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Abstract

Background: Individuals with Attention-Deficit/Hyperactive Disorder (ADHD) have unexplained
difficulties on tasks requiring speeded processing of colored stimuli. Color vision mechanisms,
particularly short-wavelength (blue-yellow) pathways, are highly sensitive to various diseases,
toxins and drugs that alter dopaminergic neurotransmission. Thus, slow color processing might
reflect subtle impairments in the perceptual encoding stage of stimulus color, which arise from
hypodopaminergic functioning.

Presentation of hypotheses: |) Color perception of blue-yellow (but not red-green) stimuli is
impaired in ADHD as a result of deficient retinal dopamine; 2) Impairments in the blue-yellow color
mechanism in ADHD contribute to poor performance on speeded color naming tasks that include
a substantial proportion of blue-yellow stimuli; and 3) Methylphenidate increases central dopamine
and is also believed to increase retinal dopamine, thereby normalizing blue-yellow color perception,
which in turn improves performance on the speeded color naming tasks.

Testing the hypothesis: Requires three approaches, including:1) direct assessment of color
perception in individuals with ADHD to determine whether blue-yellow color perception is
selectively impaired; 2) determination of relationship between performance on neuropsychological
tasks requiring speeded color processing and color perception; and 3) randomized, controlled
pharmacological intervention with stimulant medication to examine the effects of enhancing central
dopamine on color perception and task performance

Implications of hypothesis: If substantiated, the findings of color perception problems would
necessitate a re-consideration of current neuropsychological models of attention-deficit/
hyperactivity disorder, guide psycho-education, academic instruction, and require consideration of
stimulus color in many of the widely used neuropsychological tests.

Background that affects 3-7% of school-aged children and tends to
Attention-Deficit/Hyperactivity Disorder (ADHD) is a  persist into adulthood [1]. Converging neuroscience evi-
common and impairing childhood-onset disorder charac-  dence suggests that ADHD is often associated with

terized by inattention, hyperactivity, and impulsiveness  impaired executive functioning, probably arising from
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widespread alterations of neuronal circuits including the
prefrontal cortex, basal ganglia, parietal cortex, anterior
cingulate, and cerebellum. Hypodopaminergic neuro-
transmitter functioning is believed to play a central role in
its pathophysiology [2-5]. Although sensory and percep-
tual abilities have been presumed to be intact in ADHD
[2,4,5], recent findings are challenging this earlier
assumption. For example, reduced visual perceptual sen-
sitivity has been demonstrated in children with ADHD
[6,7]. Also, individuals with ADHD exhibit unexplained
problems in the speeded processing of colored stimuli [8-
22], and stimulant medication, (a common treatment
approach for ADHD) is reported to selectively improve
naming speed for colors but not for other types of stimuli
[8,23].

To date, there is no adequate explanation to account for
either the observed color processing problems in ADHD
or their selective amelioration by psychostimulant medi-
cation. We propose that the color processing problems
may reflect subtle detrimental effects of dopaminergic
deficiency in the central nervous system on retinal
dopamine, which in turn impedes the efficiency of the
short-wavelength (blue-cone) color vision mechanism as
well as of other visual functions. Prior to elaborating on
this hypothesis, we first review the evidence of problems
in color processing associated with ADHD and the exist-
ing explanatory accounts. We then outline possible empir-
ical approaches to test this hypothesis, and discuss the
theoretical and clinical significance of the hypothesis
should it be substantiated.

Color processing problems in ADHD

Several lines of evidence indicate impaired performance
on tasks requiring rapid and/or continuous processing of
colored stimuli in ADHD. For example, in a seminal study
on rapid automatized naming speed, Denckla [9]
described four of the five boys with dyslexia who exhib-
ited slow color naming as being "inattentive", but not
"hyperkinetic". Notably, most of the boys' errors were
associated with naming the colors blue and yellow, but
tests for color blindness revealed no abnormalities [9].
Subsequent studies of rapid naming have found consist-
ently that children and adolescents with ADHD exhibit
slower naming speed for colors on the Rapid Automatized
Naming Test and Stroop Color Word Test, but typically do
not exhibit slower naming of letters, words, or digits
[8,10-22]. Slower color naming on the Stroop Color-
Word Test is sometimes found even in the absence of
slower word naming or poor interference control [19].
ADHD is also associated with taking more trials to deduce
the first sorting rule on the Wisconsin Card Sorting Task
[13,24]: the first rule requires participants to sort accord-
ing to the color of the stimuli and ignore their shape and
number. Moreover, one study demonstrated that the
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number of trials taken to deduce the first sorting rule was
associated with slower Stroop color naming in the ADHD
group but not in the control group, suggesting that color
processing deficits may underlie performance on both
tasks [13]. Furthermore, children with ADHD have been
found to respond significantly more slowly (about 200
ms slower) to blue stimulus shapes compared to normal
peers, but do not differ in their response time to green
stimuli in a visual processing task [22]. Collectively, these
findings suggest impairments in color perception and pre-
liminary support for this proposition is provided by a
recent study of selective attention to color using event-
related potentials. The findings indicated that boys with
ADHD exhibit an early perceptual deficit in selection of vis-
ual stimuli on the basis of color (red versus blue) as well as
in later semantic stages of visual selective attention [7].

Current explanations of poor color processing in ADHD
Currently, two classes of explanation (psychological, neu-
robiological) are discernible in the literature for the
observed problems in rapid processing of colored stimuli
in individuals with ADHD. These theoretical accounts are
not mutually exclusive, but rather they overlap and reflect
perspectives taken from different research approaches and
different levels of measurement.

Psychological accounts attribute slow color naming to
developmental immaturity. For example, the develop-
ment of color naming appears to be much more difficult
for young children than naming shapes or animals [25-
27]. Also, whereas the fastest speeds of naming alphanu-
meric stimuli are reached by the age of 16, the speed of
naming colors and objects continues to improve (i.e.,
become faster) into mature adulthood [28]. Accordingly,
the overall immaturity in development associated with
ADHD might exacerbate the normal developmental lag in
rapid naming of stimulus colors. An alternative psycho-
logical explanation attributes slow color naming to devel-
opmental problems in effortful semantic processing,
which is typically associated with right hemisphere func-
tion [8]. Specifically, naming of colors (as well as naming
of natural objects) is thought to require more effortful,
perceptual and/or semantic processing than naming let-
ters, digits, or man-made objects [30-34]. For instance,
terms such as digits, letters, and shapes refer to categories
with sharp, clear, and non-overlapping boundaries, while
color terms refer to categories with unclear, variable, and
overlapping boundaries. Often, there may be more than
one plausible name for a given color and asymmetries
likely exist between the candidate names (e.g., they may
differ in word frequency), thus giving rise to response
competition and necessitating more careful and detailed
processing or the need to inhibit the more frequent or sali-
ent color name [6,25]. A related explanation based on
response-competition was also proposed by Brodeur and
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colleagues [22] to account for slower processing of blue
stimuli compared to green stimuli. Specifically, this find-
ing was attributed to developmental problems in set shift-
ing from the predominant response to the more common
green stimuli than to the non-dominant response to the
less frequent blue stimuli. Impairments in semantic
processing, set-shifting, and response-competition, have
all been implicated in ADHD [7,14,35].

An existing neurobiological account of color processing
problems in ADHD associates poor color naming or poor
color processing performance to alterations in the under-
lying neural substrate. For example, slower RAN color
naming speed (but not the naming speed for RAN letters,
objects or digits) was found to be related to smaller ante-
rior superior white matter volumes (both right and left
hemispheres) in ADHD compared to healthy controls
[29]. Decreased total white matter volumes in children
and adolescents with ADHD, which have been reported in
several studies [36-39], suggests delayed or deviant myeli-
nation of major fiber tracts such as the corpus callosum,
which might have a detrimental impact on the speed of
interhemispheric transmission involved in speeded color
naming.

Current explanations referring to poor sustained atten-
tion, problems in set shifting or semantic processing, or
differences in white matter volumes associated with
ADHD can not easily account for the dissociation between
rapid naming of colored stimuli and rapid naming of let-
ters, digits, or words. Nor can they adequately account for
the indications that color processing problems appear to
be greater for yellow and blue stimuli. Moreover, from a
developmental perspective, the neurodevelopmental
immaturity hypothesis would predict greater problems in
rapid color naming in children with ADHD compared to
adolescents, with possible attenuation of the deficits in
adults with ADHD. To date this hypothesis has not been
tested directly, but meta-analyses of cognitive deficits in
children, adolescents, and young adults with ADHD indi-
cate color naming deficits of moderate to large effect size
(d =.58-.62) across the life span with no evidence of age-
related changes [19,40].

Presentation of the hypothesis

Color perception is controlled, at least in part, by retinal
dopaminergic neurons [41]. We propose that slowed
color processing and color naming in ADHD reflects a
specific problem in blue-yellow color perception, which
arises from hypo-functioning retinal dopaminergic mech-
anisms. In the absence of any evidence to the contrary,
changes in central and retinal dopamine are believed to
occur together. Thus, hypofunctioning of the central
dopaminergic system associated with ADHD [4] will be
accompanied by hypo-functioning retinal dopamine. The

http://www.behavioralandbrainfunctions.com/content/2/1/4

abnormalities in retinal dopaminergic tone will give rise
to subtle, but detrimental effects on the on several aspects
of visual function, particularly on the short-wavelength
chromatic pathway that is responsible for blue-yellow
color perception. Normalization of central dopaminergic
functioning via pharmacological intervention with psy-
chostimulant medication will normalize retinal
dopamine, which in turn will normalize blue-yellow
color perception and performance on tasks requiring
speeded color naming.

To present the detailed hypothesis, we first provide the
necessary background on color perception and the role of
retinal dopamine, then argue how hypo-dopaminergic
functioning in ADHD will give rise to impairments in the
tritan color mechanism, which in turn will influence
speeded color naming on tasks involving a substantial
proportion of blue and yellow stimuli.

Color perception and the role of retinal dopamine

Color perception is based on the three cone photorecep-
tor types maximally sensitive to long, middle, and short
wavelengths in the perceived light spectrum that consti-
tute two functionally and anatomically distinct systems at
the retina and lateral geniculate nucleus; a 'red-green' sys-
tem with a foveal specialization in which long and middle
wavelength cone signals are antagonistic, and a 'blue-yel-
low' pathway in which short wavelength cones are
opposed by a combined signals from long and middle
wavelength cones without such a foveal overrepresenta-
tion [42]. Normal development of the blue-yellow (tri-
tan) color mechanism appears to lag behind that of the
red-green mechanism, which is functional in human
infants by 2 months of age [43-46].

Most color perception defects (i.e., dyschromatopsias or
'color blindness') are congenital and arise from altered
sensitivity defects of the L and M cones. By contrast to
these red-green color vision deficits, which respectively
affect 2% and 6% of the male population, congenital
defects in S-cone sensitivity are rare (about 0.01%) but
affect both sexes equally [47]. Acquired dyschromatopsias
arising from exposure to environmental pollutants [48]
usually impair blue-yellow color discrimination. For
example, pronounced effects on color perception, often
dose-dependent and involving the short-wavelength
(blue-yellow) mechanism, are reported following both
acute and chronic exposure to organic solvents and ele-
mental mercury [49,50]. Moreover, occupational expo-
sure to organic solvents during pregnancy is associated
with increased risk of color vision and acuity impairment
in the offspring [51,52].

Color perception problems, particularly involving the

blue-yellow (tritan) mechanism, have also been linked
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with alterations in retinal dopamine: dopamine is a major
neurotransmitter in the mammalian retina [41,53].
Dopamine receptors, DRD1 and DRD4 that seems to be
associated with a subsensitive postsynaptic receptor if
coded by the 7-repeat allele [54] are both found in the ret-
ina [53-55]. Retinal dopaminergic neurons are involved
in controlling the coupling of horizontal and amacrine
cell lateral systems, the organization of the ganglion cell
and the bipolar cell receptive fields and modulation of the
physiological activity of photoreceptors. Thus, the retinal
dopamine system influences light adaptation as well as
other visual functions, including color perception, con-
trast sensitivity, and spatial and temporal processing
[41,53]. The hypothesis proposed focuses on the role of
retinal dopamine in color perception.

Alterations in the level of retinal dopamine are reflected
particularly in deficits in the short-wavelength chromatic
pathway that is responsible for blue-yellow color discrim-
ination, a system that appears to be especially vulnerable
to the effects of disorders and drugs [41,50,56-58]. For
example, discrimination along the blue-yellow axis (com-
pared to the red-green axis) is particularly impaired in var-
ious disorders involving altered dopaminergic
mechanisms. Thus, specific blue-yellow color vision dis-
turbances are found in Tourette Syndrome [59], Parkin-
son's disease [60-63], and Huntington's disease [64].
Changes of retinal dopamine levels arising from cocaine-
withdrawal [65-67] and normal aging [41,68] have also
been associated with blue-yellow color vision losses.

The fundamental mechanisms causing a specific retinal
impairment of color discrimination along the blue/yellow
axis in dopaminergic disorders and acquired dyschromat-
opsias remain unclear. Short wavelength sensitive cones
may be more fragile than long and medium wavelength
sensitive cones or their relative scarcity and anatomical
distribution may be responsible for the greater vulnerabil-
ity of the blue-yellow perception by alterations of the
dopaminergic system [41,47,53,69]. Accordingly, abnor-
malities in dopamine production, transport, uptake, or
receptor sensitivity could result in impairments in visual
processing including color - particularly the color blue.
Moreover a selective impairment of the blue-yellow vision
system suggests a retinal location of the disturbance rather
than a central one [41,47].

Hypo-dopaminergic functioning in ADHD influences color
perception

Hypo-dopaminergic functioning has been postulated in
ADHD [4,70] and abnormal levels and density of the
dopamine transporter in the brain have been reported in
adults with ADHD [71]. Moreover, ADHD has been asso-
ciated with anomalous alleles of the D1 and DRD4 recep-
tors [72-74]. Thus, dopaminergically-related impairments
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in visual functioning, and particularly in blue-yellow
color perception, are plausible in ADHD.

We propose that the observed impairments in individuals
with ADHD on tasks requiring speeded color processing
of blue-yellow stimuli might be attributable in part to
hypo-functioning of both central and retinal dopamine.
Critical to this hypothesis is the premise that alterations in
central and retinal dopamine occur in parallel (and that
pharmacologically-induced increases in central dopamine
also increases retinal dopamine). To our knowledge there
is no direct evidence that this is the case. Rather, we draw
inferences from the following evidence: 1) cerebrospinal
concentrations of a metabolite of CNS dopamine,
homovanillic acid, correlates positively with electroretin-
ogram blue-cone amplitude [67]; 2) in Parkinson's dis-
ease, death of dopaminergic neurons in the CNS also
extend to the retina, resulting in impaired visual functions
including blue-yellow color perception [61-63]; 3) the vis-
ual deficits in Parkinson's disease are mostly reversed by
treatment with the dopamine precursor L-DOPA [41]; 4)
methylphenidate, which is the primary treatment modal-
ity for ADHD, blocks the re-uptake mechanism of the
dopamine transporter, increasing the amount of extracel-
lular dopamine able to bind to its receptors [75]. Thus,
changes in the dopamine system, regardless of whether
brought about experimentally (lesions, pharmacologi-
cally) or naturally (as in ageing or in clinical conditions),
leads to predictable changes in retinal function [41,53].

According to this retinal dopaminergic hypothesis, defi-
cits in blue-yellow color perception result in poor per-
formance on many of the standard neuropsychological
tasks (e.g., Stroop, RAN, Wisconsin Card Sorting Task)
that include a substantial proportion of blue-yellow stim-
uli. Thus poor task performance may reflect subtle impair-
ments in color vision as well as, or instead of,
impairments in higher-order cognitive function. Consist-
ent with this prediction are the recent findings that indi-
vidual differences in color perception influence
performance on the classic Stroop color-word task and
that incongruent opponent color pairs (e.g., the word
BLUE in yellow ink) decrease the strength of Stroop inter-
ference compared to non-opponent color pairs (e.g.,
BLUE in red ink) [76]. A neural network simulation of the
data confirmed that the difference in magnitude of Stroop
interference between incongruent color-word pairs
involving opponent versus nonopponent colors was
attributable to sensory processing of the physical color of
the stimuli (particularly the color yellow), which occurs at
the level of retinal ganglion cells [76]. Also, it has been
demonstrated that visual function deficiencies associated
with normal aging (reduced acuity, contrast sensitivity,
and color weakness) accounted for a substantial amount
of the variance in Stroop performance [77]. The preceding
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findings suggest that impairments in the early perceptual-
encoding stage of stimulus color contribute to slow per-
formance on neuropsychological tasks requiring speeded
naming of color, as well as conceptual and attentional fac-
tors [76].

Stimulant-induced increases in the availability of
dopamine would be expected to be reflected in retinal
dopaminergic tone and thus have therapeutic effects on
the short-wavelength mechanism. Thus, methylphenidate
would be expected to improve visual functioning, includ-
ing the speed of color processing and naming. Indeed,
there is preliminary evidence of beneficial effects of meth-
ylphenidate on color naming in children with ADHD
[8,23].

Gender effects

Alterations in short-wavelengths mechanism may be gen-
der-related. Notably, estrogen has been found to have a
modulatory influence on dopamine activity [78] and a
few studies have revealed significant variations in
dopaminergic tone and dopamine receptor density that
are sex-specific [79,80]. Correspondingly, gender-related
differences observed in visual-cortical fMRI BOLD
response to blue light (higher BOLD signal change in
males), but not to red light, have been reported that may
be related to variations in dopamine function and/or the
effects of estrogen on dopamine [81]. Furthermore, visual
pattern reversal evoked potentials have been found to vary
with menstrual phase in females and display faster con-
duction times during the period of peak estrogen levels
[82]. Given the incidence of ADHD is estimated to be
three times greater in males than females, the relationship
between estrogen and dopamine may provide an impor-
tant area for further investigation.

Developmental effects

The limited data available on developmental changes in
retinal and central dopaminergic mechanisms, color per-
ception, and color naming, suggest that the retinal
dopamine hypothesis will likely hold for children, adoles-
cents, and adults with ADHD. For example, animal
research indicates that dopaminergic neurons are among
the first neurochemical systems to appear in the develop-
ing retina and that the neural retina and dopaminergic
system interact closely in a two-way manner throughout
developmental period [53]. It is only as the animal passes
through maturity towards senescence that the number of
retinal dopamine neurons decrease [53]. Thus, assuming
that hyperdopaminergic function in ADHD occurs early
in pre- or post-natal life, parallel hypofunctioning of the
retinal dopamine system is expected to have a detrimental
effect on the development of blue-yellow color vision and
these early deficits are likely to persist.

http://www.behavioralandbrainfunctions.com/content/2/1/4

On the other hand, the increasing efficiency of the mature
(adult) brain permits the development and use of com-
pensatory strategies. Thus, adults with ADHD, although
impaired in color perception relative to healthy peers,
may be able to call upon compensatory attentional strate-
gies to enhance performance on tasks requiring rapid per-
ception of blue and yellow stimuli, thereby exhibiting
better performance than children or adolescents with
ADHD.

Testing the hypothesis

Three strategies are proposed to provide a rigorous test of
the hypothesis: 1) direct assessment of color vision path-
ways in individuals with ADHD versus a comparison
group of healthy peers; 2) evaluation of the relationship
between color vision (particularly for blue-yellow stimuli)
and performance on tasks requiring speeded color
processing; and 3) investigation of stimulant effects on
both color vision and performance on those tasks in indi-
viduals with ADHD. Color vision can be assessed directly
using clinical measures that are sensitive to problems with
stimuli along the blue-yellow axis [83-85] as well as using
color visual evoked potential (VEP), which is an objective,
sensitive, and non-invasive measure of neuronal integrity
of red-green and blue-yellow pathways [86-88]. A detailed
neuro-opthalmological examination is also required to
rule out confounding factors, such as problems with vis-
ual acuity, refraction, contrast sensitivity, or structure of
the fundus (ocular media, posterior pole, and macular
area of the retina). Evidence of selective impairments in
blue-yellow but not red-green color perception would
mitigate an alternative explanation that impaired percep-
tion of stimulus color reflects an attention dysfunction,
and be consistent with the proposed hypothesis that dys-
regulation of central and retinal dopamine impairs blue-
yellow color perception. Next, regression techniques are
required to examine the relationship between perform-
ance on various standardized neuropsychological tests
requiring speeded color processing [30,31,89] and the
color vision measures (e.g., VEP latencies, continuous
scores from clinical color vision tests). Finally, a rand-
omized, double-blind, placebo-controlled, within-subject
design is required to test whether stimulant-induced
increases in central dopamine also produces parallel
increases in retinal dopamine, as indexed by improved
performance on both color vision and speeded color
naming.

Theoretical and Clinical Implications of the
Hypothesis

Convergent findings from empirical investigations and
neural network simulation support the hypothesis that
color perception contributes to performance on neuropsy-
chological tasks requiring speeded color naming [70,71].
Preliminary support for our hypothesis that color percep-
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tion of blue-yellow (but not red-green) stimuli is
impaired in ADHD as a result of deficient central and ret-
inal dopamine is provided by findings from our recent
small-scaled study that demonstrated selective impair-
ments in blue-yellow (i.e, not red-green) color perception
in children with ADHD [83]. Also, the contrasting effects
of dopaminergic and noradrenergic drugs on color nam-
ing in individuals with ADHD [8,23,91] are consistent
with the premise that increases in central dopamine will
also increase retinal dopamine, resulting in improved
color processing and naming.

If substantiated in larger well-controlled studies, evidence
that blue-yellow color perception problems contribute to
poor performance on neuropsychological tasks of execu-
tive function requiring speeded color processing, would
necessitate careful consideration to stimulus color when
interpreting performance on many of the standard neu-
ropsychological tests. Also, evidence of specific impair-
ments in blue-yellow color perception (and other visual
functions) would necessitate a reconsideration of current
neuropsychological models of ADHD, which posit the
core deficits to be in higher-order executive functioning
and not at the level of sensory and perceptual processing.
From a clinical perspective, this retinal-dopaminergic
hypothesis might indicate the need to include a visual
examination in the assessment of ADHD, and raises the
possibility that electroretinogram blue cone amplitudes
may also be a possible neurobiologic marker related to
central dopamine function in ADHD, as well as in
cocaine-dependent patients [67].
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