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Objectives: Breast cancers show different regression patterns after neoadjuvant chemotherapy. Certain regression pat-
terns are associated with more reliable margins in breast-conserving surgery. Our study aims to establish a nomogram
based on radiomic features and clinicopathological factors to predict regression patterns in breast cancer patients.
Methods: We retrospectively reviewed 144 breast cancer patients who received neoadjuvant chemotherapy and
underwent definitive surgery in our center from January 2016 to December 2019. Tumor regression patterns were cat-
egorized as type 1 (concentric regression + pCR) and type 2 (multifocal residues + SD+ PD) based on pathological
results. We extracted 1158 multidimensional features from 2 sequences of MRI images. After feature selection, ma-
chine learning was applied to construct a radiomic signature. Clinical characteristics were selected by backward step-
wise selection. The combined predictionmodel was built based on both the radiomic signature and clinical factors. The
predictive performance of the combined prediction model was evaluated.
Results: Two radiomic features were selected for constructing the radiomic signature. Combined with two significant
clinical characteristics, the combined prediction model showed excellent prediction performance, with an area
under the receiver operating characteristic curve of 0.902 (95% confidence interval 0.8343–0.9701) in the primary
cohort and 0.826 (95% confidence interval 0.6774–0.9753) in the validation cohort.
Conclusions: Our study established a unique model combining a radiomic signature and clinicopathological factors to
predict tumor regression patterns prior to the initiation of NAC. The early prediction of type 2 regression offers the op-
portunity to modify preoperative treatments or aids in determining surgical options.
Introduction

Preoperative neoadjuvant chemotherapy (NAC) has played an increas-
ingly significant role in comprehensive care for locally advanced breast can-
cers [1]. The primary purposes of NAC are to downstage breast cancers and
improve the possibility of breast-conserving therapy in most breast cancers
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multiple residual foci, SD and PD are, however, more prone to undergoing
mastectomy after completing NAC.

The higher local recurrence rate in NAC than in adjuvant chemotherapy
has caused breast cancer specialists to take caution. In a recent meta-
analysis, the 15-year local recurrence rate in patients receiving NAC was
found to be 5.5% higher than that in patients receiving chemotherapy
(21.4% vs 15.9%, p= 0.0001) [9]. An increase in the BCS rate was specu-
lated to be responsible for this finding since patients with favorable re-
sponses to NAC may have successfully changed their original intended
surgical plan from mastectomy to BCS. Though the higher IBTR did not
cause a significant difference in overall survival, it brought an extra opera-
tion and might cause mental stress to patients. A previous study from the
University of Pittsburgh determined that multifocal regression indepen-
dently predicts IBTR [6]. Tumor regression patterns were divided into 2
types: pCR plus unifocal regression and multifocal regression. Compared
to that in the pCR group, the hazard ratio of tumor recurrence reached
11.2 in the diffuse multifocal regression group. Meanwhile, 9.5% of the pa-
tients were recruited for a second operation as a result of the positive mar-
gins in their first attempted breast-conserving surgery.

Because satellite/microfoci remain after neoadjuvant chemotherapy,
the negative margins in BCS may not be as safe in cancers with multifocal
regression. In patients with poor response to NAC, including PD and SD,
BCS is obviously not a preferred option. Nakamura [10] categorized
tumor regression patterns into concentric regression and dendritic regres-
sion and determined that nonconcentric regression necessitated careful
evaluation for BCS. In this study, tumor regression patterns are categorized
into 2 types based on clinical interest. Type 1 regression contains pCR and
unifocal regression, for which BCS is themore favored surgical plan. Type 2
regression is composed of multiple residual foci, main residual disease with
satellite foci, stable disease (SD) and progressive disease (PD), which are
appropriate candidates for mastectomy. In addition to patients' willingness
and contraindications to radiation therapy [11], the tumor regression pat-
tern is crucial for determining whether BCS is feasible for an individual pa-
tient. Accordingly, the early prediction of the tumor regression pattern is of
great value and needs to be studied. The baseline prediction of tumor re-
gression patterns identifies BCS candidates at an early phase. This enables
the early modification of treatment strategies for those predicted to have
a type 2 regression with great possibility after NAC. In specific molecular
subtypes, e.g., TNBC, a more vigorous platinum-based chemotherapy may
be adopted in non-BCS candidates to obtain a better chemotherapy re-
sponse [12].

Radiomics has become a novel tool for noninvasively obtaining anatom-
ical tumor information by extracting and analyzing quantitative imaging
features [13]. Dedicated MRI imaging assists oncologists in providing
higher quality medical services, including more precise diagnoses [14,15],
improved predictions of lymph node metastasis [16] and more accurate
treatment response assessments [17,18]. Previously, Liu [19] and Xiong
[20] explored the possibility of multiparametric MRI in predicting the treat-
ment response after NAC, focusing on pCR orMiller–Payne grade. Few stud-
ies have concentrated on predicting tumor regression patterns that are
closely related to surgical options. In this original article, we tried to reveal
the correlations between a radiomic signature plus clinicopathological fac-
tors and tumor regression patterns.

Material and methods

Patients and factors

We retrospectively enrolled 144 patients with stage II-III breast cancers
who received NAC and underwent surgery in Guangdong Provincial
People's Hospital between February 2016 and June 2019. The criteria for
patient inclusion were as follows: 1) biopsy-confirmed invasive breast can-
cer with no distant metastatic disease; 2) no missing baseline clinicopatho-
logical factors; 3) MRI examinations in our center prior to biopsy; and
4) definitive surgery following standard preoperative chemotherapy. The
exclusion criteria were as follows: 1) missing baseline characteristics;
2

2) no available MR images or only poor-quality images; 3) patients
underwent final surgery at another cancer center and pathologic results
were unavailable; and 4) patients did not complete the planned cycles of
NAC regimen or had nonstandard NAC treatment (e.g., trastuzumab was
not included in the presurgical chemotherapy). We randomly allocated 7/
10 of eligible patients to primary cohort and the remaining to validation co-
hort in a 7:3 ratio.

In this retrospective study, each enrolled patient underwent the planned
standard chemotherapy regimen as recommended by theNCCNBreast Can-
cer Guidelines. The preoperative chemotherapy regimens suggested by
qualified oncologistswere taxane-based, anthracycline-based or a combina-
tion of the two. Furthermore, for patients with HER-2 positive status, anti-
HER-2 therapy (e.g., trastuzumab) was added in the treatment. This study
was approved by the Ethics Committee of Guangdong Provincial People's
Hospital. The requirement for informed consent was waived with authori-
zation because our study had a retrospective design and did not involve
any additional interventions.

Immunohistochemistry (IHC)

IHC was performed for each patient to determine the baseline estrogen
receptor (ER) status, progesterone receptor (PR) status, HER-2 status, and
Ki67 status. The cutoff value for ER and PRwas set at 1% [21], and the cut-
off value for Ki67 was 20% [22,23]. In regard to HER-2 status, tumors with
an IHC staining of 0 to 1+were defined asHER-2 negative and 3+asHER-
2 positive. For tumors with an IHC score of 2+, ISH testing was further per-
formed to confirm the HER-2 status. A non-amplified ISH result denotes the
HER-2 status as negative, and an amplified result denotes the HER-2 status
as positive.

Determination of tumor regression patterns

The tumor regression patterns were determined based on the final sur-
gical specimen. The patients underwent either BCS or mastectomy after
completing NAC. In either surgical procedure, the operation zone covered
the area of the primary cancer. Standard pathologic analyses were per-
formed for the assessment of the residual tumor after preoperative chemo-
therapy. The surgical specimens were fixedwith standard formalin solution
by experienced breast pathologists and processed in standard breast tissue
processors, after which the specimens were cut in parallel in a continuous
manner to expose the cancer tissue. For each slice, a 5 mm slide was further
prepared for H&E staining. The longest diameter of the residual invasive
tumor was recorded. Type 1 regression included pCR and unifocal regres-
sion. The former was defined as no residual invasive cancer remaining
after NAC (ypTis allowed). The latter was designated unifocal residual can-
cer tissue when the area of the original cancer with the longest diameter
shrank at least 30%. Type 2 regression comprised multiple residual foci,
main residual diseasewith satellite foci, stable disease (SD) and progressive
disease (PD). Multiple residual foci showed at least 2 separate foci in the
continuous slides, whereas main residual disease with satellite foci showed
a dominant residual disease with at least 1 minor accompanying focus. SD
and PDwere defined according to RECIST version 1.1 [24]. PD indicated an
increase of≥20% in the largest diameter of the tumor. SD indicated an in-
crease of less than 20% or a decrease of less than 30% in the tumor's largest
diameter (Fig. 1). Three breast pathologists with more than 15 years of ex-
perience interpreting breast specimens independently examined the speci-
mens and determined the tumor regression pattern based on the H&E-
stained slides. Agreements were made on the tumor regression patterns
among the 3 pathologists to reduce possible errors caused by interobserver
variability.

ROI masking and radiomic feature extraction

The patients underwent breast MRI examination within one week prior
to the biopsy using a field strength magnet of 1.5 T or 3.0 T. Two imaging
sequences, including diffusion-weighted imaging (DWI) and fat-suppressed



Fig. 1. Tumor regression patterns after neoadjuvant chemotherapy. a Primary cancer. b Type 1 regression (complete remission). c Type 1 regression (concentric regression). d
Type 2 regression (multiple residual foci). e Type 2 regression (amain residual diseasewith satellite foci). f Type 2 regression (stable disease). g Type 2 regression (progressive
disease).
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T2-weighted imaging (T2WI), were acquired for each patient. T2WIs were
obtained before the injection of contrast, and DWI sequences were col-
lected at 2 b values (b = 0 and 1000 s/mm2) after the completion of dy-
namic contrast-enhanced imaging.

Two radiologists with 10 years of experience were responsible for
tumor masking. For each MRI series, they evaluated the boundary of the
tumor independently. For any disagreements, a third consulting radiologist
with at least 30 years of experience determined the tumor border through
discussion to decrease the interobserver variability. Tumor contours on
every slice in DCE were manually delineated using ITK-SNAP (www.
itksnap.org), excluding vessels and hemorrhagic or necrotic foci. With the
help of the calibration tool and wipe tool in ITK-SNAP, the acute masking
of ROI in T2WI and DWI was assured (Fig. 2).

By applying the feature extractor function of the “radiomics” package in
Python (version: 3.7; www.python.org), each sequence of the MR images
had 1158 multidimensional features extracted.

Feature screening and radiomic signature construction

First, we performed Mann-Whitney U test screening on T2WI and
ADC sequence features, retaining features with p values less than 0.05.
Then, the elastic network chose the residual features (11 from T2WI;
229 from ADC), and the predictive features were selected. Model con-
vergence was achieved through a five-fold cross-validation strategy.
The support vector machine (SVM) is a nonlinear classifier with a radial
basis function kernel. The SVM was trained based on features from PC
and determined parameters by the five-fold cross-validation strategy.
The radiomic signature was computed for each patient in the validation
cohort via the SVM model, and ROC curves and areas under the ROC
curve (AUCs) were calculated.

Feature selection was implemented by the ‘radiomics’ package of Py-
thon (version: 3.7; www.python.org), and radiomic signature construction
was implemented by the ‘sklearn’ package of Python (version: 3.7; www.
python.org).

Construction of the clinical and combined models

The commonly used clinicopathological factors, including age, node
stage, tumor stage, PR status, ER status, and neoadjuvant chemotherapy
(NAC) regimen, were prepared for building a clinical prediction model.
3

Significant characteristicswere selected using backward stepwise selection,
after which thesefiltered indicatorswere used to construct a clinical predic-
tion model applying multivariate logistic regression.

Regarding the construction of the final model, based on the screened
clinicopathological factors and the radiomic signature, a multivariate logis-
tic regression model was constructed.

The ROC curves and AUC values of the clinical model and combination
model were calculated to assess the predictive ability of the models.

Both the clinical and combinedmodel were implemented by R software
(version 3.6.2; http://www.Rproject.org) with the package ‘glm2’.

Evaluations of the prediction models' performance

ROC curve analysis is often used to assess the predictive performance of
radiomic signatures and clinical and combined models. The ROC analysis
was implemented through the ‘pROC’ package in R software (version
3.6.2; http://www.Rproject.org). To further compare the performance
measures of the prediction models, we employed decision curve analysis
(DCA) in both the primary and validation cohort. Furthermore, the net re-
classification index (NRI) and the integrated discrimination improvement
(IDI) between the two different models were also calculated to evaluate
their performance. Finally, we presented themost predictivemodel as a no-
mogram and calibration curve analysis was employed to evaluate the
nomogram.

Results

Clinical characteristics

A total of 144 patients were recruited into the study, with a median
age of 49 years (range 24–73 years). Clinical features of 144 patients
and their associations with regression patterns are shown in Table 1.
One hundred patients were included in the primary cohort (PC), and
44 were included in the validation cohort (VC). There was no signifi-
cant difference in the proportion of type 2 shrinkage (17% and 18%
in the PC and VC, respectively, p = 1) in the two cohorts and no signif-
icant difference in the type 2 shrinkage ratio of different molecular
types (luminal of 20.8%, HER2 positive of 12.0%, TNBC of 8.7%, p =
0.327) in the cohorts.

http://www.itksnap.org
http://www.itksnap.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.Rproject.org
http://www.Rproject.org


Fig. 2. Tumor masking in different MR sequences. a. DCE b. T2WI c. DWI.
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Feature selection and radiomic signature construction

Two salient features (Original_shape_Sphericity and Log-sigma-3-
0-mm-3D_firstorder_MeanAbsoluteDeviation) from T2WI and ADC,
respectively, were finally selected through the Mann-Whitney U test
and elastic network to prepare for the construction of a radiomic
signature.
Construction of the clinical and combined models

Two significant clinicopathological indicators, namely, node stage and
ER status, were selected through backward stepwise selection, after
which they were incorporated into building a clinical prediction model.
The selected clinical indicators and the radiomic signature were utilized
to create a combined model. The relevant parameters of the clinical
Table 1
Clinical features of 144 patients and their associations with regression patterns.

Factors Primary cohort

Type 1 regression Type 2 regression

Age (years), mean ± SD 50.24±9.33 47.82±8.89
Menopausal status
Premenopausal 59 (71.1%) 13 (76.5%)
Postmenopausal 24 (28.9%) 4 (23.5%)
ER status
≤1% 36 (43.4%) 2 (11.8%)
>1% 47 (56.6%) 15 (88.2%)
PR status
≤1% 38 (45.8%) 4 (23.5%)
>1% 45 (54.2%) 13 (76.5%)
HER2 status
Positive 37 (44.6%) 7 (41.2%)
Negative 46 (55.4%) 10 (58.8%)
Ki67 status
≤20% 16(19.3%) 6(35.3%)
>20% 67(80.7%) 11(64.7%)
T stage
T2 73 (88.0%) 13 (76.5%)
T3–4 10 (12.0%) 4 (23.5%)
N stage
0 49 (59.1%) 7 (41.2%)
1 29 (34.9%) 7 (41.2%)
2 4 (4.8%) 2 (11.7%)
3 1 (1.2%) 1 (5.9%)
Molecular subtype
Luminal 47 (56.6%) 15 (88.2%)
HER2 over-expressed 19 (22.9%) 1 (5.9%)
TNBC 17 (20.5%) 1 (5.9%)
NAC regimen
Anthracycline based 22 (26.5%) 4 (23.5%)
Non-anthracycline based 61 (73.5%) 13 (76.5%)

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor
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model and the combined prediction model are listed in Tables 2 and 3,
respectively.

Evaluations of the prediction models' performance

In the ROC analysis, the area under the ROC curve (AUC) of the
radiomic signature has reached 0.858 (95% CI: 0.7762–0.9389) in the PC
and 0.819 (95% CI: 0.619–1) in the VC. The clinical prediction model
yielded an AUC of 0.709 (95% CI: 0.5942–0.8239) in the PC and 0.597
(95% CI: 0.3122–0.8823) in the VC. Regarding the combined model, it
achieved a performance with an AUC of 0.902 (95% CI: 0.8343–0.9701)
in the PC and 0.826 (95% CI: 0.6774–0.9753) in the VC (Fig. 3). In the
ROC curve analysis of the clinical and combined model, the AUC was in-
creased by 0.193 in the PV and by 0.229 in the VC. This result shows that
the predictive ability of the combined prediction model was significantly
improved in both cohorts.
P value Validation cohort P value

Type 1 regression Type 2 regression

0.344 48.50±9.32 49.25±13.56 0.709
0.877 0.524

25 (69.4%) 4 (50.0%)
11 (30.6%) 4 (50.0%)

0.014 0.652
8 (22.2%) 3 (37.5%)
28 (77.8%) 5 (62.5%)

0.090 0.423
10 (27.8%) 4 (50.0%)
26 (72.2%) 4 (50.0%)

0.797 0.695
11 (30.6%) 3 (37.5%)
25 (69.4%) 5 (62.5%)

0.258 1
12(33.3%) 3(37.5%)
24(66.7%) 5(62.5%)

0.390 0.080
35 (97.2%) 6 (75.0%)
1 (2.8%) 2 (25.0%)

0.304 0.053
20 (55.5%) 1 (12.5%)
12 (33.3%) 4 (50.0%)
2 (5.6%) 3 (37.5%)
2 (5.6%) 0 (0.0%)

0.050 0.464
29 (80.6%) 5 (62.5%)
3 (8.3%) 2 (25.0%)
4 (11.1%) 1 (12.5%)

1.000 0.710
15 (41.7%) 4 (50.0%)
21 (58.3%) 4 (50.0%)

receptor 2, NAC neoadjuvant chemotherapy.



Table 2
Details of the clinical prediction model.

Intercept and variable Clinical prediction model

Coefficient Odds ratio (95% CI) p

Intercept 3.5430087 – 3.55e-05
N stage −0.7868074 0.45530 (0.210980– 0.982540) 0.0450
ER status −1.9374503 0.14407 (0.028898– 0.718270) 0.0181

ER estrogen receptor.

Table 3
Details of the combined prediction model.

Intercept and variable Combined prediction model

Coefficient Odds ratio (95% CI) p

Intercept 4.2903 – 0.0003
Radiomic signature 1.7605 19.43400 (4.247300– 88.92700) 0.0001
N stage −1.3315 0.26408 (0.086122– 0.80978) 0.0199
ER status −2.1500 0.11648 (0.016337– 0.83049) 0.0319

ER estrogen receptor.
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The decision curve of the three prediction models showed that the com-
bined model could achieve the maximum net benefit, as shown in Fig. 4.
We took the combined prediction model as the newmodel, the clinical pre-
diction model and the radiomic signature as the old model, respectively.
TheNRI and IDIwere 0.3877 (p=0.0013) and 0.2692 (p<0.001), respec-
tively, between the clinical model and the combined model. The NRI and
the IDI between the signature and the combined model were calculated to
be 0.3529 (p = 0.00287) and 0.1212 (p = 0.00887), respectively. As can
be seen from the values of NRI and IDI, the new model (the combined pre-
diction model) had improved prediction performance compared to the old
model (the clinical prediction model; the radiomic signature). Therefore,
the combined model is the most predictive for type 1 regression. A nomo-
gram consisting of node stage, ER status, and the radiomic signature was
created and its calibration curve illustrated good concordance between
the predicted and actual outcomes of type 1 regression, as shown in Fig. 5.

Discussion

In this study, we studied the correlations between tumor regression pat-
terns andMRI characteristics. A model combining the multiparametricMRI
signature, node stage and ER status was established to predict tumor
Fig. 3. ROC curves of radiomic signature, clinical prediction model and combined predic
validation cohort.

5

regression patterns after NAC at a very early stage. The model achieved
an AUC of 0.902 in the PC and 0.826 in the VC.

Breast-conserving surgery is one of the purposes of receiving NAC. It has
been clearly indicated that a clear surgical margin is the key to the success
of BCS. In clinical practice, however, the recurrence rate is somewhat
higher in patients receiving NAC than in those receiving chemotherapy,
which can be explained by false negative margins in surgery. Ling et al. di-
vided tumor regression patterns into 2 categories [6]. Patients with pCR
and unifocal residual disease after NAC had a higher rate of 4-year IBTR-
free survival than those with multifocal disease. Based on clinical interest,
we categorized tumor regression patterns into 2 types as well. Patients
with type 2 regression show an inadequate response to the planned preop-
erative therapy, with either satellite foci remaining or no significant decline
in tumor size. Our combined model serves to predict tumor regression at
baseline, offers surgical options to surgeons and patients, and provides
guidance on the early modification of therapeutic treatment.

To the best of our knowledge, our study is the first to predict breast
tumor regression patterns using MR radiomics. MR examinations both at
baseline and post-NAC are clinical routines in our center; hence, the MRI
data were easily accessible, and no invasive procedure was needed in our
study. A radiomic signature combining DWI and T2WI features was first
established in our study. DWI and T2WI have been used to evaluate the
tumor response to chemotherapy [19,25]. OneMRI feature from each series
was extracted to create the radiomic signature. The AUCs of the radiomic
signature in the PC and VC were 0.858 and 0.819, respectively, which are
both acceptable and satisfactory. Two clinicopathological factors, including
node stage and ER status, were found to be closely related to tumor regres-
sion patterns. Therefore, these factors were incorporated into the combined
model, and the NRI and IDI illustrated the superiority of the combined
model over the radiomic signature and the clinical prediction model. A no-
mogram was established to predict type 1 regression by incorporating two
clinical factors and the radiomic signature. The calibration curve and deci-
sion curve demonstrated that the model had a good fit to actual observa-
tions and had net clinical benefit.

Consistent with the findings of previous literature [26,27], tumors with
later nodal stages and higher ER expression levels are less likely to have
type 1 regression. In otherwords, these patientsmay not be BCS candidates.
Researchers have focused on correlating molecular subtypes with tumor re-
gression types, but no consensus has been reached [28,29]. Among 144 pa-
tients recruited in this study, the percentages of type 2 regression in luminal
breast cancers, HER2-overexpressing breast cancers and TNBCs were
20.8%, 12.0%, and 8.7%, respectively (p = 0.254). HER2-overexpressing
breast cancers and TNBCs had a lower rate of type 2 regression, which
tion model in both cohorts. a ROC curves in the primary cohort. b ROC curves in the



Fig. 4. Decision curve analysis for radiomic signature, clinical prediction model and combined prediction model in both cohorts. The blue line represents the clinical
prediction model. The yellow line represents the radiomic signature. The red line represents the combined prediction model. The gray line represents the assumption that
all the patients appeared Type 1 tumor regression. The black line represents the assumption that no patients appeared Type 1 tumor regression. a Decision curve analysis
in the primary cohort. b Decision curve analysis in the validation cohort.

Fig. 5. Nomogram, calibration curve of the nomogram in both cohorts. The red line represents the performance of the nomogram. The blue dotted line represents an ideal
prediction. a Nomogram for the combined prediction model. b Calibration curve of the nomogram in the primary cohort. c Calibration curve of the nomogram in the
validation cohort.

X. Zhuang et al. Translational Oncology 13 (2020) 100831
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could be explained by the addition of HER2-targeted therapy in the former
and the more invasive nature of the latter.

There are still some limitations in our study. First, the data distribu-
tion was imbalanced between the 2 cohorts. Tumors showing type 2 re-
gression are encountered less frequently, which is consistent with
clinical observation. Most tumors have good responses to preoperative
chemotherapy (and anti-HER2 therapy, e.g., trastuzumab), which
leads to pCR or unifocal residual disease after NAC. Second, due to the
retrospective nature of our study, only accessible clinical factors could
be taken into consideration. The exploration of the correlations between
tumor regression and other variables, e.g., a gene signature or an im-
mune signature, is worthwhile. Finally, we did not consider the molec-
ular subtypes separately. The analysis of tumor regression in luminal-
type breast cancer would be meaningful.

Conclusions

Our study established a unique model combining a radiomic signature
and clinicopathological factors to predict tumor regression patterns prior
to the initiation of NAC. The early prediction of type 2 regression offers
the opportunity to modify preoperative treatments or aids in determining
surgical options.
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