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Abstract: WiFi is widely used for indoor positioning because of its advantages such as long trans-
mission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi
fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN
Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional
neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract
the validation set from the all-training set. In the online stage, the RSSI is first denoised and key
features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper,
the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the
CCpos system. The experimental results show that our system has excellent noise immunity and
generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the
UJIIndoorLoc are 1.05 m and 12.4 m, respectively.

Keywords: WiFi fingerprint positioning; convolutional denoising autoencoder; convolutional neural
network; K-means

1. Introduction

In recent years, with the rapid development of the Internet of Things and mobile Inter-
net, as well as the emergence of various wearable devices such as phone watches, indoor
positioning has become one of the research hotspots in the field of location services and
other major fields. Indoor positioning technology mainly includes Bluetooth [1], WiFi [2],
radio frequency identification (RFID) [3], ultra-wide band (UWB) [3], etc. According to
the different positioning principles, it can be divided into infrastructure-based positioning
technology and infrastructure-less positioning technology.

Infrastructure-based positioning technology is to deploy some auxiliary devices in
the indoor environment. After the positioning device receives the signal strength from
the auxiliary devices, the positioning device converts the signal strength into distance and
then performs the positioning calculation through some algorithms. According to this, an
indoor positioning algorithm based on Bluetooth low energy beacon [1] was proposed.
In the framework of fuzzy logic, this algorithm used the received signal strength indicator
(RSSI) of a Bluetooth low energy (BLE) beacon and the geometric distance from the current
beacon to the fingerprint point to calculate the Euclidean distance for subsequent position
determination. Infrastructure-free positioning technology involves installing prefabricated
sensors in devices and combining knowledge of the environment to track location, in-
cluding things like pre-existing Wi-Fi hotspots at sites. Orujov et al. [4] introduced the
experimental study of indoor positioning algorithm based on the signal strength received
from BLE beacons, proposing and implementing a scheme based on fuzzy logic. The most
appropriate algorithm was selected according to the size of the room, the number of avail-
able beacons and the signal strength. Loizos kanaris et al. [5] combined BLE and WiFi for
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positioning, and filtered the initial fingerprint data set after measuring the proximity of RSS
fingerprint to BLE devices through a new positioning algorithm, i-KNN, to achieve rapid
positioning. As a large number of WiFi nodes are arranged in many places, and almost
all mobile smart terminals have their own transceiver modules of WiFi signals, indoor
positioning technology based on WiFi has natural advantages.

Indoor positioning technology based on WiFi can be mainly divided into two cate-
gories: the range-based localization algorithms and fingerprint-based localization algo-
rithms [6].Among the range-based localization algorithms, the main algorithms include
trilateral and triangulation positioning, which rely on the corresponding algorithms of
time of arrival (TOA) [7], angle of arrival (AOA) [8], time difference of arrival (TDOA) [9],
and receiving signal strength [10] to obtain the necessary distance and angle information.
This kind of method is a positioning technology based on infrastructure, which requires
special hardware equipment. In order to achieve high positioning accuracy, the position
information of Access Point (AP) needs to be known in advance, which leads to its high
cost and difficult to be widely used. However, the positioning technology based on location
fingerprint has attracted widespread attention, because it makes full use of the extensive
layout of WiFi nodes and mobile device resources without other hardware facilities.

The fingerprint-based positioning method consists of two stages: offline collection
and online positioning [11]. In Figure 1, a certain number of reference points are collected
in the positioning area. The main purpose of offline collection phase is to establish a
location fingerprint database for representing the AP signal strength characteristics at each
reference point in the location area. The fingerprint database is collected by mobile devices
at reference points, including reference point coordinates and WiFi signal strength received
by mobile devices at reference points. The purpose of the online positioning stage is to
obtain the location information of the final positioning of the mobile terminal equipment.
Within the positioning area, the mobile terminal equipment is utilized to detect the AP
signal strength information received at the point, and the location fingerprint database
generated in the offline training stage is used for matching calculation to obtain the location
information.
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Fingerprint-based positioning technology does not need to add other sensors to the
environment. However, the RSSI value is unstable due to environmental interference,
which results in low positioning accuracy. Duong Bao Ninh et al. [12] proposed to use
random statistics to process the noise of WiFi signals and normalize the RSSI value when
establishing an offline fingerprint database. In the online positioning stage, Mahalanobis
distance was used to replace Euclidean distance for positioning to improve positioning
accuracy. In the field of robot positioning, Le Zhang et al. [13] designed a lightweight indoor
robot localization system that operates based on low-cost WiFi received signal strength
(RSS) and can be readily plugged into any existing WiFi network infrastructure. And
an end-to-end deep fuzzy forest algorithm was proposed for robust position estimation.
The WiFi signal strength data collected during the algorithm learning phase is used to
generate a perceptual model of the robot’s position assumptions, and the robot used
the perceptual model to navigate autonomously in the indoor environment. Using WiFi
positioning individually tends to cause fluctuations in positioning accuracy, thus many
scholars have started to research positioning technologies that integrate WiFi with other
sensors or use other algorithms to improve WiFi positioning. Myungjun Jin et al. [14]
presented an IMU (Inertial Measurement Unit)-assisted fingerprint positioning nearest
neighbor selection algorithm, which used the location prediction of IMU measurement
values to filter out irrelevant reference points, thereby reducing the positioning error
from the RSS variation problem. HaiFeng Yang et al. [15] proposed a weighted K-nearest
neighbor (WKNN) indoor localization algorithm based on spatial feature partitioning and
former position restriction. In this system, a large target space is partitioned into multiple
partitions based on spatial features, while a finite relationship between the former and the
present position is introduced to improve the quality of the selected candidate reference
points, thus significantly improving the smoothness of the estimation results.

Location fingerprint positioning technology has been relatively mature, and it is a
positioning technology with good civilian and commercial prospects. However, there are
still shortcomings and many problems that have not been resolved. The main reason lies in
the presence of obstacles in the indoor environment, changes in natural conditions, and
movement of people. The existing techniques, such as, K-nearest neighbor (KNN) [16],
WKNN [17] and support vector machine (SVM) [18], are complicated and easily interfered,
so the positioning performance cannot meet the practical requirements. With the successful
application of deep learning in images, recurrent neural networks (RNN) [19] and deep
neural network (DNN) [20] have been applied in the field of localization. However, the
RNN-based methods need to collect sufficient time series data, and the method based on
DNN has high computational complexity and the phenomenon of parameter inflation.
This paper proposes a positioning system using CDAE and CNN, and utilizes K-means
clustering algorithm to partition the data set in the offline stage, so that this positioning
system has high localization accuracy even on small datasets. Compared with existing
indoor localization methods, the main contributions of this paper are as follows:

(a) Our system adopts K-means clustering algorithm to extract the validation set from
the All-Training set in the offline fingerprint database. It solves the problem that the
random selection method may lead to fluctuations in localization due to incomplete
data coverage of the training set in the case of small data sets.

(b) This system designs a new network model that combines CDAE and CNN. This model
utilizes the CDAE network to reduce the data dimensionality, while using the training
process of adding noise and performing noise reduction to force the network to learn
more robust invariant features and obtain a more effective representation of the input.
Additionally, key features can be extracted from the RSSI data and then the CNN is
trained to achieve high success rate effectively in the localization phase.

The rest of this paper is organized as follows. We review related work on deep learning
in WiFi fingerprint localization in Section 2, and Section 3 presents the architecture of the
CDAE-CNN based system proposed in this paper, including an overall overview of the
system and an introduction to the system architecture. Section 4 optimizes our system
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model through experiments and compares it with other fingerprint-based localization
algorithms. Section 5 summarizes the work of this paper and the outlook of future work.

2. Related Work

Hinton’s research group participated in the ImageNet Large-Scale Visual Recognition
Challenge and won the championship through the constructed CNN network AlexNet, and
crushed the classification performance of the second place (SVM) in 2012. Since then, CNN
has attracted the attention of many researchers in the image field. With the continuous
advancement of network structure, training methods, and graphic processing unit (GPU)
hardware, it continues to conquer the battlefield in other fields. Mai Ibrahim et al. in [21]
proposed an indoor localization method based on CNN. By using RSS time-series of
wireless local area network access point to locate, the noise and randomness of individual
RSS values would be reduced to improve the localization accuracy. Jin-woo Jang and
Song-Nam Hong [22] used a convolutional neural network to train the topology and signal
strength of a radio map, which is robust to small changes in the received signal. However,
the network of this method is prone to overfitting phenomenon and is just a simple CNN
classification network structure. In order to extract more representative features from RSSI
data, Xudong Song et al. [23] employed stacked auto-encoder to extract major features
from RSS data, and then used CNN training data. The method achieves good results
in floor classification, but has a large error in the specific location, and the method is
also susceptible to RSSI fluctuations. As other network structures have also developed,
Weizhu Qian et al. [24] put forward a network model combining CNN, RNN, and mixture
density networks (MDN). The CNN sub-model is for detecting the characteristics of high-
dimensional input. The RNN sub-model is leveraged to capture the time dependence,
and the MDN sub-model is employed to predict the final output. Jing Zou et al. [25] utilized
DNN and CNN to predict user location, respectively, and then exploited the Dempster–
Shafer (DS) algorithm to fuse the results of two network structures to get the final result.
Both of them use CNN and DNN models to predict the user’s location separately and then
use a fusion algorithm to get the final location. This will lead to high time complexity and
long execution time of the localization method.

For convolutional neural networks, the number of data sets used for learning is the
most important factor in achieving high accuracy. Due to the high cost of collecting data, it
is necessary to improve the accuracy on small data sets. The above articles work well in
floor and building positioning, but the error in the specific location is very large. In this
paper, we use the K-means algorithm to segment the dataset and then use the CDAE-CNN
network for location prediction. This will achieve more accurate and efficient positioning.
In addition, this method requires less dataset. And the system has faster execution time.

3. System Overview

This section first introduces the overall architecture of the system, and then describes
each part of the system separately. The system includes data preprocessing, validation set
from the all-training set with the K-means algorithm and introduction of the structure of
the location estimation model.

Figure 2 shows the system architecture of CCpos. The system is divided into offline
data preprocessing stage and online location prediction stage. In the offline stage, the
information of reference points in the undetermined area is collected to establish the offline
fingerprint database. Then the all-training set and the testing set are divided according
to the ratio, generally 4:1. The verification set and training set are extracted from the
all-training set data by the K-means algorithm. Each data sample is divided into RSSI data
and location data by processing them with different formulas to map them between 0 and
1. Subsequently the processed data is input into CDAE and CNN network structures for
training. In the online location prediction stage, the user first sends the location request,
and then inputs the RSSI data obtained by the user’s mobile device into the CCpos system
after normalization processing. The system will send the location result to the requester.
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In this paper, in order to obtain the positioning error of the system, the testing set is taken
as the real-time positioning data of the user and input into the system.
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How to use the K-means algorithm to extract validation sets, the data normalization
process, and the network structure for location prediction are described in detail in the
following sections

3.1. Extract Validation Sets from the All-Training Set—K-Means

In machine learning, it is necessary to adjust the parameters of the model when
developing it, such as changing the weights and the size of each layer, or selecting the
number of layers. This adjustment process needs to provide a feedback signal from
the performance of the validation set data on the trained model to modify the network
model and parameters. Therefore, the validation set is important in the training process.
Nowadays, the common method for extracting the validation set is random extraction,
which leads to the fact that the validation set may not contain sample points for each region
in the localization area. To solve this problem, we propose to extract the validation set from
the all-training set using the K-means algorithm [26].

Algorithm 1 presents how to extract the validation set using the K-means algorithm.
The inputs on the algorithm are all-training sets AT and the number of clustering centers K.
The outputs are the training set T and the validation set V.

First, based on the two columns of data representing the coordinates in the all-
training set AT, K cluster centroids are randomly selected: (x1, y1), . . . , (xk, yk) and K
clustering centers constitute the set KC. We calculate which class each sample belongs
to and then recalculate the clustering center for each class. Repeat this process until the
clustering centers are unchanged. The final set KC is obtained, and the clustering cen-
ter is

(
x′1, y′1

)
, · · · ,

(
x′k, y′k

)
. For each cluster center, find the nearest sample point and
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put it into the validation set V. The other sample sets are put into the training set T.

Algorithm 1. K-means extraction of validation sets

Input: All-training set data AT. Number of clustering centers k
Output: Training set T. Verification set V.

1: According to the two columns of data representing coordinates in All-Training sets AT, k
cluster centers are randomly selected: (x1, y1), · · · , (xk, yk). Define an empty list KC.

2: Put the point
(

xj, yj

)
into KC, where j ∈ (1, k).

3: for (xi, yi) to the last two columns of data in AT do

4: for
(

xj, yj

)
to KC do

5: Repeat the process until the clustering center remains unchanged
6: {
7: //For each example, calculate the class it should belong to.

8: c(i) := arg min
j
‖(xi, yi)−

(
xj, yj

)
‖

2

9: //For each class, recalculate its cluster center instead of the cluster center at the original
location.

10:
(

x′j, y′j
)

:=
Σi=1

n 1{c(i)=j}(i)
Σi=1

n 1{c(i)=j}
11: Put the point

(
x′j, y′j

)
into KC.

12: }
13: end for
14: end for
15://The sample points closest to the cluster center are placed in the validation set V.

16: I = arg min
i

√(
xi − x′j

)2
+
(

yi − y′j
)2

17: Put the data in row I of AT into V.
18: Delete row I data from AT.
19: T←AT
20: return T, V

3.2. Data Preprocessing—Normalization

This subsection describes the process of normalizing the RSSI and coordinate values of
the dataset. Converting the RSSI and coordinates to a range of 0–1 is useful for increasing
the learning ability of the neural network model. The coordinates are converted to a range of
0–1 with Equation (1), and after training, the coordinates are restored to their original values
with Equation (2), where (x, y)min and (x, y)max are the minimum and maximum values
for all coordinates. The paper [27] presents three normalization methods for RSSI: zero-to-
one normalized representation, exponential representation and the powed representation.
Different representations of RSSI will lead to different accuracy of positioning results.
The three representations are shown in Equations (3)–(5), where i represents the WAP
identifier, RSSIi is the received signal strength indication of the i-th WAP, and min is the
minimum value of RSSI in the offline fingerprint database. The parameters α represent the
mathematical constant e, whose value is about 2.7. Our paper compares the experimental
results of the three methods separately, where the mean positioning error obtained by the
zero-to-one normalized representation is the smallest.

(
x′n, y′n

)
=

(xn, yn)− (x, y)min
(x, y)max − (x, y)min

(1)

(xn, yn) =
(
x′n, y′n

)
× [(x, y)max − (x, y)min] + (x, y)min (2)

ZeroToOneNormalizedi =

{
0, RSSIi = 100
RSSIi−min
−min , −99 ≤ RSSIi ≤ 0

(3)
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Exponential i =


0, RSSIi = 100
exp

(
RSSIi−min

α

)
exp(−min

α )
, −99 ≤ RSSIi ≤ 0

(4)

Powedi =

0, RSSIi = 100
(RSSIi−min)α

(−min)α −99 ≤ RSSIi ≤ 0
(5)

3.3. Position Estimation Model

As shown in Figure 3, the position estimation model CDAE-CNN consists of a convo-
lutional denoising autoencoder and a convolutional neural network. The input RSSI data
is first transformed from one-dimensional to two-dimensional and then fed into the CDAE.
The convolutional denoising autoencoder [28] can help the model extract useful features
from the data and improve the noise immunity of the model, and the computation amount
is lower than that of other denoising autoencoders.
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For each fingerprint point, the RSSI data is first injected with Gaussian white noise
(GWN) n(t) with a mean of 0 and variance of 1, where the intensity of the noise is controlled
by the noise coefficient λ. The original data and the corrupted noise data are then used as
inputs to the CDAE, which helps to reduce model overfitting by forcing the model to learn
the inherent characteristics of the data. We can obtain the corrupted RSSI data as given in
Equation (6):

RSSI′ = RSSI + λ ∗ n(t) (6)

CDAE contains an encoding part and a decoding part. The encoding part extracts the
robustness characteristics of the data RSSI’ injected with noise, which is mainly convolution
operation. The decoding part is the process of reconstructing the obtained RSSI, which
is mainly a deconvolution operation. The purpose of the deconvolution operation is to
increase the dimensionality of the input features, which is calculated in the same way as
the convolution operation. The mapping relationship between the broken (noise added)
input and the pure output can be obtained after CDAE training.

After the RSSI data features are extracted from the coding part of the CDAE, they
pass through a dropout layer and then transmit to the CNN network. The number of
neurons connected to the CNN network is controlled by adjusting the size of the dropout
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rate to reduce the model parameters. The CNN network predicts the user’s location and
includes convolutional layers, pooling layers and dense layers. After extracting the features
through the convolutional and pooling layers, the two-dimensional data is flattened into
one-dimensional data, and then the results are output through the fully-connected layer.
Outputs 1 and 2 are the values of coordinates x and y, respectively. The convolutional
neural networks used in this system are all one-dimensional convolutional neural networks.
The specific number of convolutional layers will be introduced in the experimental section,
and the number of convolutional layers to obtain the optimal localization accuracy is
different for different datasets. In order to prevent overfitting, a dropout layer is also added
in front of the dense layer.

In our system, in addition to using additional dropout layers to reduce overfitting, we
also use the early stopping method. The early stopping method is used to calculate the
performance of the model on the validation set during training. When the performance
starts to decline, the training will stop, and the parameters from the previous iteration
results serve as the final parameters of the model. In this paper, we choose to monitor the
error of the validation set and use the patience parameter X to control the training process.
If the error of the validation set does not decrease in X iterations, then training is stopped.

4. Evaluation

In this section, we evaluate the performance of the CCpos system on two publicly
available datasets: UJIIndoorLoc [29] and the Alcala Tutorial 2017 dataset [30]. First, we de-
scribe the two datasets and the model’s inputs and outputs. Then, we optimize our system
model through experiments. Finally, we compare the experimental results obtained by
our system with the results obtained by other WiFi-based fingerprinting methods. We use
Python-3.6.12, Keras-2.3.1, and Tensorflow-1.14.0 to train the CCpos system.

4.1. Dataset

This paper employs a large data Set (UJIIndoorLoc) and a small dataset (Alcala Tutorial
2017 Data Set). UJIIndoorLoc is the largest open access indoor location database, containing
21,049 fingerprint samples, covering three buildings of 4–5 floors. In addition, there are 520
APs within the positioning range. The tag contains (x, y, f , b), indicating that the reference
point (x, y) is located on the floor f of building b. However, the main consideration of our
system is location positioning. For UJIIndoorLoc data set, the input of the system model is
→
r = (r1, r2, · · · , r520), and the output is (x, y, f , b). The Alcala Tutorial 2017 dataset mainly
studies the small scene in the corridor of the Engineering of the University of Alcala (Spain),
which is another option of the UJIIndoorLoc dataset, including 152 WiFi fingerprint signal
strength data and coordinates of reference points. Alcala Tutorial 2017 dataset is composed
of 670 training sets and 405 test sets. Therefore, for Alcala Tutorial 2017 dataset, the input
of CCpos system is

→
r = (r1, r2, · · · , r152) and the output is (x, y). The WiFi signal strength

value of the two data sets is expressed as the negative integer values from −99dBm to
0dBm, and the value of 100 is used to indicate that no WAP was detected.

4.2. Evaluate Experimental of Alcala Tutorial 2017 Dataset

This subsection presents the optimization of the system model based on Alcala Tutorial
2017 dataset and the comparison of experimental results with other WiFi fingerprint-based
methods.

The parameters used to optimize the model in the system are given in Table 1. In CDAE
and CNN models, the activation functions and output layer are all rectified linear units
(ReLUs). The optimizer is Nadam. The loss function is the mean square error (MSE), and
the monitoring index is the mean absolute error (MAE). The training batch is set to 18.
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Table 1. Model parameter.

Parameter Values

GWN factor λ

CDAE activation function ReLU
CDAE Optimizer Nadam

CDAE Loss MSE
CDAE metrics MAE

CNN activation function ReLU
CNN Optimizer Nadam

CNN loss MSE
CDAE metrics MAE

Output layer activation function ReLU
Batch size 18

Early Stopping patience X 4

4.2.1. CDAE-CNN Model Optimization

This section describes the optimization process of the CDAE-CNN model, including
the selection of the network structure, the selection of the noise coefficient, and the selection
of the dropout rate.

Effects of Network Structure on Positioning Performance. As shown in the Figure 4,
we compare the mean positioning error for different layers, filters, and convolution kernels
with a noise coefficient of 0.5. For example, CDAE (128–3, 64–3, max–2) + CNN (32–3, 16–3)
means that the CDAE has two convolutional layers and one pooling layer, and the CNN
has two convolutional layers. The first convolutional layer of CDAE has 128 output filters
and a convolutional kernel size of 3; the second convolutional layer has 64 output filters
with a convolutional kernel size of 3 and the maximum pooling window size is 2. The first
convolutional layer of the CNN has 32 output filters with a convolutional kernel size of
3 and the second convolutional layer has 16 output filters with a convolutional kernel
size of 3. Table 2 shows the different network structures compared experimentally and
Figure 4 shows the different mean positioning error corresponding to the different network
structures. The experimental result indicates that the structure with CDAE (140–2, 110–2,
90–2, max–2) + CNN (80–2, 60–2, max–2, 40–2, 20–2, max-2) can achieve a minimum mean
positioning error of 2.2 m.
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Table 2. Network structure and its sequence number.

Network Structures Serial Number

CDAE (140–2, 110–2, 90–2, max–2) +CNN
(80–2, 60–2, max–2, 40–2, 20–2, max–2) Network 1

CDAE (140–2, 100–2, 80–2, max–2) +CNN
(80–2, 60–2, max–2, 40–2, 20–2, max–2) Network 2

CDAE (140–2, 100–2, 90–2, max–2) +CNN
(80–2, 60–2, max–2, 40–2, max–2) Network 3

CDAE (140–2, 100–2, 80–2, max–2) +CNN
(80–2, 60–2, max–2) Network 4

CDAE (140–2, 100–2, max–2) +CNN (80–2,
60–2, max–2) Network5

CDAE (140–2, 100–2, max–2) +CNN (100–2,
80–2) Network 6

CDAE (140–2, 100–2, max–2) +CNN (80–2,
60–2) Network 7

CDAE (128–3, 64–3, max–2) +CNN (32–3, 16–3) Network 8

Effects of Dropout on Positioning Performance. To prevent overfitting of the neural
network, two dropout layers, called dropout-layer-one and dropout-layer-two, are adopted.
One dropout layer is before the CNN network convolution operation, and the other dropout
layer is before the full connection. Dropout randomly selects a portion of weights not to be
updated when backpropagation error is updated, which is equivalent to randomly deleting
a portion of the hidden units (which are not actually deleted, but temporarily not used).

Under the optimal network structure with a noise factor of 0.5, Figure 5 compares the
effect of the presence of dropout layer-1 and dropout layer-2 on the mean positioning error.
Additionally, we compare the effect of the two dropout layers’ rates on the positioning
error.
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Figure 5. Effects of dropout on positioning performance. Figure 5. Effects of dropout on positioning performance.

The blue part represents the absence of the dropout layer. The yellow part represents
the presence of dropout rate-one only. The orange part represents the presence of dropout
rate-two only. And the red part represents the presence of both dropout rate-one and
dropout rate-two. There are two numbers on the horizontal axis. The former number
represents the value of dropout-rate-one, and the latter number represents the value of
dropout-rate-two. It can be seen from the Figure 5 that when the dropout-layer-one and
dropout-layer-two ratios are 0.7 and 0.3, respectively, the mean positioning error is the
smallest and is 1.53 m.

Effects of Noise Coefficient λ on Positioning Performance. In the case of the above opti-
mal CDAE-CNN-one network structure and the optimal dropout rate, the mean positioning
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error obtained with different noise coefficients is compared. It can be seen from Figure 6
that the noise factor 0.3 achieves the best performance (achieving a mean positioning error
of 1.42 m).
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4.2.2. Experiment of the K-Means Algorithm to Extract the Validation Set

When the individual parameters of the CDAE-CNN are as shown in Table 3, we pro-
ceed to verify the effect of the K-means algorithm on the average localization error accord-
ing to Algorithm 1. As shown in Table 4, the mean positioning error is compared between
k=110 and the randomly selected validation set, which has one-sixth of the total training
set samples. We can see that the mean positioning error obtained at k = 110 is 1.18 m.

Table 3. CDAE-CNN optimal parameter.

Network Structure Noise Coefficient λ Dropout-One Dropout-Two

CDAE (140–2, 110–2,
90–2, max–2) +

CNN (80–2, 60–2,
max–2, 40–2, 20–2,

max–2)

0.3 0.7 0.3

Table 4. Comparison of validation sets obtained by different methods on the Alcala Tutorial 2017
dataset.

K-means (K = 110) Random

Mean positioning error (m) 1.18 1.42

4.2.3. Effect of RSSI Normalization Method on Average Positioning Error

This section is to obtain which of the three normalization methods (as shown in
Equations (3)–(5)) for RSSI results in the smallest mean positioning error. We compare
the mean positioning error obtained by each of the three methods as shown in Table 5,
when the network parameters are as in Table 3 and k = 110.The previous experiments used
the powed representation. According to Table 5, zero-to-one normalization method gives
the best results with a mean positioning error of 1.05 m.

Table 5. Comparison of different Normalization method on the Alcala Tutorial 2017 dataset.

Zero-to-One
Normalized Exponential Powed

mean positioning
error (m) 1.05 4.5 1.18
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4.2.4. Comparison Experiments with Other Methods

The mean positioning errors obtained from the CCpos-based system and other fingerprint-
based localization methods are compared as shown in Table 6. Figure 7 shows the cumulative
distribution function (CDF) plot of the positioning error with the CCpos system and other
fingerprint-based localization methods. We compare the KNN, the WKNN, SVM, random
forests, and the CNNloc system [22]. The parameters of each compared method are shown in
Table 7. From Table 6, it can be found that the mean positioning error of the CCpos system is at
most 5.7 m and at least 1.2 m lower than that of other positioning methods. As can be seen
from the CDF diagram in Figure 7, the possibility of positioning accuracy for CCpos better
than 3 m is close to 98%. The possibility of positioning accuracy for WKNN, KNN and random
forests algorithms better than 3 m is nearly 90%. The probability of CNNloc algorithm better
than 3 m is about 50%, while the probability of SVM algorithm better than 3 m is only about
30%. It can be seen that the positioning accuracy of CCpos system is better than that of other
positioning methods.

Table 6. Mean positioning error with different methods on the Alcala Tutorial 2017 dataset.

Positioning Methods Mean Positioning Error (m)

KNN 2.62
WKNN 2.27

SVM 6.71
Random forest 2.53

CNNloc 4.62
CCpos 1.05
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Table 7. The algorithms and their parameters.

Positioning Method Parameter

KNN n_neighbors = 40
WKNN n_neighbors = 30

SVM C=1000.gamma = 0.01
Random forest n_estimators = 120

CNNloc SAE (128-64-128) +
CNN (99-22,66-22,33-22)

Figure 8 presents the predicted position compared with the true position in two-
dimensional coordinates. Our test set contains 405 sample data and 103 sampling points.
Each sampling point collects 3–4 RSSI data messages. Thus, there are 103 true positions
(blue points) and 405 predicted positions (other color points). We compare the true positions
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and predicted positions of CCpos, Random Forest, KNN algorithm and WKNN algorithm
respectively (as shown in Figure 8a–d), where the predicted positions obtained by CCpos
system are closer to the true positions (blue points).
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4.3. Evaluation Experiments on the UJIIndoorLoc Dataset

This subsection presents the optimization of the system model based on the UJIIndoor-
Loc dataset and the comparison of the experimental results with other WiFi fingerprint-
based methods. Since the UJIIndoorLoc dataset covers three buildings of 4–5 floors, floor
prediction model and building prediction model are added on the basis of location predic-
tion model.

The best performance of the system can be achieved (the floor location accuracy is
95.3%, the building location accuracy is 99.6%, and the mean positioning error is 12.4 m)
when the model parameters are shown in Table 8, the K-mean algorithm has the clustering
center K = 2000, and the RSSI uses the zero-to-one normalization method. Among them,
a dropout layer is added after the CDAE coding layer, and a dropout layer is added before
the fully connected layer of each model. The respective dropout rates are shown in the
following table. The loss function used in each network structure is the mean square error
(MSE). The GWN factor of CDAE is 0.3, and the patience parameter X of Early Stopping
method is 3.
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Table 8. Model parameters on the UJIIndoorLoc dataset.

Network Dropout
Rate Optimizer Batch

Size
Activation
Function

Output Layer
Activation
Function

Monitoring
Metrics

CDAE 454–33, 388–33,
256–33 0.7 Adam (lr = 0.0001) 70 relu relu mae

CNN

Building-
model

64–33, 31–22,
max–2,

32–22, 16–11,
max–2

0.5 Adam (lr = 0.0001) 70 relu softmax accuracy

Floor-
model

256–33, 128–33,
max–2, 128–33,
64–33, max–2,
64–22, 32–11,
max–2, 32–11,
16–11, max–2

0.3 Adam (lr = 0.0001) 70 relu softmax accuracy

Positioning-model

256–33, 128–33,
max–2, 64–33,
32–22, max–2,
32–22, 16–11,

max–2

0.3 Adam (lr =
0.0001) 70 relu relu mae
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Table 9 compares the mean positioning error of using K-means to extract the validation
set and randomly selected validation set. It can be found that the K-means algorithm to
extract the validation set is more effective on small datasets.

Table 9. Comparison of validation sets obtained by different methods on the UJIIndoorLoc dataset.

K-means (K = 110) Random

Mean positioning error (m) 12.4 13.1

Table 10 compares the mean positioning error obtained on the UJIIndoorLoc dataset
between the CCpos-based system and other fingerprint-based localization methods. Figure 9
shows the CDF plot of the positioning error for each positioning method. We compare the
KNN, WKNN, gradient boosting algorithm (gradient), random forest, and CNNloc system.
The parameters of each algorithm are shown in Table 11. It can be found that the CCpos
system reduces the average localization error by up to 33% and at least 22% compared to
other localization algorithms. The CDF plot of the positioning error in Figure 9 shows that
the possibility of positioning accuracy for CCpos better than 30 m is more than 90%, while
the possibility of positioning accuracy for other localization algorithms better than 30 m is
around 80%.

Table 10. Mean positioning error with different methods on the UJIIndoorLoc dataset.

Positioning Methods Mean Positioning Error (m)

KNN 18.6
WKNN 18.4
gradient 18.5

random forests 15.9
CNNloc 16.9
CCpos 12.4
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5. Conclusions

In this paper, we propose the CCpos positioning system, a WiFi fingerprint positioning
system based on CDAE and CNN. CDAE can denoise and extract features from RSSI data,
which effectively improves the accuracy of CNN for location prediction. The system applies
the K-means localization algorithm to extract the validation set, and the experiment proves
that the method has better results for localization of small datasets. In this paper, the system
is evaluated on two datasets, UJIIndoorLoc and Alcala Tutorial 2017 Data Set, and the
CCpos system obtains the smallest mean positioning error compared to other fingerprint-
based localization methods (UJIIndoorLoc and Alcala Tutorial 2017 dataset have mean
positioning errors of 12.4 m and 1.05 m, respectively). The experimental results prove that
CCpos system is more advantageous in small positioning scenarios and can also achieve
smaller positioning errors in large positioning ranges. Without other positioning devices,
WiFi positioning is convenient and efficient. However, the drawback of this system is that
it needs to be tuned according to different scenarios in practical application. Also, due to
the limited positioning accuracy that WiFi positioning can achieve, the next step in the
research is to combine WiFi positioning with other sensors (such as IMU, Bluetooth, etc.)
positioning to improve positioning accuracy.
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