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Abstract: Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer
(GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated
free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade
the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several
key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy
combination has become the standard of care for advanced GC. Several clinical trials of newer im-
munotherapy agents are ongoing. Understanding of the molecular process of PM and the potential
rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular
aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, in-
traperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because
systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and
immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
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1. Introduction

In 2020, gastric cancer (GC) was responsible for more than one million new cancer
diagnoses and approximately 769,000 deaths. It is the fifth most common cancer and the
fourth leading cause of death worldwide [1]. GC commonly metastasizes to the liver,
peritoneum, lungs, bones, and lymph nodes. Of which, the peritoneum is one of the
most frequent sites of metastasis in patients with GC. Peritoneal metastasis (PM) occurs
synchronously with primary GC in about 14–43% of the patients. Meanwhile, PM occurs
metachronously in about 10–46% of the patients who have undergone curative surgery [2,3].
Moreover, the prognosis of patients with PM is very dismal. According to Paget’s “seed and
soil” theory [4], PM is initiated by the spread of tumor cells. These detached viable cancer
cells, which are analogous to the “seed”, are in an appropriate microenvironment, and
colonize a compatible organ, which is analogous to the “soil”. Several studies have been
conducted to elucidate this multistep process. Cancer cells detach from the primary tumor,
survive in the microenvironment of the abdominal cavity, attach to peritoneal mesothelial
cells, invade the basement membrane, settle, and proliferate with angiogenesis. Each step
of PM progression in gastric cancer depends on several molecular mechanisms, but the
molecular mechanisms of these steps remain poorly understood.

The success of immunotherapy, including immune checkpoint inhibitors (ICIs), has
changed the treatment landscape of several cancers, and ICIs have shown promising results
in treating GC. Therefore, there is a need to understand the immunologic microenvironment
of PM, and to develop a promising treatment strategy for PM.
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In this study, we focus on the molecular mechanisms and immunological aspects of
PM in GC, and intraperitoneal approaches under investigation for treating PM.

2. Multistep Process
2.1. Detachment of Cancer Cells and Transmigration to the Peritoneum

The first step in peritoneal dissemination is the detachment of cancer cells from the
primary gastric tumor. Tumor cells that are detached from the primary tumor mass invade
through the gastric wall to gain access to the peritoneal cavity. Cancer cells must be able to
migrate and infiltrate to detach successfully from the original tumor (Table 1).

Many cytokines, growth factors, chemokines, and proteases are abundant in primary
tumors, promote tumor cell survival and proliferation, and allow the tumor cells to migrate.
Epithelial–mesenchymal transition (EMT) is a process in which a subset of tumor cells
in the primary tumor switches off epithelial markers such as E-cadherin, and turns on
mesenchymal markers such as S100 calcium-binding protein A4 (S100A4) [5] and vimentin,
resulting in cell polarity loss, cytoskeletal reorganization, and the dissolution of adherens
and tight junctions [6,7]. E-cadherin is a calcium-dependent cell–cell adhesion molecule
that is essential for epithelial architecture, cell polarity, and differentiation maintenance.
When dysregulated, cell motility is promoted, leading to tumor invasion and peritoneal
dissemination [8]. In addition, E-cadherin and the cadherin–catenin complex accelerate
cell motility and invasiveness by modulating various signaling pathways in epithelial cells,
such as Wnt, Rho GTPase, and NF-κB signaling pathways, as well as EMT [9–12] (Figure 1).
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Figure 1. Process of peritoneal metastasis of gastric cancer.

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in the
degradation of extracellular matrix (ECM) proteins. The overexpression of MMPs in cancer
cells causes uncontrolled proteolytic activity, tissue remodeling, and excessive basement
membrane destruction, allowing tumor cells to gain stromal access [13]. High expression
of MMP-2 and MMP-9 is associated with invasiveness and poor survival in patients with
GC [14]. MMP-7 is also highly expressed in GC cells [15,16] and is associated with cancer
aggressiveness [17] and peritoneal dissemination [18].
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EMT is a crucial step in the initiation of local invasion and subsequent dissemination.
During EMT, tightly kinked epithelial cells separate into motile and invasive mesenchymal
cells. At the mesenchymal stage, cancer cells have a new ability to penetrate the surrounding
milieu. The ligands EGF, TGFβ, Wnt, Notch, and integrin play a significant role in EMT [10].

Table 1. Molecules associated with PM in GC.

Molecule Biological Function Oncologic Function Associated
Molecules/Pathways Ref.

Detachment of Cancer Cells and Transmigration to the Peritoneum

CDH1 Cadherin 1,
E-cadherin Cell-cell adhesion Proliferation, invasion,

migration

Wnt, Rho GTPases,
NF-kB pathways,

EMT
[19,20]

ANXA1 Annexin 1
Calcium and

membrane-binding
protein

Proliferation,
apoptosis,

tumorigenesis

MAPK/ERK
pathway [21,22]

NRAGE

Neurotrophin
receptor-interacting

melanoma
antigen-encoding

gene homolog

Normal developmental
apoptosis of sympathetic,

sensory and motor
neurons

Proliferation,
apoptosis

AATF, p75NTR,
PCNA [23,24]

ARL4C ADP-ribosylation
factor-like 4C GTP-binding protein Promote cell motility Rho GTPase, EGF,

Wnt [25,26]

Survival in the peritoneal cavity microenvironment

HIF1A Hypoxia-inducible
factor 1alpha

Regulation of cellular and
systemic homeostatic
responses to hypoxia

Energy metabolism,
angiogenesis,

apoptosis

EMT, NF-kB
pathway, glucose

metabolism
[27–29]

PTEN Phosphatase and
tensin homolog

Dephosphorylating
phosphoinositide

substates
Growth, migration PI3K/NF-kB

pathway, FAK [30–32]

Akt Serine/threonine
kinase

Receptor for
pro-proliferation and

bioactive substances, ECM
receptor

Suppression of
apoptosis,

proliferation,
metastasis,

angiogenesis

PI3K/Akt,
PTEN/PI3K/NF-

kB/FAK
[33–35]

CXCR4/
CXCL12

C-X-C motif
chemokine receptor

4/Ligand12

Ligand, chemokine
receptor

Invasion, metastasis,
angiogenesis

EMT,
CXCL12/CXCR4 [36–38]

AREG Amphiregulin

Epidermal growth factor,
mammary gland, oocyte

and bone tissue
development

Proliferation,
migration

EGF, TGF-a,
CXCL12/CXCR4

axis
[39–41]

LOX Lysyl oxidase
Forming covalent

crosslinks between
collagen and elastic fibers

Invasion, metastasis EMT [42–44]

ANGPTL4 angiopoietin-like-4 Glucose metabolism Induced by hypoxia,
resistant to anoikis

FAK/Src/PI3K/Akt/
ERK [45–47]

MYH9

Myosin IIa or
non-muscle myosin

heavy chain 9
(NMMHC-IIA)

Cell motility, migration,
adhesion Resistance to anoikis CTNNB1 [48]

C/EBPβ Transcription factor Induce PDGFB
transcription

C/EBPβ-mediated-
PDGFB autocrine

and paracrine effects
[49,50]
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Table 1. Cont.

Molecule Biological Function Oncologic Function Associated
Molecules/Pathways Ref.

Attachment of free tumor cells to peritoneal mesothelial cells or lymphatic stomata and invasion through the basement membrane

TGF- β1 Tumor growth
factor-beta1

Control proliferation and
differentiation of cells

Normal development,
wound healing Smad [51–54]

MMP7 Matrix
metalloproteinase 7 ECM degradation Proliferation, invasion E-cadherin, TGF- β,

EMT [18,55,56]

CTGF Connective tissue
growth factor

Chondrocyte proliferation
and differentiation, cell

adhesion

Growth, migration,
adhesion Integrin α3β1, PDGF [57,58]

MELK Maternal embryonic
leucine zipper kinase

Cell cycle-dependent
protein kinase

Apoptosis,
chemoresistance RhoA, FAK, Bcl-GL [23,59]

Integrin
α3β1 Cell surface adhesion Metastasis, adhesion Lamine-5 [60,61]

Proliferation with blood vascular neogenesis

VEGF Vascular endothelial
growth factor

Proliferation and
migration of vascular

endothelial cells
Angiogenesis FAK, PI3K/AKT,

MAPK/ERK [62,63]

IRX1 Iroquois homeobox 1 Pattern formation in the
embryo

Metastasis,
angiogenesis VEGFA [23,64]

2.2. Survival in the Peritoneal Cavity Microenvironment

Peritoneal dissemination is initially driven by direct invasion of tumor cells from the
gastric wall to the peritoneal cavity, including spontaneous spreading from the primary
tumor, or surgical trauma causing scattering of cancer cells during surgery. These detached
cells are called intraperitoneal-free cancer cells (IFCC), and encounter a hypoxic and glucose-
deficient microenvironment in the peritoneal cavity. They must have the ability to survive,
migrate, and proliferate within this milieu.

Hypoxia-inducible factor-1α (HIF-1α) is a crucial transcription factor involved in
angiogenesis and glycolysis in the cellular response to hypoxia. HIF-1α stimulates the
expression of various genes involved in the adaptation to hypoxia and glucose metabolism.
HIF-1α promotes EMT in cancer cells by activating the transcription of genes in the LOX
family [27–29], and induces angiopoietin-like-4 (ANGPTL4), resulting in tumor growth
and resistance to anoikis [45–47].

Anoikis, programmed apoptosis triggered by cell detachment from the extracellular
matrix (ECM)—is another important barrier to the survival of detached cells and their
reattachment to the new matrix in ectopic sites [65]. Cancer cells must develop resistance to
anoikis for tumor progression. Anoikis resistance (AR) is a prerequisite for hematogenous
metastasis [65,66], lymphatic metastasis [7], and PM of GC [67]. Several processes con-
tribute to AR development, including promotion of EMT, oncogene activation, adaptation
of metabolism, and changes in expression of the integrin family of genes [49,68]. The
PI3K/Akt, PTEN/PI3K/NF-kB/FAK, and CXCL12/CXCR4 pathways are associated with
anoikis resistance [30–38].

2.3. Attachment of Free Tumor Cells to Peritoneal Mesothelial Cells or Lymphatic Stomata

In PM formation, the attachment of GC cells to the peritoneal lining is crucial. There are
two distinct pathways for peritoneal dissemination: transmesothelial and translymphatic,
which is depicted in Section 2.4 [69–72].

In transmesothelial metastasis, cancer cells seeded in the peritoneal cavity adhere to
the peritoneal surface directly [73]. To penetrate the submesothelial area, the mesothelium
must overcome a barrier. The peritoneum is a lining of a single layer of closely connected
mesothelial cells, which creates an anatomical barrier for the prevention of cancer cell
invasion [74]. Most IFCCs attached to mesothelial cells die due to this mechanical barrier
and a hostile microenvironment that lacks nutrients.
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Some cancer cells evade this process by producing growth factors and matrix metal-
loproteinases. The growth factor released by IFCCs causes peritoneal mesothelial cells to
undergo EMT and transform into a spindle-like, fibroblastic-pattern morphology, increas-
ing the space between the mesothelial cells and exposing the basement membrane [75,76].
In the process of EMT, transforming growth factor β1 (TGF- β1) and integrins play a
crucial role.

TGF-β1 has been reported to control the proliferation and differentiation of cells. High
TGF-β1 levels in the peritoneal washing fluid have been reported to be associated with
PM formation. Furthermore, EMT was induced by TGF-β1, which provides a suitable
condition for “soil”. Several factors that regulate TGF-β1 activity have been identified and
are being investigated as potential anticancer molecules for the prevention of PM in GC.
For example, bone morphogenic protein and activin membrane-bound inhibitor (BAMBI)
inhibited the TGF-β/EMT signaling pathway and suppressed the invasiveness of gastric
tumors [77]; ASPP2 inhibited TGF-β1-induced EMT in GC cells by inhibiting in them the
phosphorylation and nuclear accumulation of Smad2/3 [78]; and Ki26894, a TβR-I kinase
inhibitor showed a decrease in invasiveness and EMT in GC [79]. These results imply the
possibility of promising drugs targeting TGF-β1.

Furthermore, the exposure of the basement membrane of peritoneal mesothelial cells
is mediated by integrin molecules. Integrins are membrane-bound proteins that directly
contact cells and the ECM, and serve as adhesion receptors for ECM proteins and cellular
counter ligands. In GC, α1, α2, α3, and β1 subunits have been reported to be closely
associated with PM formation; α3β1 integrin (VLA-3) is especially associated with GC
adhesion to laminin 5, a major ECM glycoprotein. It has been reported that the connective
tissue growth factor (CTGF) effectively blocks adhesion by binding to VLA-3, suggesting a
potential therapeutic role for recombinant CTGF [61].

2.4. Invasion into Subperitoneal Space

After successful attachment, IFCCs degrade the ECM and the peritoneal blood bar-
rier, and invade deeper into the subperitoneal tissue, at which point, connective tissue
underneath the mesothelium helps to create a niche for the seeding of cancer nodules.
MMPs and integrins are crucial in PM. Once IFCCs loosely attach to mesothelial cells with
adhesion molecules such as CD44, cytokines are released, to contract mesothelial cells by
phosphorylation of their cell skeleton [72].

Cancer cells can synthesize MMPs and degrade ECM. By degrading ECM proteins
and regulating the activity of other biomolecules, MMP7 is regarded as a central molecule
associated with the stromal invasion of GC cells and PM formation [80–82].

Lymphatic orifices on the peritoneal surface open into the peritoneum. Translym-
phatic metastasis can occur when IFCCs move into lymphatic orifices and nourish the
submesothelial lymphatic space beneath the lymphatic stomata [83,84]. Because of the
lack of a physical barrier in the peritoneal mesothelial cell layer, translymphatic metastasis
frequently develops at an earlier stage than transmesothelial metastasis. A gate, through
which small particles are absorbed from the peritoneal cavity into the subperitoneum, is
considered the so-called milky spot, which is the lymphoid tissue on the peritoneum. These
lymphatic orifices are located in the greater omentum, the inferior surface of the diaphragm,
the small bowel mesentery, the pelvic peritoneum, and the falciform ligament, whereas
the anterior abdominal wall, the liver capsule, and the serosal surface of the stomach and
small bowel are rarer locations of lymphatic orifices. Consequently, locations with many
lymphatic orifices are invaded in the early stages of peritoneal metastasis; however, areas
with few orifices are unaffected until the later stages of peritoneal metastasis [85,86].

Milky spots are aggregations of macrophages and lymphocytes that help remove
particles, germ cells, and tumor cells from the peritoneal cavity, and play an essential role
in peritoneal defense. However, in the early phases of peritoneal dissemination, cancer
cells preferentially infiltrate into milky areas and seek a milieu in which they may live,
develop, and form solid metastases [58–61]. The presence of unique features in milky spots,
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such as increased amounts of cellular adhesion molecules and growth-stimulatory proteins,
might explain this irony [61,62]. Within milky patches, detached GC cells (seeds) find a
microenvironment with favorable physical and chemical characteristics that allows them to
survive and proliferate, forming cluster-type metastases. Tumor-associated macrophage
(TAM)-induced peritoneal mesothelial cell fibrosis [87], CCL22/CCXR4 axis [88], and
HIF-1α [89] have been reported to facilitate tumor cell invasion.

2.5. Proliferation with Blood Vascular-Neogenesis

Angiogenesis is a key step in the various stages of human cancer development and
dissemination. When IFCCs invade near the subperitoneal capillaries, they induce an-
giogenesis by proliferation via autocrine or paracrine loops through the production of
growth factors. Vascular endothelial growth factor (VEGF), which is one of the most potent
angiogenic molecules secreted from cancer cells, enhances tumor growth by inducing
neoangiogenesis in the peritoneal microenvironment [63], and promotes vascular perme-
ability in the peritoneum. Previous research has suggested that VEGF is linked to PM in
GC. Antisense therapy of the VEGF receptor has been shown to diminish angiogenesis and
PM in GC [62,90,91]. As a result, the integrity of the peritoneal blood barrier is disrupted, to
create a ready soil for establishing PM. Treatments targeting VEGF are being attempted, and
drugs such as ramucirumab, a monoclonal antibody that binds to VEGF-R2 and prevents
its activation, are being tried to treat advanced GC [90].

3. Potential Rationale of Immunotherapy in PM of GC

Recently, immunotherapy, including programmed death/programmed death-ligand
1 (PD-1/PD-L1) inhibitors, has led to many advances in cancer treatment. ICI treatment
has also shown promising results in advanced GC, and several newer immunologic agents
are under investigation. Therefore, it is important to understand the immunological
characteristics of PM, so as to usher in the future of immuno-oncology.

Immune cells can be involved in innate and adaptive immune systems, and exhibit
antitumor activity. However, there are few studies on the role of immune cells in the PM in
GC. As it is known that immune cells such as macrophages and lymphocytes are present in
greater omentum and lymph nodes [91], then immune cells are potential candidates for
PM treatment.

Macrophages not only play a role in chronic inflammation but also initiate, promote,
or suppress the development of cancer by phagocytosis, antigen presentation, and pro-
duction of cytokines and growth factors that affect other immune cells [92]. In the early
stages of cancer, tumor-associated macrophages (TAMs) appear to have an inflammatory,
tumoricidal phenotype called M1-macrophages. M1-macrophages have phagocytic and
antigen-presenting activities, produce pro-inflammatory cytokines, exert cytotoxic effects
on tumor cells, and promote indirect cytotoxicity by activating other immune cells, such
as natural killer (NK) cells and T-cells [93]. In contrast to M1, during tumor progres-
sion, most macrophages switch to the M2 phenotype followed by their interactions with
tumor cells. M2 phenotype has a repertoire of tumor-promoting capabilities involving
immunosuppression, angiogenesis, and neovascularization, as well as stromal activation
and remodeling [94] (Figure 2). A previous study characterized TAM using single-cell RNA
sequencing in the malignant ascites of GC. The study suggested that TAMs from malig-
nant ascites in GC have strong M2-like characteristics, and that this M2-like phenotype of
TAMs is associated with poor prognosis [95]. The study also showed that macrophages
from ascites of GC showed the most M2-like features compared to macrophages from
other cancer types. Another study investigated the role of TAMs in patients with PM
of GC [96]. The study investigated TAMs using immunohistochemistry in the primary
tumor, surgical margin, PM lesions, and adjacent peritoneal tissue. In the study, patients
with PM showed an increased number of TAM and M2 macrophages, upregulated levels
of angiogenesis in the peritoneum and macrophages, and increased levels of epidermal
growth factor and vascular endothelial growth factor-expressing macrophages. Although
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the mechanical aspect of TAM as a potential therapeutic target is still not well understood,
previous studies have shown that M2-like macrophage infiltration is highly associated with
PD-L1 expression in GC cells, and that extracellular vesicles derived from GC play a role
by affecting macrophage phenotypes [97,98]. Considering these results, immunotherapy or
cancer vaccines targeting TAM may be a promising strategy for PM treatment.
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NK cells are important effectors of anticancer immune response, and can survey and
control tumor initiation because of their ability to recognize and kill malignant cells, and
regulate the adaptive immune response via cytokine and chemokine release [99]. Studies
have shown that NK cells are activated by several cytokines, immunomodulatory drugs,
immune checkpoint blockades, antibodies, vaccines, and gene therapy in GC [100]. One
previous study evaluated gene therapy with an adenovirus vector that expresses high
levels of intercellular adhesion molecule-2 (ICAM-2) in the human GC cell line OCUM-
2MD3, which has high peritoneal metastatic ability in nude mice [101]. ICAM-2, a ligand of
CD11a/CD18 (LFA-1), is mainly expressed on endothelial and hematopoietic cells, and can
activate and migrate NK cells [102]. The study showed that the transduction of ICAM-2
into cancer cells enhances the adhesion and activation of NK cells, resulting in reduced
PM. Another study investigated the role of cancerous immunoglobulin (Ig) in cancer cell
growth in GC cells transfected with cancerous IgG heavy chain small interfering RNA
(siRNA). Cancerous Ig reduced antibody-dependent cell-mediated cytotoxicity (ADCC)
induced by an anti-human epithelial growth factor receptor (EGFR) antibody, suggesting
that the cancerous Ig-Fc receptor interaction inhibits the NK cell effector function [103]. A
recent study evaluated chimeric antigen receptor (CAR)-NK cells targeting mesothelin, a
cell-surface glycoprotein with normal expression restricted to mesothelial cells lining the
peritoneum [104]. This study constructed mesothelin and CD19-targeted CAR-NK cells,
and demonstrated that mesothelin-CAR NK cells could effectively eliminate GC cells in
both subcutaneous and intraperitoneal tumor models.

CAR-based strategies are now being studied more in the form of CAR-T-cell treatment.
CAR-T-cell treatment is an emerging strategy, and CARs are engineered synthetic receptors
that redirect lymphocytes, most commonly T-cells, to recognize and eliminate cells ex-
pressing a specific target antigen [105]. CAR-T-cell treatment designed for several different
targets—including epithelial cell adhesion molecule (EpCAM), human epidermal growth
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factor receptor 2 (HER2), mesothelin, and carcinoembryonic antigen (CEA) in GC—has
proven useful in experimental studies, and is currently being evaluated in registered clinical
trials including patients with advanced GC [106]. Recently, a phase 1 trial investigated
anti-claudin (CLDN)18.2 CAR-T-cell therapy in gastrointestinal cancer, including GC [107].
In heavily treated patients with GC, anti-CLDN18.2 CAR-T-cell therapy showed promising
efficacy (objective response rate [ORR], 61.1%; median progression-free survival/overall
survival (PFS/OS), 5.4/9.5 months). Most studies have been conducted with IV adminis-
tration of CAR-T therapy, and the intraperitoneal approach may be a potential strategy for
CAR-T. The first intraperitoneal delivery of CAR-T-cells was reported by Katz, et al., [108].
This study investigated intraperitoneal anti-CEA CAR-T-cells in mice with colorectal cancer
and PM. In this study, intraperitoneal anti-CEA CAR-T-cells resulted in superior tumor
reduction and a durable response compared with systemic infusions. Several studies on
intraperitoneal CAR-T-cells have shown promising results in murine models [109,110].
Therefore, the feasibility of CAR-T-cells in the treatment of PM should be confirmed by the
results of several ongoing clinical trials.

In addition to using effector T-cells such as CAR-T, strategies for inhibiting cells—such
as tumor infiltrative regulatory T-cells (Treg) and several immune checkpoints, which
play immunosuppressive roles—are also being studied. Tregs are important factors in the
immune microenvironment of GC. (Figure 3) In addition, immunosuppressive lymphocytes
exert negative immunoregulatory effects by regulating the active immune function of
effector T cells [111]. A previous study investigated T cell subsets in lymphocytes derived
from malignant ascites, and the effects of arsenic trioxide (As2O3) on Tregs and ascites-
derived tumor-infiltrating lymphocytes (TILs) in vitro [112]. This study suggests that
As2O3 may induce selective depletion and inhibit the immunosuppressive function of
Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.
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Several immune checkpoint molecules are being studied in GC. Several clinical tri-
als of ICIs including PD-1/PD-L1 inhibitors have shown promising results [113–118] in
advanced GC. ATTRACTION-2, a randomized, double-blind, placebo-controlled, phase
3 trial, assessed the efficacy and safety of nivolumab (anti-PD-1 inhibitor) vs. placebo
in heavily pretreated patients with advanced GC [118]. This study demonstrated that
nivolumab showed OS benefit compared to placebo. The 12-month OS rates were 26.2%
with nivolumab, and 10.9% with the placebo. Recently, in the first-line setting, ICIs com-
bined with chemotherapy have shown clinical efficacy. CheckMate 649 was a random-
ized, open-label, phase 3 trial that compared nivolumab plus chemotherapy, nivolumab
plus ipilimumab (anti-cytotoxic T-lymphocyte-associated antigen 4 [CTLA4] inhibitor), or
chemotherapy alone in previously untreated, unresectable, HER2 negative gastric, gas-
troesophageal junctions, or esophageal adenocarcinoma [114]. This study demonstrated
that nivolumab plus chemotherapy resulted in significant improvements in OS and PFS,
compared with chemotherapy alone, in patients with a PD-L1 CPS ≥ 5, CPS ≥ 1, and all
randomly assigned patients. ATTRACTION-4 was a randomized, multicenter, double-
blind, placebo-controlled, phase 2–3 trial that investigated nivolumab with chemotherapy
versus placebo with chemotherapy as first-line therapy for patients with HER2-negative,
unresectable advanced or recurrent gastric or gastroesophageal junction cancer [115]. Al-
though this trial did not meet the primary endpoint (OS), nivolumab combined with
chemotherapy significantly improved PFS. This result is thought to be due to the absence
of biomarkers and subsequent treatment, including immunotherapy, in the placebo group,
because this trial was performed only in Asian patients. Currently, another large-scale
phase III KEYNOTE-859 study which investigated pembrolizumab in combination with
chemotherapy, as first-line treatment for patients with HER2 negative advanced unre-
sectable or metastatic gastric/gastroesophageal junction adenocarcinoma, is ongoing [119].
The planned sample size was 1542 patients, and the primary endpoint was OS. Although
these ICIs showed clinical benefit in advanced GC, it is not clear whether the clinical
benefit of ICI is maintained in treating PM. To date, no study has evaluated the efficiency
of ICI in patients with PM. However, this can be inferred from the subgroup analysis of
large-scale clinical studies. An exploratory, post hoc subgroup analysis of ATTRACTION-2
showed that nivolumab did not show a clinical OS benefit in patients with PM (hazard ratio
[HR] 0.74, 95% confidence interval [CI] 0.48–1.15) [118]. In addition, subgroup analysis
of ATTRACTION-4 showed that nivolumab plus chemotherapy did not show a clinical
benefit in terms of PFS and OS in patients with PM (PFS, HR, 1.04, 95% CI, 0.76–1.44; OS,
HR, 1.20, 95% CI, 0.94–1.53) [115]. To date, few studies have evaluated the expression of
immune checkpoint molecules such as PD-1/PD-L1 in the PM of GC. A previous study
performed comprehensive immune profiling of PM specimens using a curated immune
gene panel including markers for antigen presentation, B/T/macrophage/NK/MDSC
lineages, co-stimulatory and co-inhibitory immune checkpoints and receptors, cytolytic
activity, and activating cytokines [120]. This study separated PM specimens into two main
groups, the T cell ‘exclusive’ and T cell ‘exhausted’ subtypes. The T cell ‘exhausted’ sub-
type showed high levels of immune checkpoint T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3), its ligand galectin-9, V-domain immunoglobulin suppressor of T-cell
activation (VISTA), and transforming growth factor-β (TGF-β1); other classical checkpoints
including PD-1, PD-L1/L2, CTLA-4, lymphocyte-activation gene 3 (LAG-3), indoleamine
2,3-dioxygenase 1 (IDO1), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT),
were low. Therefore, further studies should be performed to investigate other potential
therapeutic immune checkpoints, as well as PD-1/PD-L1 as biomarkers for immunotherapy
in PM.

4. Intraperitoneal Approach to Treat GC with PM

Although systemic treatment is the standard option in metastatic [114,121] and ad-
juvant settings [122,123], the clinical benefit of systemic treatment is limited in patients
with PM. Systemic treatment has several limitations in treating PM because of the presence
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of a plasma-peritoneal barrier that limits the access of intravenous chemotherapy to PM,
and inadequate blood supply and oxygenation of the tumor cells, coupled with their low
apoptotic potential [124]. A previous pharmacokinetic study suggested that intraperitoneal
administration of a drug can maintain a significantly greater concentration in the peritoneal
space than in plasma [125]. Several early-phase trials evaluated intraperitoneal chemother-
apy in patients of GC with PM, and showed favorable results [126,127]. The results of a
large-scale phase 3 trial, PHEONIX-GC, were reported in 2018 [128]. The patients were
randomly assigned to receive intraperitoneal and intravenous paclitaxel plus S-1 or S-1
plus cisplatin. Unfortunately, this trial failed to demonstrate the statistical superiority of
intraperitoneal paclitaxel plus systemic chemotherapy.

Intraperitoneal chemotherapy with hyperthermia enhances the penetration of chemother-
apy into tumor tissues, and shows synergism with various chemotherapeutic agents [129].
To date, hyperthermic intraperitoneal chemotherapy (HIPEC) has been extensively stud-
ied, and the penetration depth of chemotherapy into tissue is limited; therefore, HIPEC
is usually conducted with cytoreductive surgery (CRS) of all visible PM. Until now, the
role of HIPEC has been controversial. Previous small-sized studies reported that HIPEC
with CRS showed prolonged overall survival in patients with GC and PM [130–132]. A
previous randomized phase 3 study suggested that CRS with HIPEC with mitomycin C
and cisplatin may improve survival compared to CRS alone [133]. And a CYTO-CHIP
propensity score matching study suggested that CRS-HIPEC improved OS and recurrence-
free survival compared with CRS alone [134]. However, other studies have not shown the
clinical benefits of HIPEC in GC with PM. Desiderio, et al., conducted a meta-analysis of
11 randomized controlled trials and 21 non-randomized control trials (2520 patients) of
HIPEC for the treatment of GC [135]. This study defined the control group as patients
who underwent CRS or systemic chemotherapy. This study showed no difference in the
2- and 3-year OS rates between HIPEC and control groups. Moreover, when comparing
HIPEC with systemic chemotherapy, this analysis did not show a statistically significant
difference between the groups. However, the HIPEC group showed a significantly higher
risk of developing postoperative complications (relative risk [RR] = 2.15, 95% confidence
interval [CI] 1.29–3.58) than did the control group. HIPEC was associated with a high risk
of respiratory failure (relative risk [RR] = 3.67, 95% CI 2.02–6.67) and renal dysfunction
(RR = 4.46, 95% CI 1.42–13.99, p < 0.01). Recently, Lei, et al., reported the results of HIPEC
with systemic treatment [136]. This study used propensity matching analysis to compare
HIPEC with systemic chemotherapy and systemic chemotherapy alone. This study sug-
gests that HIPEC with chemotherapy has a significant survival benefit compared with
systemic chemotherapy alone, for patients with GC and PM, without compromising patient
safety. These conflicting results are thought to be due to the heterogeneous design of the
HIPEC studies, the patient groups, and the HIPEC methods. Large-scale trials with good
design are required in the future to establish HIPEC efficacy in treated patients with GC
and PM.

Recently, systemic immunotherapy has shown promising results in GC; therefore, in-
traperitoneal immunotherapy can be a potential treatment strategy, and several approaches
are under investigation. Catumaxomab, a bispecific (anti-EpCAM × anti-CD3) trifunctional
antibody, was approved by the European Union in April 2009 for intraperitoneal treatment
of patients with malignant ascites [137]. EpCAM is expressed in tumor cells but not in
normal cells found in the peritoneal cavity lining and fluids (mesothelial cells, leukocytes,
and macrophages) [138,139]. Therefore, EpCAM is a potential target for intraperitoneal
antibody therapy. Catumaxomab combines the characteristics of classical monoclonal
antibodies and bispecific molecules. Catumaxomab induces a tri-cell complex of tumor
cells, T-cells, and accessory immune cells, due to the unique Fc composition of mouse IgG2a
and rat IgG2b. Thereby, crosstalk between different types of redirected immune effector
cells is initialized, which results in the efficient killing of tumor cells [140]. Therefore, in-
traperitoneal administration of catumaxomab offers the advantage of targeted, locoregional
immunotherapy against EpCAM-positive tumor cells in the peritoneal cavity [141]. A pre-
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vious randomized phase II trial investigated the efficacy of intraperitoneal catumaxomab
followed by FLOT chemotherapy (5-fluorouracil, leucovorin, oxaliplatin, and docetaxel)
and FLOT alone, in patients with GC and PM. The primary endpoint was the macroscopic
complete remission (mCR) rate of PM [142]. This study showed a trend toward the superi-
ority of intraperitoneal catumaxomab, but the difference of mCR rates was not statistically
significant (mCR rates, 27% vs. 19%, p = 0.69). Currently, a randomized phase 3 trial
comparing intraperitoneal catumaxomab and physician’s choice of treatment, in patients
with GC with PM, is ongoing (NCT04222114). Another trial investigating intraperitoneal
EpCAM CAR-T-cell treatment in patients with GC and PC is also ongoing (NCT03563326).
This trial compared intraperitoneal EpCAM CAR-T-cell treatment to the physician’s choice
of systemic chemotherapy. Until now, the intraperitoneal approach to immunotherapy has
been scarce. Further studies should be conducted in the future.

5. Conclusions

Although there have been advances in systemic treatment in advanced/metastatic
GC, the prognosis of patients with PM is very dismal. Understanding of molecular charac-
terization in PM formation should be elucidated through future studies. Furthermore, it is
necessary to understand the immunological characteristics of PM in GC, and further studies
in the field of immune-oncology should be conducted. Finally, trials of the intraperitoneal
approach, as well as systemic therapy for treating PM, are currently ongoing. We hope that
these attempts will improve the prognosis of GC with PM.
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