
Review

Caspase-1: is IL-1 just the tip of the ICEberg?

A Denes1, G Lopez-Castejon1 and D Brough*,1

Caspase-1, formerly known as interleukin (IL)-1-converting enzyme is best established as the protease responsible for the
processing of the key pro-inflammatory cytokine IL-1b from an inactive precursor to an active, secreted molecule. Thus,
caspase-1 is regarded as a key mediator of inflammatory processes, and has become synonymous with inflammation. In addition
to the processing of IL-1b, caspase-1 also executes a rapid programme of cell death, termed pyroptosis, in macrophages in
response to intracellular bacteria. Pyroptosis is also regarded as a host response to remove the niche of the bacteria and to
hasten their demise. These processes are generally accepted as the main roles of caspase-1. However, there is also a wealth of
literature supporting a direct role for caspase-1 in non-infectious cell death processes. This is true in mammals, but also in non-
mammalian vertebrates where caspase-1-dependent processing of IL-1b is absent because of the lack of appropriate caspase-1
cleavage sites. This literature is most prevalent in the brain where caspase-1 may directly regulate neuronal cell death in
response to diverse insults. We attempt here to summarise the evidence for caspase-1 as a cell death enzyme and propose that,
in addition to the processing of IL-1b, caspase-1 has an important and a conserved role as a cell death protease.
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Facts

� Caspase-1 cleaves the pro-inflammatory cytokine
pro-interleukin (IL)-1b to an active secreted molecule in
monocytes and macrophages.

� Pyroptosis is a caspase-1-mediated macrophage cell
death following infection by intracellular pathogens as
part of the host response.

� The inflammasome is a molecular scaffold that forms in
response to pathogen, or damage-associated signals
to activate caspase-1.

� The caspase-1 cleavage site is present only in mammalian
pro-IL-1b and is absent in the sequences of other
vertebrates.

� Caspase-1 inhibitors inhibit cell death in mammals and
other vertebrates.

Open Questions

� How is caspase-1 regulated during cell death processes in
non-immune cells?

� Is caspase-1-dependent cell death a conserved mechan-
ism across vertebrates?

� Have the non-caspase-1-dependent mechanisms of IL-1b
secretion in sterile inflammation been underestimated?

Caspase-1 is an enzyme involved in the processing of pro-IL-
1b to active secreted IL-1b, a key inflammatory mediator
driving the host response to infection, injury, and disease.
During disease, IL-1b-driven inflammation has often disas-
trous consequences, and thus represents a therapeutic
target.1 Independent of IL-1b there is unheralded, yet
convincing, evidence to suggest that caspase-1 can execute
cell death processes. The most extensive evidence for both
the inflammatory and direct cell death activities of caspase-1
exists in neuronal injury. Thus, caspase-1 represents a
therapeutic target for the treatment of brain injury/disease,
conditions for which there is considerable unmet clinical need
because of limited clinical options available, and because
of the limited regenerative capacity of the brain.2

IL-1b is the best characterised of the 11 IL-1 family
members. It is produced by numerous cell types, although
the majority of studies focus on its production by cells of the
innate immune system, such as monocytes and macro-
phages.3 It is produced in response to ‘pathogen-associated
molecular patterns’ (PAMPs), or ‘damage-AMPs’ (DAMPs)
as an inactive 31-kDa precursor, called pro-IL-1b. PAMPs
and DAMPs function through pattern recognition receptors
(PRRs) on macrophage membranes to regulate pathways
that control gene expression.4,5 Stimuli that control pro-IL-1b
expression are, however, generally inefficient as secretion
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stimuli, but render the cell ‘primed’ for subsequent exposure to
more secretion competent stimuli. These further stimuli are
additional PAMPs or DAMPs that function on cytosolic PRRs,
commonly of the NOD-like receptor (NLR) family.3

An IL-1 processing activity was initially identified in the
lysates of LPS-activated monocytes and ascribed as an IL-1
convertase, or IL-1-converting enzyme (ICE).6,7 Significant
homology of ICE with the cell death gene, ced-3, from
Caenorhabditis elegans was identified that subsequently led,
along with the discovery of multiple related proteases involved
in mammalian apoptosis, to the reclassification of ICE as a
member of the caspase family of proteases (caspase-1).8–10

Members of the caspases fall into one of two sub-families;
apoptotic or inflammatory; caspase-1 is considered to belong
to the inflammatory group.11 Thus, the vast majority of the
literature on caspase-1 has focussed on its role in inflamma-
tion, with a wider role in cell death rarely considered, except
for the pyroptotic cell death of macrophages associated with
infection by intracellular pathogens.12 Here, we discuss
evidence that caspase-1-dependent cell death is important
beyond pyroptosis.

The Activation of Caspase-1

Caspase-1 is activated by recruitment to a molecular platform
called an inflammasome.13 The known caspase-1-activating
inflammasomes are composed of a PRR of the NLR family
such as NLRP1, NLR family pyrin domain (PYD) containing 3
(NLRP3), NLRP6, NLRP7, NLR family CARD domain-
containing protein 4 (NLRC4), or the DNA-sensing absent in
melanoma 2 (AIM2) and RIG-1 receptors.14–16 The best-
characterised inflammasomes to date are formed by PRRs
of the NLR family, NLRP3 and NLRC4. These are composed
of several domains including a leucine-rich repeat, important
for PAMP/DAMP sensing, a nucleotide-binding domain
required for oligomerisation, and a caspase activation and
recruitment (CARD) and/or a PYD, for recruitment to caspase-
1 directly, or via the adaptor protein apoptosis-associated
speck-like protein containing a CARD (ASC), respectively.14

NLRP3 is activated in response to a variety of structurally
diverse PAMPs and DAMPs, and is thought to be the main
sensor for sterile inflammatory stimuli (i.e., in response to
injury/disease in the absence of infection). NLRC4 is thought
to function mainly as a sensor of bacterial infection by sensing
flagellin, but also the type III secretion system rod protein
PrgJ.14 Although regulation of the inflammasome is an area of
enormous interest currently, there are still many outstanding
questions regarding the mechanisms of its activation.

The most reported consequence of caspase-1 activation is
the rapid secretion of IL-1b. An additional consequence of
caspase-1 activation in macrophages following infection by
NLRC4-activating pathogens is a rapid, and caspase-1-
dependent cell death called pyroptosis.12 Pyroptosis is a
pro-inflammatory form of cell death that causes an infected
macrophage to kill itself, and at the same time release IL-1b.12

The rapid, caspase-1-dependent pyroptotic cell death caused
by Salmonella typhimurium,17 and the caspase-1-dependent
clearance of NLRC4-activating pathogens in vivo18 do not
depend upon IL-1b processing. Pyroptosis is suggested to
serve principally to eliminate the intracellular niche required

for pathogen growth.19 The process of pyroptosis is not
bactericidal per se, and the released pathogens are killed by
the cytotoxic mechanisms of neutrophils recruited to the
inflamed tissue.18 However, cell death associated with IL-1b
release does not occur only in response to infection with
NLRC4-activating pathogens. Stimulation of LPS-primed
peritoneal macrophages with the NLRP3-activating stimulus
ATP (via the P2x7 receptor20) or allospecific cytotoxic
T-lymphocytes induces cell death in addition to IL-1b
processing and release.21 Brief (30-min) incubation with
ATP causes LPS-primed murine peritoneal macrophages to
‘round up’ and bleb, which is closely followed by the release of
the cytolytic marker lactate dehydrogenase.22 ATP-induced
death of LPS-treated mouse peritoneal macrophages is
caspase-1-dependent and completely independent of IL-1
secretion.20 NLRP3-inflammasome-dependent pyroptosis is
also activated by infection of macrophages with Staphylo-
coccus aureus.23 Caspase-1 activation via the AIM2 inflam-
masome also results in pyroptotic cell death,24 as does
activation of the NLRP1 inflammasome.25 Thus, pyroptotic
cell death can be activated by many diverse stimuli and by
multiple inflammasomes, and is independent of IL-1b.18,20

Interestingly, caspase-1-dependent cleavage of pro-IL-1b
appears to be an exclusively mammalian trait, as other
vertebrate pro-IL-1b sequences lack a caspase-1 cleavage
site.26 Thus, in these organisms pro-IL-1b must be cleaved by
additional proteases, and there is also evidence for alternative
processing in mammals.27–30 Does caspase-1 therefore have
a conserved role in cell death independent of IL-1b?

Caspase-1 substrates. The specificity of caspase-1 for
cleavage of pro-IL-1b is suggested to be due to the labile
nature of its activity, while it appears a rather promiscuous
enzyme based on substrate cleavage profiles.31 Several
independent proteomic-based approaches to identify
caspase-1 substrates have identified numerous proteins,
the cleavage of which could result in rapid cell death.31–34

Identified caspase-1 substrates from these and other
studies35–39 (there are 121 in total, see Supplementary
Table 1) suggest a diverse substrate specificity, the cleavage
of which could result in the rapid dismantling of the cell,
characteristic of pyroptosis. The activation of classical
apoptotic caspases, and associated regulators, in addition
to cytoskeletal proteins and other proteins essential for cell
sustaining processes will give rise to the pyroptotic pheno-
type of a rapid oncolytic-like cell death with features
of apoptosis. Some of these substrates and their ontologies
are summarised in Figure 1. The full list of identified caspase-
1 substrates and their UniProt identification are supplied in
Supplementary Table 1.

Caspase-1 and Cell Death in Non-mammalian Vertebrates

Chicken pro-IL-1b does not contain a caspase-1 cleavage
site,26 although chickens do express caspase-1.40 Cell death
induced by trophic factor withdrawl in primary cultured chick
dorsal root ganglia (DRG) neurones is inhibited when crmA
(cytokine response modifier A gene from cowpox virus that
encodes an inhibitor of caspase-141) or bcl-2 are over-
expressed,42 and in chick motoneurones treated with the
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caspase-1 inhibitor YVAD.43 Chicken DRG neurones that
over express a dominant-negative caspase-1 enzyme are
protected from cell death induced by trophic factor with-
drawal.44 The lack of a caspase-1-cleavage site on chicken
pro-IL-1b26 suggests that this protective effect of caspase-1
inhibition must be independent of pro-IL-1b processing.

Caspase-1 orthologues have also been identified in fish. In
zebrafish (Danio rerio) two orthologues of caspase-1 have
been identified, caspy1 and caspy2, as have ASC- and NLR-
like molecules.45,46 Caspy activity is activated by oligimerisa-
tion of the zebrafish orthologue of ASC and induces apoptosis
when expressed in mammalian 293 T cells.45 YVAD also
protects zebrafish embryos from camptothecin-induced cell
death.47 Seabream (Sparus aurata L) express caspase-1,
and its activity is also effectively blocked by YVAD.48 Classical
DAMPs that activate caspase-1 in mammalian cells such
as ATP and mono sodium urate do not induce activation of
caspase-1 in seabream macrophages.49 However, infection
of seabream macrophages with S. typhimurium induces a
caspase-1-dependent pyroptotic cell death, and caspase-1-
independent processing and secretion of IL-1b.49 These data
suggest that the association between caspase-1 activation
and IL-1b developed later in evolution, thus further suggesting
a conserved role for caspase-1 in cell death (Figure 2).

Caspase-1 and Cell Death in Mammals

In mammals, caspase-1 cannot be considered a typical
regulator of apoptosis. Caspase-1 KO mice develop normally
and KO cells undergo apoptosis in response to typical
apoptotic stimuli.50,51 However, there are examples where
ectopic overexpression of caspase-1 and its substrates can
cause cell death. These effects are due either to the effects of

IL-1b, or the direct cell-death-inducing effects of caspase-1,
and caspase-1-dependent cleavage of pro-IL-1b may induce
apoptosis differently to exogenously administered mature
IL-1b. For example, apoptosis in COS cells induced by
co-expression of caspase-1 and pro-IL-1b is inhibited by
IL-1 receptor antagonist (IL-1Ra). However, the addition of
exogenous mature IL-1b before hypoxia is anti-apoptotic via
the downregulation of IL-1RI.52 As with the zebrafish caspy
described above, overexpression of murine caspase-1 in the
rat fibroblast cell line Rat-1 results in cell death and this can be
blocked by co-expression of crmA, and of the anti-apoptotic
bcl-2.48 There are, however, many examples where endo-
genous caspase-1 is involved directly in cell death in disease
and tissue injury.

Brain injury/neuronal cell death. Acute brain injuries such
as stroke, trauma, and haemorrhage, and chronic neurode-
generative diseases, including Alzheimer’s and Parkinson’s
diseases, are devastating conditions with pathologies that
are exacerbated by inflammation and IL-1.2,53 Transgenic
mice overexpressing a dominant-negative caspase-1 under
the control of a neurone-specific promoter exhibit reduced
ischaemic brain injury compared with wild-type mice.44

Caspase-1 KO mice also have reduced infarcts compared
with wild type after experimental stroke induced by occlusion
of the middle cerebral artery (MCAo),54,55 and intracerebro-
ventricular (i.c.v.) administration of the caspase-1 inhibitor
Ac-YVAD-cmk is neuroprotective in this model.54,56 Follow-
ing stroke in mice (permanent MCAo) neuronal caspase-1 is
activated rapidly (within 30 min), preceding the activation of
caspase-3.57 Caspase-1 is also reported to be expressed
in neurones in the mouse brain after thromboembolic stroke
(as are inflammasome components) but is not expressed by

Figure 1 Is IL-1 just the tip of the ICEberg? Caspase-1 has a broad range of substrate specificity that extends far beyond inflammation. Depicted here is an iceberg of
caspase-1 substrates in which IL-1- and inflammation-related protein substrates are situated at the tip of the iceberg. The uppercase ICE in ICEberg relates to the former name
for caspase-1, ICE. Also shown are some selected substrates that may contribute to the phenotype of a pyroptotic cell death. In addition to inflammation, substrates related to
the ontologies of cell death, cytoskeleton and metabolism are shown. The full list of substrates is provided as Supplementary information (Supplementary Table 1)
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microglia until 24 h post stroke.58 After spinal cord injury in
rats, caspase-1 expression is induced rapidly in neurones.59

In addition to the activation of caspase-1 in macrophages
(in response to various DAMPs60–62), lysosomal destabilisa-
tion and cathepsin B are also required for caspase-1
activation in neurones after stroke.63 A selective caspase-1
inhibitor is protective after MCAo in rats when injected i.c.v.
up to 3 h following reperfusion, but not after 6 h,64 even
though IL-1b, protein or message, is below detection limits in
the brain parenchyma at this time,65 and IL-1b KO mice are
not protected.66 The major IL-1 form present early after
stroke is IL-1a,65 which is consistent with the temporal profile
of IL-1 family member expression in other paradigms of
sterile inflammation.67,68 Although i.c.v. injection of an anti-
IL-1b antibody (given at reperfusion) reduces ischaemic
brain injury,69 it may be neutralising low levels of IL-1b in the
cerebrospinal fluid rather than parenchymal IL-1b processed
by caspase-1. IL-18, another IL-1 family member and the
only other cytokine activated by caspase-1 is suggested
to have no role in ischaemic brain injury in adult animals.70

In contrast, in rodent neonatal hypoxia/ischaemia, protection
against ischaemic brain injury was observed in IL-18-
deficient mice.71 In cultured mouse cortical neurones oxygen
glucose deprivation (OGD) induces a caspase-1-dependent
cell death where caspase-1 activation is apical to the
cleavage of BH3-interacting domain death agonist (Bid)
and the mitochondrial-dependent activation of caspase-3.72

Furthermore, OGD-induced neuronal cell death in rat
organotypic hippocampal slices is blocked by the caspase-
1 inhibitor Ac-YVAD-cmk, and this is neither reversed by the
addition of IL-1b to the culture, nor is IL-1Ra protective in the

absence of Ac-YVAD-cmk.73 In vivo IL-1Ra is protective only
when administered within 3 h after MCAo in rats,74 suggest-
ing that its effects may be via the inhibition of IL-1a, and that
caspase-1 inhibition in acute brain injury may be targeting
cell death directly and independently of IL-1.

In rat pheochromocytoma (PC12) cells, apoptosis induced
by the downregulation of Cu2þ /Zn2þ superoxide dismutase
(SOD1), or by trophic factor/nerve growth factor deprivation,
can be prevented by caspase-1 inhibition. Cell death induced
by SOD1 suppression is prevented by interventions against
IL-1, but a neutralising IL-1b antibody does not protect against
trophic factor withdrawal-induced cell death.75 Murine cas-
pase-1 KO DRG neurones are also protected from trophic
factor withdrawal-induced death.44 Caspase-1-dependent Bid
cleavage drives neurodegeneration in a mouse model of
amyotrophic lateral sclerosis induced by transgenic expres-
sion of mutant SOD1.76 Inhibition of caspase-1 or caspase-3
also delays mortality in mouse models of amyotrophic lateral
sclerosis (mSOD1(G93A) or SOD(G93R) mice).77,78 This
effect is generally thought to be dependent on IL-1b.79,80

However, chronic expression of IL-1bmRNA in the spinal cord
or the absence of IL-1b in SOD1G37R mice does not modify
disease progression and motorneuron death.81 In neuroAIDS
gp120, a membrane glycoprotein of HIV-1, elevates cyto-
chrome C immunoreactivity, which is blocked by the caspase-
1 inhibitor Ac-YVAD-(acyloxy)mk). Ac-YVAD-(acyloxy)mk)
did not affect IL-1b levels or gp120-induced cleavage of pro-
IL-1b.82 It has been suggested that gp120-induced processing
of pro-IL-1b and neuronal apoptosis are matrix metalloprotei-
nase-dependent.83 These data indicate that both caspase-1
and its substrates can be involved in neuronal injury

Figure 2 Conservation of caspase-1-dependent cell death and IL-1b processing. The development of caspase-1 as an inflammatory, in addition to a cell death protease
occurred in mammals. Highlighted here are conserved caspase-1 cleavage sites in mammalian vertebrate pro-IL-1b that are not observed in non-mammalian pro-IL-1b
sequences. The schematic diagram shows the link between caspase-1, cell death, and inflammation in mammals, and that the link is not present between caspase-1 and
inflammation in non-mammalian vertebrates. DANGER represents any source of stress that could drive an inflammatory response such as tissue injury, disease, or infection
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independently of each other. Some examples of the direct cell
death-related activities of caspase-1 independent of IL-1 are
presented in Table 1.

Other tissue injury. Similarly to the effects of inhibiting
caspase-1 or its pro-inflammatory substrates in the brain,
there is evidence for the involvement of these pathways in
many other models of tissue injury and disease. Caspase-1
is strongly implicated in TNF-a or Fas-ligand-induced
hepatocyte apoptosis,84,85 and a caspase-1 inhibitor com-
pletely inhibits Fas-induced mortality in vivo.86 Liver injury
induced by major trauma is also caspase-1-dependent,
independently of its effects on IL-1b and IL-18 processing.87

There is evidence that IL-18 can also be secreted by
macrophages via a caspase-1-independent, Fas/Fas-
ligand-mediated manner and contribute to acute liver injury
in mice.88 Endotoxemic acute renal failure is attenuated in
caspase-1 KO mice, and in these mice blockade of IL-1 by
IL-1Ra or neutralisation of IL-18 is not protective.89 In renal
ischaemia/reperfusion models, caspase-1 inhibition may be
beneficial owing to an inhibition of pro-IL-18 processing,90

whereas no protection is observed in IL-1RI KO mice, or after
IL-1Ra administration.91 However, inhibition of IL-18 has no
effect against caspase-1-dependent hypoxia-induced death
in proximal renal tubules in vitro,92 suggesting that caspase-1
also has a role in renal injury that is independent of IL-1 and

IL-18 processing. In renal ischaemia/reperfusion injury
NLRP3 KO mice are protected independently of NLRP3’s
inflammasome function.93 Inhibition or deletion of caspase-1
also improves outcome after myocardial infarction,94–96 and
this protection may also occur independently of IL-1b and IL-
18. Caspase-1 KO mice are protected from ischaemia/
reperfusion-induced cardiomyocyte apoptosis, whereas mice
with cardiomyocyte-specific overexpression of caspase-1
develop heart failure, in the absence of IL-1b or IL-18.97

Ischaemia/reperfusion injury in transgenic mice overexpres-
sing caspase-1 results in myocardial infarcts that are 50%
larger than their non-transgenic littermates and this is
suggested to depend upon cross talk with caspase-3.98

Caspase-1 ablation protected photoreceptors in a model of
autosomal dominant retinitis pigmentosa, although no pro-
tective effect was observed in IL-1R1 KO mice.99 Caspase-1
KO mice are resistant to sepsis induced lethality,50 yet there
is no protection in IL-1b KO mice.100 Caspase-1 KO mice are
also completely protected from septic shock induced by
administration of live Escherichia coli while IL-1b and IL-1b/
IL-18 double KO mice suffered the same mortality as the
wild-type controls, but were protected by administration of a
caspase-1 inhibitor.101 Histological analysis revealed high
levels of apoptosis within the B-cell population in the spleen
of septic mice that was not present in the caspase-1 KO
mice,101 again suggesting that the effects of caspase-1 on

Table 1 Caspase-1 mediates vertebrate cell death independently of its classical role in inflammation

Description Tissue, cell type,
parameters affected

Species References

Caspase-1 inhibition protects against cell death independently of IL-1b processing Embryo, macrophages Fish 38–40

Caspase-1 inhibition protects against trophic factor-induced cell death indepen-
dently of IL-1b processing

DRG neurones Chicken 33–35

Caspase-1 inhibition protects against trophic factor-induced cell death, which is
independent of IL-1b and partially independent of IL-1R1

PC12 cells Rat 75

Ac-YVAD-cmk, but not IL-1b or IL-1Ra blocks neuronal death Organotypic brain slices Rat 73

Caspase-1 activates mitochondrial cell death pathways in hypoxia/ischaemia Cortical neuron cultures Mouse 72

Caspase-1 is involved in cell death in SOD1 models of ALS, but IL-1b can be
dispensable

Cell death, mortality
in vivo

Mouse 76–81

Ac-YVAD-(acyloxy)mk-mediated neuroprotection in neuroAIDS is independent
from IL-1b procession

Neocortex Rat 82

Caspase-1 is involved in Fas-ligand-induced hepatocyte apoptosis and induces liver
injury independently of IL-1b and IL-18

Liver, fibroblasts,
hepatocytes,

Mouse,
rat

84–87

Acute renal failure is attenuated in caspase-1 KO animals, independently of IL-1 or
IL-18

Kidney Mouse 89

Caspase-1-mediated effects can be independent of IL-1 or IL-18 in renal ischaemia
models

Kidney, proximal renal
tubules

Mouse 90–92

Caspase-1 has a proapoptotic role in heart failure, independently of IL-1 or
IL-18 induction and inflammation

Heart, cardiomyocytes Human,
mouse

97

Caspase-1 ablation protects photoreceptors in a model of autosomal dominant
retinitis pigmentosa independently of IL-1

Retina Mouse 99

Caspase-1 KO or zVAD-fmk protects against septic shock and apoptosis, which is
not seen in IL-1b/IL-18 double KO

Mortality in vivo, B-cell
apoptosis

Mouse 101

Abbreviations: DRG, dorsal root ganglion; IL, interleukin; SOD, superoxide dismutase
Examples illustrate IL-1- or IL-18-independent actions of caspase-1 both in in vivo and in vitro models of cell death, tissue injury, or after systemic inflammatory
challenge. See the text for a detailed explanation
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cell death are independent of the cleavage of its classical
substrates pro-IL-1b and pro-IL-18.

Caspase-1 in humans. IL-1-driven pathology defines a new
emerging family of diseases classified as autoinflamma-
tory.102 Within this group of diseases there is some where
a link between caspase-1 and IL-1b processing is clearly
established, while it remains to be seen in others. Currently,
evidence implicating caspase-1 in direct cell death processes
in human disease is lacking, although the animal studies
described above provide evidence that a role for caspase-1
in cell death processes in humans should not be entirely
unexpected. A group of diseases where a role for caspase-1-
dependent IL-1b-driven responses is unequivocal are the
cryopyrin-associated periodic syndromes (CAPS). These
diseases share many features including recurrent bouts of
fever, elevated acute phase proteins, fatigue and hearing
loss.102 CAPS are caused by gain of function mutations in
NLRP3 leading to increased inflammasome formation,
caspase-1 activation, and subsequently increased release
of IL-1b.103 Disease symptoms resolve following treatment
with anti-IL-1b therapies.102

Studies describing clinical use of anti-IL-1 therapies focus
almost exclusively on the use of biologicals such as IL-1Ra
(anakinra) or anti-IL-1b antibodies such as canakinumab.1

Clinical data on drugs that target caspase-1 are much more
limited. Pralnacasan is an orally available caspase-1 inhibitor,
that when trialled in phase II for rheumatoid arthritis showed
amelioration of disease symptoms, but not for osteo-
arthritis.104 Trials using pralnacasan were subsequently
suspended when a preclinical study in dogs reported liver
abnormalities when treated long term with high doses.104

Pralnacasan is currently in phase II trials for the treatment of
drug resistant epilepsy. Currently, we can only speculate
based upon the animal studies described above, that

caspase-1 will also have a direct role in cell death processes
in human disease.

Cross Talk Between Inflammatory and Apoptotic
Caspases

As discussed above, there is evidence supporting a significant
interaction between the pathways regulating inflammatory,
and apoptotic caspases (Figure 3). For example, the anti-
apoptotic protein bcl-2, which is classically associated with an
inhibition of the intrinsic pathway of apoptosis, can also inhibit
caspase-1-dependent cell death.39,42 More recently bcl-2 has
subsequently been discovered to bind to, and suppress
activation of the NLRP1 inflammasome, inhibiting release of
IL-1b in response to the NLRP1-activating ligand muramyl
dipeptide,105 and also blocks the activation of the NLRP3
inflammasome in response to apoptotic stimuli in mouse
macrophages.106 Members of the inhibitors of apoptosis (IAP)
family suppress apoptotic caspases through their E3 ubiquitin
ligase activity,107 but have now been shown to regulate the
activity of caspase-1 and IL-1b release.108,109 X-linked IAP
protein, a caspase-1 substrate (Figure 1), is reported to be a
component of the NLRP1 inflammasome formed after spinal
cord injury and after thromboembolic stroke in rodents.58,59 In
several of the models of neuronal cell death described above,
caspase-1 is apical to the activation of caspase-3.57,72 From
the proteomic work summarised in Figure 1 we know that
caspase-1 can function directly upon caspase-3 and Bid,31

and in several disease models described above caspase-1 is
reported to activate Bid.72,76 Cleavage of Bid is central to the
intrinsic cell death pathway of apoptosis, with the truncated
form of Bid triggering the process that leads to mitochondrial
outer membrane permeabilisation, cytochrome C release,
apoptosome formation, and the subsequent activation
of caspases 9 and 3/7.110 Caspase-8 is typically associated

Figure 3 Inflammatory and apoptotic caspase cross talk. Shown is a summary of some of the interactions between inflammatory and apoptotic caspases. In particular,
parallels and overlap between the formation of the inflammasome and the apoptosome are shown. Bold arrows are established links. The dashed arrows highlight possible
interactions as suggested by the reviewed literature
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with Bid cleavage, although the data discussed in this review
suggest that caspase-1 could also contribute to this intrinsic
cell death pathway. This cross talk between caspase-1 and
apoptotic pathways has also been reported in reverse.
For example, caspase-8 can cleave pro-IL-1b, at the same
site as caspase-1, in response to Toll-like receptor stimula-
tion,111 or following treatment of LPS-primed macrophages
with an IAP antagonist.109 In addition, the pro-apoptotic drug
staurosporine induces NLRP3-dependent activation of cas-
pase-1 and IL-1b secretion from LPS-primed macrophages
via release of oxidised mitochondrial DNA.106 Inflammatory
and apoptotic caspase cross talk also occurs during pyroptotic
cell death in macrophages, where caspase-7 is activated
downstream of NLRP3- and NLRC4-inflammasome-depen-
dent caspase-1 activation.112,113 Caspase-7 is also activated
downstream of caspase-1 in response to LPS in the absence
of cell death.114 These data suggest that there is significant
overlap between inflammatory and apoptotic caspases and
that the signalling processes controlling their regulation are
not exclusive to inflammation or to apoptosis.

Summary

Sterile inflammation is the inflammatory response to injury
and disease in the absence of infection and is driven
by DAMPs; endogenous host molecules modified during
disease, or intracellular proteins released after necrosis.5

The same indiscriminate weapons used during inflammation
by recruited leucocytes to kill pathogens (e.g., reactive
oxygen species and proteases) kill surrounding healthy cells
and thus sterile inflammation exacerbates disease and
injury.5,115 Thus, considering the evidence discussed above
for the direct role of caspase-1 in cell death processes after
sterile insults, an inhibition of caspase-1 would be anti-
inflammatory by preserving cell viability and therefore limiting
the release of DAMPs, consequently resulting in less
inflammation. In this way caspase-1 could drive an IL-1-
dependent inflammation across all vertebrate classes. In
mammals, caspase-1-dependent processing of pro-IL-1b can
occur although there are additional pathways of pro-IL-1b
processing that have been described in disease.27–30 Thus, a
challenge when devising future studies and interpreting
current literature will be to dissociate the effects of caspase-
1 on cell death and on the processing of IL-1b as it is possible
that caspase-1-dependent cell death could lead to an
IL-1-dependent inflammatory response, independent of cas-
pase-1-processing of pro-IL-1b. The conserved caspase-1-
dependent cell death in non-mammalian vertebrates and the
cross talk between inflammatory and apoptotic caspases
discussed above, suggest that the involvement of caspase-1
in cell death pathways is much greater than is considered
currently.
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