humans. However, if mechanistic translation from
animals to humans is required for target antigen biology, a mechanism-based model should
be constructed and applied for human PKPD prediction.
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3. TMDD-Model-Based Prediction of Human PKPD
3.1. TMDD-Model-Based Prediction of Nonlinear Pharmacokinetics

As described above, nonlinear pharmacokinetics of mAbs has been frequently de-
scribed by the MM or TMDD model. The TMDD model generally incorporates target
antigen binding parameters (equilibrium dissociation constant (KD), association rate con-
stant (kon), dissociation rate constant (koff), etc.) and target antigen parameters (total
target antigen concentration (Rtot), synthesis rate of target antigen (ksyn), and elimina-
tion/internalization rate constant (kdeg/kint)). The TMDD model can incorporate more
mechanistic processes than the MM model. Therefore, the mechanism-based prediction
of human pharmacokinetics can be conducted using the TMDD model by incorporating
target antigen information in humans. The basic TMDD-model-based strategy is to scale
the nonlinear pharmacokinetics in cynomolgus monkeys to humans. Luu et al. have used
the TMDD model to predict the human pharmacokinetics of the anti-ALK1 monoclonal
antibody PF-03446962 [74]. First, they conducted a pharmacokinetic study in cynomol-
gus monkeys at several doses and observed the nonlinear pharmacokinetics. Then, they
analyzed the nonlinear pharmacokinetics using the TMDD model and estimated each
parameter. To translate parameters from cynomolgus monkeys to humans, linear phar-
macokinetic parameters were scaled by the allometric scaling approach. Moreover, they
estimated the target antigen binding parameters and internalization rate constant of the PF-
03446962-ALK complex (kint) in humans from in vitro studies, although the target antigen
expression was assumed to be the same in cynomolgus monkeys and humans. Addition-
ally, they estimated the elimination rate constant of ALK1 (kdeg) based on the reported
in vitro half-life of human ALK1. Finally, their approach accurately predicted the human
pharmacokinetics of PF-03446962 as observed in the clinical trial. A similar approach has
been applied to several mAbs, such as PF-06741086 (anti-TFPI antibody) [75], GC1118
(anti-EGFR antibody) [76], Tovetumab (anti-PDGFRα antibody) [77], MG1113 (anti-TFPI
antibody) [78], PF-04840082 (anti-Dkk-1 antibody) [79], AMG 181 (anti-α4β7 antibody) [80],
TAM-163 (anti-TrkB antibody) [81], and QBP359 (anti-CCL21 antibody) [82].

Although several groups have reported case studies in which the TMDD model
was used to predict nonlinear pharmacokinetics of mAbs in humans as shown above, a
comprehensive analysis of TMDD-model-based human prediction was needed to judge
its utility. Singh et al. were the first to conduct such an analysis using seven mAbs in non-
human primates that included cynomolgus monkeys, chimpanzees, and baboons [83]. First,
using six mAbs, they conducted a correlation analysis of each TMDD model parameter
in humans and non-human primates to develop translational rules. Two compartment
model parameters in humans can be scaled from non-human primates using the allometric
scaling approach or assumed to be the same with non-human primates. On the other
hand, target antigen binding parameters and target antigen turnover parameters in humans
can be assumed to be the same in non-human primates or can be adjusted based on
in vitro experimental data. Using these translational rules, they predicted the nonlinear
pharmacokinetics of one test antibody in humans from cynomolgus monkey data. Most
of the data for the test antibody was well predicted, demonstrating the validity of this
approach.

In most cases targeting membrane-expressed target antigen, the target antigen ex-
pression level has been assumed to be comparable in animals and humans. However, the
difference in expression level between animals and humans has been reported to be highly
dependent on the protein [84,85]. Thus, if the expression level of a target antigen is different
in animals and humans, the difference must be included in the model for the prediction
to be accurate. Ahlberg et al. investigated the applicability of mRNA expression data to
extrapolate the preclinical nonlinear pharmacokinetics to humans [86]. Their anti-IL-36R
monoclonal antibody, MAB92, showed human IL-36R specific binding (over 2000-fold
weaker binding affinity against rodent and nonhuman primate IL-36R). Thus, the effect
of IL-36R on pharmacokinetics of MAB92 could not be evaluated in animals. To evaluate
the effect of IL-36R on the pharmacokinetics of the anti-IL-36R antibody in animals, the
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surrogate anti-mouse IL-36R monoclonal antibody MAB04 was generated and tested in
mice. MAB04 showed nonlinear pharmacokinetics in mice and observed pharmacokinetics
was analyzed by the TMDD model. To predict the nonlinear pharmacokinetics of MAB92 in
humans, first, linear pharmacokinetic parameters were extrapolated from those in cynomol-
gus monkeys using allometric scaling, and nonlinear pharmacokinetic parameters were
assumed to be the same as those in mice, although the binding affinity was verified by
in vitro data. This first approach assumed that IL-36R expression in humans was the same
in mice, resulting in the clear underprediction of AUC in humans. Thus, secondly, IL-36R
expression was adjusted based on the difference in mRNA expression between mice and
humans. As a result, the nonlinear pharmacokinetics of MAB92 in humans was accurately
predicted across several doses. This study demonstrated that target antigen expression
data is needed to accurately predict nonlinear pharmacokinetics in humans. Although
mRNA expression data was used in this study, mRNA expression has been reported to be
poorly correlated with protein expression [87]. Thus, incorporating protein expression data
would be more effective for obtaining the accurate target antigen expression level.

The structure of the MM and TMDD models were established based on several past
studies [88,89]. Moreover, the predictability of nonlinear pharmacokinetics in humans
using these models has been repeatedly demonstrated [64,74]. Although the MM model
seems not to be further customizable, there is still room to improve the methodology of the
TMDD-model-based approach. Currently, TMDD model parameters are often scaled from
cynomolgus monkeys. However, if an optimal in vitro assay system were established to
estimate target antigen turnover in humans, the inter-species difference in turnover could
be incorporated to achieve more accurate human prediction.

3.2. TMDD-Model-Based Prediction of Pharmacodynamics

The TMDD model has been used to predict not only nonlinear pharmacokinetics
but also target antigen occupancy in humans as pharmacodynamics. There are two main
types of target antigen: soluble target antigens such as cytokines, chemokines, and toxins,
and membrane-bound target antigens such as receptors, transporters, and channels. Sol-
uble target antigen is secreted from specific cells into extracellular space and maintains
a certain endogenous concentration in the body. Since the plasma-soluble target antigen
concentration can be easily quantified by conventional bioanalytic technologies, it has been
used to mathematically determine target antigen occupancy by mAbs using target antigen
concentration, mAbs concentration, and affinity. Although target antigen occupancy can be
calculated with a simple equation, the TMDD model can simulate the dynamics of target
antigen occupancy under several conditions by incorporating mechanistic parameters.

Dudal et al. investigated the use of the TMDD model to predict the target antigen
occupancy of the anti-CCL21 antibody QBP359 in humans from cynomolgus monkeys [82].
CCL21 is a soluble chemokine and would be involved in inflammation-related conditions.
First, QBP359 was evaluated in cynomolgus monkeys. The pharmacokinetics of QBP359
and the total plasma concentration of CCL21 after the QBP359 injection were evaluated
and analyzed using the TMDD model. Estimated parameters in cynomolgus monkeys
were allometrically scaled to humans. Moreover, since plasma CCL21 concentration in
humans is reported to be 10-fold higher than that in cynomolgus monkeys, this differ-
ence was incorporated into the TMDD model. Using the estimated parameters, CCL21
occupancy in humans was predicted for several dosing regimens of QBP359. The pre-
dicted result showed that high and frequent dosing of QBP359 in clinical situations would
be required to sufficiently suppress CCL21 in tissues, suggesting that QBP359 would be
difficult to develop clinically. This analysis can support decision making when selecting
candidate molecules in the preclinical stage. Similarly, the TMDD model has been used
to predict target antigen occupancy of soluble target antigen as pharmacodynamics in
humans from cynomolgus monkeys using in several mAbs, such as PF-04840082 (anti-Dkk1
antibody) [79], JNJ-61178104 (anti-TNFα/IL-17A bispecific antibody) [43], PF-06741086
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(anti-TFPI antibody) [75], MG1113 (anti-TFPI antibody) [78], and E6011 (anti-CX3CL1
antibody) [65].

Membrane-bound target antigen is another target for mAbs. Since membrane-bound
target antigen is expressed on cell membranes, it can be challenging to quantify the absolute
value of expression in the body using conventional analysis. Therefore, TMDD-model-
based estimation of target antigen occupancy by mAbs in animals has been conducted
to predict pharmacodynamics in humans. Park et al. investigated the prediction of tar-
get antigen occupancy by the anti-EGFR antibody GC1118 in humans from cynomolgus
monkeys using the TMDD model [76]. EGFR is a cell membrane growth factor receptor
and is reported to be overexpressed in several types of tumor. Due to EGFR-mediated
clearance, GC1118 showed nonlinear pharmacokinetics in cynomolgus monkeys. The non-
linear pharmacokinetics of GC1118 in cynomolgus monkeys was analyzed by the TMDD
model and translated to humans. In this analysis, two-compartment model parameters
(clearance of EGFR, clearance of EGFR-GC1118 complex, and the synthesis rate of EGFR)
were scaled from cynomolgus monkeys to humans. In vitro data was used to estimate
the affinity of GC1118 to EGFR. Using the estimated parameters, the nonlinear pharma-
cokinetics of GC1118 and EGFR occupancy in humans was predicted, which contributed
to the design of the GC1118 dosing regimen in the clinical trial. The prediction of occu-
pancy for membrane-bound target antigen in humans from cynomolgus monkeys using
the TMDD model was also reported for TAM-163 (anti-TrkB antibody) [81], Tovetumab
(anti-PDGFRα antibody) [77], and AMG 181 (anti-α4β7 antibody) [80]. The predicted occu-
pancy in humans can be used to judge the clinical potential of selected candidate molecules
and design the dosing regimen for clinical trials. Although the conventional TMDD model
can accurately describe target-antigen-mediated kinetics, it does not express TMDD in
the tissue compartment. Thus, the combination of the TMDD and PBPK model would be
more effective at capturing target-antigen-mediated kinetics in tissue. This concept will be
described in the next section.

As shown in Figure 1C, the mAb–target antigen binding process utilizes kon and koff
in the TMDD model. However, due to multiple parameters in the TMDD model and an
insufficient pharmacokinetic data set, each parameter would not be identifiable in several
cases. Therefore, a simpler TMDD model called the quasi-equilibrium (QE) model has been
proposed [90]. The QE model assumes that mAb-target antigen association and dissociation
are much faster than other processes. Thus, in this model, target antigen occupancy is
assumed to be determined by only the free mAb concentration and KD (koff/kon). However,
if other processes, especially clearance of mAb–target antigen complex, cannot be negligible
against koff, the QE model would not be optimal. In such cases, the quasi-steady-state (QSS)
model can be used to estimate target antigen occupancy. Gibiansky et al. investigated the
difference in prediction from full TMDD, QE, QSS, and MM models [91]. When kint was
much smaller than koff, the QE model could sufficiently estimate parameters. On the other
hand, when kint was not negligible against koff, the QE model was not valid. Although
most recent reports have used the full TMDD model for human prediction, its structure
and the balance between kint and koff should be carefully checked.

4. PBPK-Model-Based Prediction of Human PKPD

PBPK models describe the pharmacokinetic profiles of mAbs based on mechanistic
processes which incorporate measurable physiological and drug-specific parameters. PBPK-
model-based PKPD modeling of mAbs is a useful tool for selecting candidates based on
in vitro and in vivo parameters, and for the translational prediction of pharmacokinetics,
including tissue distribution and the mode of action (MoA) in different animal species [92].

Due to their large molecular weight, mAbs show lower distribution into tissues com-
pared with small molecule drugs. MAbs, especially those with topical targets, need to
achieve considerable exposure at the target site. There are several quantitative methods
for determining the tissue distribution of mAbs at the macro and micro scale. Tradition-
ally, the whole tissue concentration of mAbs can be determined using ligand binding
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assay (LBA), liquid chromatography–mass spectrometry (LC–MS), and by measuring the
radioactivity of radiolabeled mAb after preparing tissue homogenate from excited tis-
sues [93]. Semi-quantitative immunohistochemistry (IHC) or quantitative whole-body
autoradiography (QWBA) and fluorescent imaging are also tools that can measure the
concentrations of mAbs in a whole tissue by preparing the cross-sections of tissues and
the whole body [94–96]. These methods can detect an administered mAb in tissues at high
sensitivities. However, the measured concentrations in whole tissues do not necessarily
reflect the exact concentrations in the extracellular space where mAbs can distribute, be-
cause the distribution manner of mAbs in each sub-tissue compartment is not completely
homogenous due to transport barriers [97]. In addition, the measured radioactivity might
not completely reflect the concentrations of mAbs themselves. Tissue distribution data
of mAbs labeled with iodine-125 (I-125) and indium-111 (In-111) enable us to identify
the tissues where mAbs cumulatively distribute and degrade, because I-125 is rapidly
released and eliminated from the system and In-111 is accumulated within cells due to its
polarity or charge. However, signals from I-125 or In-111 after the administration of labeled
mAbs with each isotope do not necessarily reflect the concentrations of intact mAbs or the
sum of intact and degraded mAbs, respectively, because the half-lives of mAbs and each
isotope are different [98]. These are also highly invasive methods which are difficult to
apply in a clinical study. Positron emission tomography (PET) or single-photon emission
computed tomography (SPECT) can enable the non-invasive and highly sensitive quantifi-
cation of tissue concentrations, but these methods also provide low resolutive distribution
data [99]. Micro-scale measurement methods such as micro-autoradiography (micro-ARG),
matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and
intravital microscopic imaging (IVM) are highly resolutive methods which can capture
the mAb concentration in the tissue microenvironments in either an invasive or mini-
mally invasive manner [100–103]. More specifically, microdialysis and tissue centrifugation
methods can indirectly or directly isolate the tissue interstitial fluid to determine the mAb
concentrations at the site of distribution [104,105].

4.1. Physiological Parameters and Model Structure in PBPK Model

Several PBPK models have been established by using the biodistribution data of
mAbs [106–109]. The common structural features of these models are: the organs are
connected via the blood and lymph flows and each organ is divided by several compart-
ments to explain the typical pharmacokinetic profile of mAbs; tissue distribution via the
convective and diffusive transport between the plasma and interstitial space across the
endothelial cells; pinocytotic uptake and elimination via lysosomal degradation in the
endothelial cells; and FcRn-mediated salvage from lysosomal degradation, as shown in
Figure 2. To express the pharmacokinetics of mAbs, the extracellular space of organs—into
which mAbs are distributed—are often divided into vascular, endothelial, and interstitial
space. There are also some differences in the structures and/or physiological parameters of
each model.

1. Plasma and lymph flow rate

The values of plasma flow rate used in multiple studies are almost comparable (at most
a 10-fold difference) in both mice and humans. Some models assume the constant ratio (0.11
to 4%) of the lymph flow rate against the plasma flow rate in all tissues [31,107,110,111],
but there is more than a 10-fold difference between studies in these ratio values. Moreover,
some models estimate the specific lymph flow rate for each tissue, and these values differ
depending on the study (Figure 3A,B).

2. Rate of pinocytosis, lysosomal degradation, and FcRn-related parameters

MAbs, as well as endogenous IgG, undergo pinocytosis into vascular endothelial cells,
catabolic degradation in the lysosomes, and FcRn-mediated recycling into vascular and in-
terstitial space. By incorporating parameters related to these processes into the PBPK model,
we can capture and predict the effect of modification of FcRn-binding characteristics on the
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pharmacokinetics of mAbs. Many studies include the FcRn-mediated recycling mechanism
in the PBPK model structure for mAbs [97,106–108,110–121]. However, those values differ
greatly between studies which refer to the different reference data for calculating the affinity
or expression of FcRn; pinocytosis rate, lysosomal degradation rate, FcRn concentration,
and FcRn-mediated recycling rate range from 0.0002 to 13.8/day, 0.01 to 1030/day, 1.2 × 103

to 1.6 × 105 nM, and 5.0 to 68/day, respectively [33,106–108,110,111,113–123] (Figure 3C–F).
Furthermore, the interaction between FcRn and mAbs in the endothelial endosomal space
is assumed to occur by either equilibrium kinetics or catenary binding kinetics. Urva et al.
and Garg and Balthasar depicted the endosomal space as a single compartment assuming
the equilibrium-binding interaction of FcRn and mAbs [97,119]. Chen and Balthasar di-
vided the endosomal space into five compartments based on pH conditions to describe the
time-dependent endosomal transit of mAbs [110,120].
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3. Recirculation flow rate (for the two-pore model) and lymphatic/vascular
reflection coefficients

MAbs distribute into the interstitial space of each tissue via the convective and diffu-
sive transcapillary transport across the endothelial membrane. For describing this transport
process, there are two theories which assume either the homoporous or heteroporous
endothelial membrane: one-pore and two-pore theories [31,109]. In the one-pore model, the
net transport rate (Jt) caused by the difference in hydrostatic and osmotic pressure across the
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capillary membrane is expressed in the following equation using the mAb concentrations
in vascular and interstitial spaces expressed as Cp and Ci [31,124]:

Jt = Jv(1 − σ)C + PS
(
Cp − Ci

)
(1)

where C is the averaged intramembrane mAb concentration, which approximately equals
(Cp + Ci)/2 under the diffusion-dominated condition and equals Cp under the convection-
dominated condition. Jv is the fluid flow rate through the capillary wall, which is equivalent
to the lymph flow rate, σ is the osmotic reflection coefficient for the restricted movement of
molecules by convective flux, and PS is the permeability–surface area product. Equation (1)
can be converted to Equation (2) by using the ratio of convection against diffusion, Peclet
number (Pe):

Jt = Jv(1 − σ)Cp + PS
(
Cp − Ci

) Pe
exp(Pe)− 1

(2)

Pe =
Jv(1 − σ)

PS
(3)

Furthermore, many studies use a simpler equation which assume that the diffusive
transport is negligible for IgG [97,107,119,125]:

Jt = Jv(1 − σ)Cp (4)

The two-pore model expresses the net transport rate as follows [109]:

Jt = JL(1 − σL)Cp + PSL

(
Cp −

Ci
R

)
PeL

exp(PeL)− 1
+ JS(1 − σS)Cp + PSS

(
Cp −

Ci
R

)
PeS

exp(PeS)− 1
(5)

where JL and JS, PeL and PeS, and σL and σS are the fluid flow rates, Peclet numbers, and the
osmotic reflection coefficients through the large and small pores of the capillary membrane,
respectively. R is the partition coefficient of mAbs between the vascular and extravascular
space, usually set at 1.

JL and JS are described by the following equation:

JL = Jiso + αLL (6)

JS = −Jiso + αSL (7)

where Jiso is the recirculation flow rate, L is the lymph flow rate, and αL and αS are the
hydraulic conductivities through the large and small pores, respectively.

Some studies adopted the one-pore model as a less parameterized model for expressing
the extravasation of mAbs [31,97,107,110,117–119,126]. The two-pore model was also used
in some studies [106,108,109,113–116,127]. As mentioned by Rippe and Haraldsson [128],
despite the overparameterization, the two-pore model improves the overestimation of
diffusive transport compared with the one-pore model. On the other hand, studies us-
ing a simplified one-pore model omitting diffusion also showed good prediction of mAb
PK [97,107,110,117–119,126]. When applying the PBPK model to molecules that are smaller
than mAbs, the two-pore model might be suitable because the diffusive transport may
strongly contribute to extravasation of smaller-sized molecules and more accurate esti-
mation of diffusive transport is required [113,114]. However, the recirculation flow rate
and the osmotic reflection coefficients used in the two-pore model are different across the
literature; there is at most a 391,500-fold difference in the recirculation flow rate of spleen
(2.0 × 10−7 to 0.08 mL/min/g tissue) and at most a 5-fold difference in the lymphatic
reflection coefficient [108,109,115,116,128].

4. Volumes of tissues and sub-tissue compartments

Although studies used comparable tissue volumes and interstitial volumes, the
volumes of the endosomal and vascular compartments varied greatly between stud-
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ies: there was around a 20- and 50-fold difference in endosomal and vascular volu-
mes [33,106–111,113–123,128–130].

Because of the wide variability between reports in estimated parameters, the predicted
mAbs concentrations in each tissue compartment might also vary widely depending on
the parameters used. A robust model that can be applied to a variety of mAbs and species
should be established by compiling experimental data.

In contrast to the complexity and variability of parameters in the full PBPK models, the
minimal PBPK models have a simpler structure with a limited number of organs and can
be used to describe the concentration profiles in specific tissues [112,121–123,129,131–136].
With minimal PBPK models, it is easy to incorporate additional tissue compartments, such
as tumor and skin as the site of absorption, and additional kinetics, such as target antigen
binding into the specific tissue compartments.

4.2. Use of PBPK Model to Mechanistically Describe and Predict mAb PK and PD

Using full or minimal PBPK models, many studies have characterized the mechanisms
underlying the kinetics and tissue distribution of mAbs [97,107,108,110,119–121]. Some
reports integrated the FcRn-mediated recycling process into their full PBPK model with
estimating unknown parameters, such as FcRn concentration, in each tissue [107,108].
Based on these estimated parameters, some reports investigated the accuracy in predicting
mAb pharmacokinetics in the presence of high and low concentrations of endogenous
IgG in WT and FcRn-KO mice [119] and investigated the effect of the interplay of binding
affinities against the target and FcRn and/or pH dependency in FcRn-binding properties
on mAb pharmacokinetic output [97,110,121]. As for predicting the effect of in vitro FcRn-
binding affinity on the half-life of mAbs, the catenary PBPK model [110,120] showed better
accuracy than the equilibrium model.

There have been several reports constructing full [111,130] and minimal [122,137]
PBPK models to characterize the mechanism of absorption after subcutaneous administra-
tion. In this process, mAbs are directly injected into the interstitial space and then absorbed
into the vascular space through convective lymphatic transport or diffusive transport across
the vascular endothelial space. Gill et al. proposed the two-pore transcapillary transport
model to express subcutaneous absorption [130]. Their model successfully explained the
plasma concentration profiles of various-sized therapeutic proteins in the range of 8 to 150
kDa after subcutaneous administration. They also mentioned that the diffusion process
did not fully account for mAb distribution into the systemic circulation after subcutaneous
dosing. The exact parameters related to the flow of fluid through the lymphatic vessels
are unknown. Hu and D’Argenio included the processes of pre-systemic degradation,
trafficking, and absorption of mAbs in the subcutaneous injection site [111]. They revealed
that the lymphatic uptake pathway accounts for 91.6 to 99.0% of the total subcutaneous
absorption, which is consistent with a previous report [138]. Zhao et al. used the minimal
PBPK model with the one-pore capillary transport to also show the large contribution
of lymphatic flow to Tmax and the bioavailability of mAbs after subcutaneous adminis-
tration [122]. Varkhede and Forrest showed that the pI of mAbs affects subcutaneous
bioavailability by applying the minimal PBPK model to the plasma concentration data of
several mAbs in humans [137].

The TMDD process should be included in the PBPK model to explain the nonlinear
pharmacokinetics caused by target binding and internalization. Multiple parameters are
needed to express the TMDD: the expression levels, tissue distribution, and turnover rate
of target antigens, and the internalization rate of mAb–target antigen complex. Abuqayyas
et al. included the TMDD for two mAbs against tumor-specific carcinoembryonic anti-
gen (CEA) in two xenograft tumors by using the measured CEA concentrations in excised
tumors or tumor cells, the internalization rate of the mAb–target antigen complex measured
in an in vitro study, and the KD measured by SPR or cell binding assays [117]. The model
accurately predicted the impact of these parameters on mAb pharmacokinetics, suggest-
ing the predictability of human pharmacokinetics and tissue disposition using the PBPK



Pharmaceuticals 2022, 15, 508 15 of 31

model approach. Glassman et al. incorporated TMDD into all tissue compartments for the
cynomolgus monkey and human PBPK model to describe the tissue distribution of several
mAbs against several membrane targets by applying the IHC scores of target antigens
to set their concentrations in each tissue [120,139]. The model successfully predicted the
tissue distribution of some mAbs, further indicating the usefulness of the PBPK model in
predicting tissue concentrations of mAbs and the receptor occupancies by knowing the
target antigen expression patterns and turnover rates. This PBPK-model-based method
can also be modified to predict pharmacodynamics and/or toxicity for the estimation of
efficacious dosing regimen of mAbs during earlier periods of drug development.

The Simcyp consortium group provided the perspective on the quantification and ver-
ification of PBPK models for regulatory submission [140] based on the recently increasing
applications of PBPK-PD modeling in clinical studies. There have been several reports com-
bining a full or minimal PBPK model and PD model to explain the PKPD relationship for
candidate selection and clinical prediction [122,123,129,131,136,141]. As reported by these
studies, the optimal physicochemical profile of mAbs and the physiological characteristics
of target patient populations for ideal efficacy can be determined by the PBPK-PD model
which captures well the relationship between pharmacokinetics and efficacy. However,
as mentioned above, the parameters used in each model were different, and this might
affect the extrapolation of PKPD output. Although the quality of the PBPK model must be
assessed, especially for clinical simulations for regulatory submissions, it is still difficult
to fully validate the physicochemical and physiological parameters due to the lack of a
sufficient in vivo data set. While the full PBPK model can predict the mAbs concentration
in various tissues, the minimal PBPK model is also useful for more complicated simulations,
including pharmacodynamics simulations.

5. Prediction of Human PKPD of ADC Using M&S

ADC is a unique therapeutic mAbs modality that is mostly used for anticancer drugs.
ADC consists of a mAb that binds to the target antigen, a payload with tumor-cell-killing
activity, and a linker which combines the payload and mAb (Figure 4). The number
of conjugated payload molecules per mAb is called the DAR (drug to antibody ratio).
After administration, ADC binds to a target tumor antigen and enters the cell through
target-antigen-mediated internalization. Then, the conjugated payload is released by
the degradation of the mAb and/or the linker in the tumor cell lysosome. Tumor-cell-
killing activity is exerted by the released payload. Antibody-dependent cellular cytotox-
icity (ADCC)/antibody-dependent cellular phagocytosis (ADCP) and neutralization of
antigen function also contributes to efficacy in some ADCs.

Pharmacokinetic aspects of ADC resemble those of mAb rather than its payload. That
is, ADC shows a prolonged plasma half-life depending on the FcRn-mediated recycling.
Nonlinear pharmacokinetics by TMDD is sometimes seen [142,143]. ADC also shows
extravasation-limited distribution into tumor interstitial space [144]. However, due to
the conjugation of the payloads, the PKPD of ADC has peculiar aspects. Namely, (1) the
molecule is non-homogenous even if a site-specific payload conjugation technology is
employed. (2) Cleavage of the linker during the systemic circulation yields a variety
of molecules having different DAR [145]. (3) The complex payload release process in
tumor including the bystander effect [146] makes it harder for PD modeling. (4) Each
payload shows distinct PKPD profile that includes drug–drug interaction (DDI) [147,148].
With these complexities, modeling ADC PKPD has peculiar challenges while being an
indispensable tool for ADC drug discovery and development.
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5.1. PKPD Modeling of ADC

Although the linker is designed to be stable in plasma, ADC undergoes a variety of
metabolic changes, including linker cleavage, after the administration. Therefore, hetero-
geneity of the molecule which results from the uneven release of the conjugated payload
is observed. The quantification of distinct DAR is possible with LC–MS measurement,
so ADC PK models reflecting the time evolution of individual DAR species were devel-
oped [149,150]. However, due to the complexity of LC–MS measurement, ELISA is often
used as a simple alternative to assess the time evolution in DAR [151]. As a result, PK mod-
els describing the total mAb, conjugated mAb, and free payloads are often used [152,153].
The time evolution of such molecular species in plasma is described using a modified com-
partment model with molecular species conversion by the linker cleavage. The simplest
way to calibrate these model parameters is to adjust the model parameter to recapitulate the
in vivo plasma concentrations of total mAb and conjugated mAb. Sometimes, in vitro linker
cleavage is measured to assess the cleavage kinetics [154]. Since PD/toxicodynamics (TD)
of ADC can take place in a particular organ/tissue within a body, the PBPK model of
ADC is also used for the characterization of organ/tissue-specific PD/TD effect. Because
ADC has pharmacokinetic characteristics of both mAbs and small molecule drugs, the
ADC PBPK model is often a combination of a mAb and small molecule PBPK model. For
example, Shah et al. constructed a conjugated ADC PBPK model with five compartments
(i.e., blood cell, plasma space, endosomal space, interstitial space, cell membrane, and
cellular space). The distribution of the free payload is described by the tissue:plasma
partition coefficient (Kp) value estimated based on the physicochemical property of the
payload [155,156]. Nonlinear pharmacokinetics of ADC caused by TMDD is described by
the generic TMDD model which is frequently used in mAbs [157].

The pharmacodynamics of ADC has been described either with empirical or mechanis-
tic models. For example, Jumbe et al. described the pharmacodynamics of trasutuzumab-
DM1 (T-DM1) with a transit compartment model [158]. The model assumed that conjugated-
antibody-dependent tumor cells transition to an inactive state and then transition to a dead
state. During this process, other tumor cells proliferate. Based on this model, the TSC
of conjugated ADC could be derived assuming no net tumor cell increase by the balance
between the tumor cell death and tumor cell proliferation. TSC could be used for the
in vitro–in vivo correlation (IVIVC) and as a reference for the dosing strategy. On the other
hand, a more mechanistic description of pharmacodynamics is sometimes needed to gain
insights for the drug discovery and development strategy. For that purpose, the Krogh
cylinder model of tumor disposition is often used [159]. With this model, Cilliers et al.
showed that the co-administration of trastuzumab and T-DM1 results in increased tumor
penetration of T-DM1 by the masking of tumor peripheral antigen with trastuzumab, hence
the enhanced antitumor activity [144]. Sigh et al. also used the Krogh cylinder model
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and showed that the more frequent dosing of trastuzumab-vcMMAE is preferred if the
bystander effect is considered [160]. This is due to the prolonged and sufficient exposure of
the free payload to antigen-negative cells in cases with a frequent dosing regimen.

5.2. Translational PKPD Prediction and Clinical Model Analysis of ADC

After the construction of a preclinical PKPD model, it must be extrapolated to humans
ahead of clinical development. The estimation of the first-in-human (FIH) dose is especially
important. For mAbs and small molecule drugs, several methods for human projection
have been proposed. Chunze et al. performed a two-compartment-model analysis of
11 ADCs and tried several conventional extrapolation methods [161]. As a result, they
concluded that the best extrapolation method for humans is single species allometry using
pharmacokinetic data in cynomolgus monkeys with exponent = 1.

The population pharmacokinetic (popPK) model is used to determine the group
average and covariates of pharmacokinetic parameters. Since the quantification of each
molecular species with different DAR in clinic is difficult, a simpler model than that
used in the preclinical stage is needed. One or two modeled molecular species are often
selected from total mAb, conjugated mAb, conjugated payload, or free payload. Modeling
approaches for currently approved ADCs in clinical studies are summarized in Table 1.
As the covariates of popPK model, BW (body weight) and BSA (body surface area) were
frequently identified and the insights were used for a dose-capping plan for enfortumab
vedotin and brentuximab vedotin [162].

PopPK analysis also showed enhanced clearance of conjugated mAb of brentuximab
vedotin [163] and T-DM1 [164] within liver dysfunction patients, and enhanced clearance of
brentuximab vedotin in renal dysfunction patients [163]. In the meantime, the free MMAE
clearance of brentuximab vedotin decreased in liver and renal dysfunction patients [163]
and reduction in free MMAE clearance of polatuzumab vedotin was also observed in liver
dysfunction patients [165]. As for brentuximab vedotin, the label recommends avoiding
use in liver dysfunction patients and renal dysfunction patients were implemented based
on these findings. DDI risk assessments were also performed using established popPK
models coupled with in vitro and in vivo assay results. Currently, no particular DDI risk as
a perpetrator of registered ADCs has been found. This is presumably due to the relatively
low exposure of toxic molecular species under clinical dosing regimen, although some DDI
risk as a victim drug remains.

Risk/benefit assessment in a clinical study and PII/PIII dose adjustment is often per-
formed using the exposure–response model (ER model). For example, ER model analysis
of gemtuzumab ozogamicin, an ADC which was once registered but withdrawn due to
hepatoxicity, revealed that Cmax contributes to the toxicity while efficacy is independent of
Cmax. Based on the analysis, fractionated dosing of 3 mg/m2 was implemented instead of
9 mg/m2, leading to the later re-approval of gemtuzumab ozogamicin [166,167]. One no-
table point for ER analysis in ADC is that the correlation of particular analyte exposure to
the PD/TD depends on the ADC molecule in question.

Table 1. Modeling approaches of approved ADCs in clinical development.

ADC Name Approval
Year Target Payload

Modeled
Analytes

in popPK Model

Model Structure
and Description

Gemtuzumab
ozogamicin 2017;2000 CD33 Calicheamicin

tAb 2-COMP, LE + TDE

Unconjugated
Calicheamicin 2-COMP,1stF, LE
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Table 1. Cont.

ADC Name Approval
Year Target Payload

Modeled
Analytes

in popPK Model

Model Structure
and Description

Brentuximab
vedotin

2011 CD30 MMAE

ADC 3-COMP, LE

Unconjugated
MMAE 2-COMP, TDF, LE

Ado-trastuzumab
emtansine 2013 HER2 DM1 ADC 2-COMP, LE

Inotuzumab
ozogamicin 2017 CD22 Calicheamicin ADC 2-COMP, LE + TDE

Moxetumomab
pasudotox 2018 CD22 Pseudomonas

exotoxin A ADC 1-COMP, CDLE

Polatuzumab
vedotin

2019 CD79 MMAE

Conjugated
MMAE

2-COMP, LE + TDE
+ MME

Unconjugated
MMAE

2-COMP, LF + NLF,
LE + MME

Enfortumab
vedotin

2019 Nectin-4 MMAE

ADC 3-COMP, LE

Unconjugated
MMAE 2-COMP, LE

Fam-trastuzumab
deruxtecan-nxki

2019 HER2 DXd

ADC 2-COMP, LE

Unconjugated
DXd 1-COMP, 1stF, LE

Sacituzumab
govitecan 2020 Trop-2 SN-38

Conjugated SN-38 1-COMP, LE

Unconjugated
SN-38 2-COMP, 1stF, LE

Loncastuximab
tesirine

2021 CD19 PBD
tAb 2-COMP, LE + TDE

ADC 2-COMP, LE + TDE

Tisotumab
vedotin

2021 Tissue factor MMAE

ADC 2-COMP, LE +
MME

Unconjugated
MMAE 1-COMP, LE

ADC Name
Analysis of

Liver Dysfunction
Patients

Analysis of
Renal

Dysfunction
Patients

Payload DDI Risk
(Perpetrator)
Assessment
Approach

Analytes for
ER Model Ref.

Gemtuzumab
ozogamicin

popPK:
NCI criteria

popPK:
CrCL

In vitro effective
concentration vs.

Cp
tAb [168]

Brentuximab
vedotin

Clinical study:
Child-Pugh

Clinical
study:CrCL

In vitro effective
concentration vs.
Cp and clinical

study

ADC, MMAE [169]

Ado-trastuzumab
emtansine

Clinical study:
Child-Pugh popPK: CrCL

In vitro effective
concentration vs.

Cp
ADC, tAb, DM1 [170]

Inotuzumab
ozogamicin

popPK:
NCI criteria popPK: CrCL

In vitro effective
concentration vs.

Cp
ADC [171]

Moxetumomab
pasudotox

popPK:
NCI criteria popPK: CrCL NA ADC [172]
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Table 1. Cont.

ADC Name
Analysis of

Liver Dysfunction
Patients

Analysis of
Renal

Dysfunction
Patients

Payload DDI Risk
(Perpetrator)
Assessment
Approach

Analytes for
ER Model Ref.

Polatuzumab
vedotin

popPK:
NCI criteria popPK: CrCL

In vitro effective
concentration vs.

Cp and PBPK
model

MMAE,
Conjugated
MMAE, tAb

[173]

Enfortumab
vedotin

popPK:
NCI criteria

popPK: CrCL and
Clinical

study: CrCL

In vitro effective
concentration vs.

Cp
ADC, MMAE [174]

Fam-trastuzumab
deruxtecan-nxki

popPK:
NCI criteria popPK: CrCL

In vitro effective
concentration vs.

Cp and
clinical study

ADC, DXd [175]

Sacituzumab
govitecan

popPK:
NCI criteria NA NA

IgG, total-SN-38,
free-SG-38,

SN-38G
[176]

Loncastuximab
tesirine

popPK:
NCI criteria popPK: CrCL

In vitro effective
concentration vs.

Cp
ADC [177]

Tisotumab
vedotin

popPK:
NCI criteria popPK: CrCL

No dedicated
study

(reference to
brentuximab

vedotin)

ADC, MMAE [178]

1-COMP: 1 compartment model, 2-COMP: 2 compartment model, 3-COMP: 3 compartment model, LF: linear
formation, NLF: nonlinear formation, 1stF: 1st order formation, LE: linear elimination, TDE: time dependent
elimination, MME: Michaelis–Menten elimination, CDLE: cycle-dependent linear elimination, NCI criteria:
National Cancer Institute classification system criteria, CrCL: creatinine clearance, ADC; conjugated antibody,
tAb: total antibody, IgG: unconjugated antibody.

Based on the recent success of ADCs, many are now under development. Given the
complexity of the MoA and structural format, model-based drug discovery and develop-
ment would be inevitable for this particular modality. In this section, we summarized the
current methodology and findings in ADC model analysis. Despite a substantial effort
from preclinical to clinical, the estimation of the therapeutic index (TI) of ADC has not
been so successful. This has led to the failure of some clinical trials. Considering the
relatively successful modeling of the systemic PK of the ADCs, a solution might be found
within PD modeling, especially of ADC tumor distribution. The Krogh cylinder model is
currently the best at describing ADC distribution in tumor interstitial space. Some factors
related to the PD are implicated by the sensitivity analysis of the Krogh cylinder model
in preclinical models. Another important field for ADC modeling should be immuno-
oncology therapy. There is ample evidence of immune cell activation by ADC through the
Fc-mediated process. In addition, the evidence of immunogenic cell death induction by
payloads has been accumulated, but both mechanisms have unfortunately not yet been
fully modeled. Further efforts are needed for the modeling and quantitative prediction of
ADC in immuno-oncology. Although challenged with these difficulties, PKPD models of
ADC are all the more needed for the quantitative understanding of ADC, which is hard to
capture by any other methods.

6. QSP-Model-Based Prediction of Human PKPD

QSP is a research area that aims to model the mechanistic processes found in com-
plex biology and link them to the PKPD of drugs. Previously, traditional model-based
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approaches and relatively simple model approaches such as TMDD had been the primary
choices for human PKPD prediction. However, due to severe competition in drug discovery
and development and deep understanding of biology, several researchers have tried more
complex and mechanistic M&S approaches such as QSP modeling. QSP modeling has
recently been applied to problems such as target antigen selection, biomarker identification,
and the prediction of clinical pharmacodynamics [179]. Although QSP modeling is still an
immature methodology in drug discovery and development, it will become a major tool
for predicting the human PKPD of new drug candidates in the near future.

6.1. QSP-Model-Based Prediction of Pharmacodynamics for Masked Tumor-Activated Antibody

As described earlier, mAbs have a high specificity to the target antigen, resulting in a
low risk of off-target toxicity. However, if the target antigen expresses on both the target
cell and normal cell, it is difficult to control on-target toxicity with maintaining desirable
efficacy. PROBODY therapeutics (Pb-Tx) has been developed as a prodrug antibody which
can be activated by tumor-specific proteases. Once the protease-cleavable domain is cleaved
by tumor-specific proteases, the mask domain can be released; then, Pb-Tx binds to the
target antigen in the tumor. Due to the complex and multi-step activation process of Pb-Tx,
the QSP model was developed and translational PKPD prediction of Pd-Tx was conducted.

Stroh et al. first reported the construction of the QSP model for Pb-Tx using anti-CD166
Pd-Tx [180]. Five different anti-CD166 Pd-Tx with different protease-cleavable domains
and mask domains and parent anti-CD166 antibodies were evaluated in cynomolgus
monkeys for model construction and parameter estimation. The obtained results were
captured by the QSP model by fitting each parameter; then, the parameters were scaled
from cynomolgus monkeys to humans. Since the QSP model in cynomolgus monkeys did
not have tumor compartment, tumor compartment and related parameters were added
in the human QSP model based on information from the literature. The estimated human
QSP model was used to select the optimal mask domain property and predict efficacious
dosage in clinical situations. Stroh et al. further expanded their QSP model to anti-PD-L1
Pd-Tx, CX-072 [181]. The anti-CD166 Pd-Tx-based QSP model was modified for anti-PD-L1
Pd-Tx based on preclinical pharmacokinetic data of CX-072 in cynomolgus monkeys and
clinical pharmacokinetic data of atezolizumab which is a conventional anti-PD-L1 antibody.
The modified QSP model well predicted the pharmacokinetics of plasma total CX-072 and
masked CX-072 concentration in the clinical study. Moreover, the observed intratumor
PD-L1 occupancy which was calculated based on the observed intratumor activated CX-072
concentration in humans was successfully predicted by the QSP-model-based approach.
This analysis supported the design of effective dosing regimen of CX-072 in clinical settings.

6.2. QSP-Model-Based Prediction of Pharmacodynamics for Bispecific T Cell Engager

Bispecific T cell engager (TCE) is a bispecific antibody targeting CD3 on T cells
and tumor antigens on tumor cells, bringing them in close proximity and inducing T-
cell-dependent tumor-killing activity [182]. Although several TCEs are being developed
in clinical trials, there is a lack of translational strategy of PKPD due to complex MoA.
Thus, the QSP model which can describe a complex biology system and disease condi-
tion/progression has been applied to perform mechanism-based translation of preclinical
PKPD of TCEs to humans. TCEs form TCE-T cell–tumor cell trimer and show T-cell-
dependent tumor-killing activity. Therefore, the mechanistic incorporation of trimer forma-
tion in the tumor microenvironment in the QSP model can be a key factor to consider the
pharmacodynamics of TCEs.

Campagne et al. applied the QSP model to quantitatively describe PKPD of flote-
tuzumab, a bispecific anti-CD3/CD123 antibody, in cynomolgus monkeys [183]. In cynomol-
gus monkeys, T cell and CD123-positive cell dynamics after flotetuzumab injection were
monitored as pharmacodynamic parameters. Obtained pharmacokinetics and pharma-
codynamics were analyzed by the QSP model and trimer (flotetuzumab-T cell-CD123
positive cell) concentration was predicted. Although the constructed model was not scaled
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to humans in this report, model structure and estimated parameters can be translated
from cynomolgus monkeys to humans using the appropriate scaling approach. Betts et al.
developed a QSP model for PF-06671008, bispecific anti-CD3/P-cadherin antibody, and
predicted pharmacodynamics in humans based on preclinical data [184]. First, the QSP
model (Figure 5A) was constructed from results of mouse xenograft efficacy study data
by incorporating several mechanisms such as pharmacokinetics of PF-06671008, CD3/P-
cadherin expression on T cells and tumor cells, T-cell dynamics in blood and tumor, and the
formation of PF-06671008-T cell–tumor cell trimer. Trimer concentration in tumor was as-
sumed to determine tumor-killing activity in this model (Figure 5B). Then, the constructed
model and estimated parameters were translated from mouse to human. The final human
QSP model predicted trimer formation in tumor in clinical situations and it was found
that P-cadherin expression level in tumor cells and T-cell number in tumor were highly
sensitive to trimer formation in sensitivity analysis. This analysis provides framework of
QSP-model-based prediction of human PKPD of TCE and importance of each parameter on
trimer formation. Hosseini et al. developed a QSP model to translate pharmacodynamics
of a bispecific anti-CD3/CD20 antibody, mosunetuzumab, from cynomolgus monkeys to
humans [185]. Plasma and tissue T cell/B cell kinetics and cytokine kinetics after mosune-
tuzumab injection were evaluated in cynomolgus monkeys and captured by the QSP model.
Then, estimated parameters in cynomolgus monkeys were translated to humans. Tumor
compartment was additionally included in the human QSP model. When the human QSP
model was constructed in this report, clinical data of blinatumomab, which is an approved
bispecific anti-CD3/CD19 antibody fragment, was utilized to optimize parameters. Since
blinatumomab has similar MoA with mosunetuzumab, utilizing clinical data of blinatu-
momab could be a valuable approach to improve the predictability. The constructed human
QSP model predicted T-cell activation, cytokine kinetics, and anti-tumor efficacy in humans
and contributed to optimized clinical efficacious dosing strategy with migrating cytokine
release. Recently, a similar approach without clinical blinatumomab data was reported in
another bispecific anti-CD3/CD20 antibody, glofitamab [186].
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of the bell-shaped tumor-cell-killing activity based on the concentration of trimer. Figure was
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Although above reports predicted human pharmacodynamics based on in vivo data,
Chen et al. reported an in vitro-data-based pharmacodynamics prediction approach for
a bispecific anti-CD3/P-cadherin antibody [187]. First, an in vitro QSP model was con-
structed using in vitro cytotoxicity kinetic data and binding affinity data. Trimer (TCB-T
cell-tumor cell) concentration in the constructed model was assumed to determine tumor-
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killing activity. Then, estimated in vitro QSP model parameters were scaled to human
in vivo parameters. T cell and tumor cell number, and P-cadherin expression in tumor
cell and CD3 expression in T cell were replaced by human in vivo parameters. Other
parameters were assumed to be the same with the in vitro QSP model. Pharmacokinetics
in humans was predicted from cynomolgus monkeys by the allometric scaling approach.
The final QSP model predicted trimer formation in human tumors and contributed to the
first-in-human dose design. Song et al. also reported a similar in vitro-data-based pharma-
codynamics prediction approach for a bispecific anti-CD3/EpCAM antibody, M701, to treat
malignant ascites [42]. In vitro-data-based quantitative QSP modeling predicted the ascites
exposure–cytotoxicity relationship of M701. In vitro experiments can be flexibly conducted
in several conditions by changing each factor such as T cell and tumor cell number, source
of T cell and tumor cell, and TCB concentration. Thus, this approach can construct a QSP
model more logically based on actual experiment data. The optimal combination of in vivo
and in vitro data could be important to improve model construction, parameter estimation
and human prediction accuracy.

6.3. Future Perspectives for QSP-Model-Based Prediction of Pharmacodynamics

QSP-model-based pharmacodynamics prediction of mAbs in humans becomes an
important approach especially when a MoA is complex and the translation from preclinical
data to humans is not simple. Although major reports on QSP modeling for mAbs have
focused on cancer, its application to other diseases, such as Alzheimer’s disease [188],
COVID-19 [189], and asthma [190], has recently been reported. Furthermore, for an in-
tegrated understanding of complex disease biology, disease-based QSP model platforms
have also been developed for several diseases such as heart failure [191], inflammatory
bowel disease [192], Parkinson’s disease [193], and type 2 diabetes mellitus [194]. These
disease-based QSP model platforms can be applied in any therapeutic modality, including
mAbs. Therefore, the application of QSP modeling for the discovery and development of
mAbs will be expanded in several diseases. Since the QSP model incorporates numerous
numbers of parameters, the reliability of each parameter can be an important factor for
predictability. Thus, the accurate estimation of each parameter becomes crucial for QSP
modeling. The accumulation of scientific evidence to estimate parameters will increase the
reliability and enable QSP modeling to be a more familiar tool for human PKPD prediction
in the near future.

7. Conclusions

As we reviewed, there has been extensive progress in M&S-based quantitative ap-
proaches for predicting the PKPD of mAbs in humans. Since the MoAs of current clinical
candidate molecules are often complex, mechanistic models have been frequently used.
On the other hand, although the recent trend in M&S has been toward more complex
mathematical models, an optimal model should be selected based on the purpose of the
study and the quality of available data sets. Additionally, the quality of data sets can
be an important factor for M&S analysis. Therefore, several points such as study design,
bioanalysis method, and immunogenicity should be carefully considered to analyze the
data by M&S. Due to intense competition in the discovery and development of mAbs, the
increase in clinical probability can be a powerful advantage in the pharmaceutical industry.
Thus, it is essential to accurately predict human PKPD before starting a clinical trial. Addi-
tionally, because M&S requires mathematical and computational technologies, progress in
big data analysis, artificial intelligence (e.g., machine learning (ML)), and the development
of analytical software will contribute to future advancement of M&S. Recently, ML-based
PKPD prediction has been gaining interest. Indeed, ML-based popPK analysis shows
several successful examples such as T-DM1 [195]. However, application of such a method
to translational research of antibody therapeutics is now scarce. This is probably due to
the scarcity of the preclinical data, which is not sufficient for the learning process of the
model parameters. Further research needs to be performed in the application of ML-based
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human projection. The integration of multiple datasets and modeling strategies is needed
to maximize the value of M&S. The pharmaceutical industry must rightly understand and
utilize M&S in order to improve the probability of success of new drug candidates.
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