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Abstract

Background

Multiple sclerosis (MS) is a widespread neurological autoimmune disease that includes epi-

sodes of demyelination in the central nervous system (CNS). The accumulated evidence

has suggested that aryl hydrocarbon receptor (Ahr), a ligand-activated transcription factor,

is a promising treatment target for MS. Thus, the current study aimed to identify a novel Ahr

ligand with anti-inflammatory potential in experimental autoimmune encephalomyelitis

(EAE).

Methods

An in silico analysis was carried out to predict interactions between Ahr and potential natural

ligands. The effects of a predicted interaction were examined in vitro using CD4+ T cells

under T helper17 (Th17) cell-polarizing conditions and lipopolysaccharide (LPS)-stimulated

macrophages. Silencing Ahr and microRNA (miR)-132 was achieved by electroporation.

Myelin oligodendrocyte glycoprotein (MOG)35-55 and the adoptive transfer of encephalito-

genic CD4+ T cells were used to induce EAE.

Results

Molecular docking analysis and in vitro data identified gallic acid (GA) as a novel Ahr ligand

with potent activation potential. GA induced the expression of Ahr downstream genes,

including cytochrome P450 family 1 subfamily A member 1 (Cyp1a1) and the miR-212/132

cluster, and promoted the formation of the Ahr/Ahr nuclear translocator (Arnt) complex. In

vivo, GA-treated mice were resistant to EAE and exhibited reduced levels of
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proinflammatory cytokines and increased levels of transforming growth factor-β (TGF-β).

Furthermore, GA reduced infiltration of CD4+CD45+ T cells and monocytes into the CNS.

The anti-inflammatory effects of GA were concomitant with miR-132-potentiated cholinergic

anti-inflammation and the regulation of the pathogenic potential of astrocytes and microglia.

Inducing EAE by adoptive transfer revealed that CD4+ T cells were not entirely responsible

for the ameliorative effects of GA.

Conclusion

Our findings identify GA as a novel Ahr ligand and provide molecular mechanisms elucidat-

ing the ameliorative effects of GA on EAE, suggesting that GA is a potential therapeutic

agent to control inflammation in autoimmune diseases such as MS.

Introduction

Multiple sclerosis (MS) is the most common neurological autoimmune disease of the central

nervous system (CNS). MS patients present variable patterns of relapsing remittance charac-

terized by intermittent exacerbations. Such exacerbations and disease progression have often

been reduced with disease-modifying therapies [1, 2]. However, some of these therapies exert

negative side effects [3].

The immune response in autoimmunity is regulated by both genetic and environmental

factors. Although significant progress has been achieved in identifying the genetic control of

MS pathogenesis, limited information is available about the contribution of environmental fac-

tors [4]. In this context, aryl hydrocarbon receptor (Ahr) represents a valuable model to inves-

tigate therapeutic immunomodulation by natural ligands. Ahr, a member of the basic helix-

loop-helix (bHLH) family, is implicated in several events of the immune response and autoim-

munity [5–7]. It is activated by a variety of exogenous ligands from the diet and environment

[8, 9]. Therefore, Ahr signaling integrates the effects of the environment and metabolism on

the immune response [10]. In response to ligation, Ahr forms a heterodimer with Ahr nuclear

translocator (Arnt) and translocates into the nucleus to induce several downstream genes such

as cytochrome P450 family 1 subfamily A member 1 (Cyp1a1) [8, 9]. We have also identified

the microRNA (miR)-212/132 cluster as a downstream gene of Ahr that mediates some of the

immunomodulatory properties of Ahr in autoimmunity [11, 12].

Several studies have introduced endogenous and exogenous ligands that interact with Ahr

to attenuate the inflammatory response in animal models of autoimmunity [13, 14]. Two of the

potential mechanisms of the reported therapeutic potential of Ahr ligands is promoting the gen-

eration of regulatory T (Treg) cells and suppressing proinflammatory mediators. For example,

2-(1’ H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous Ahr

ligand, ameliorates autoimmune inflammation by inducing Treg cells and reducing proinflam-

matory cytokine levels and the macrophage frequency in experimental models of colitis [13]

and uveoretinitis [15]. 3,3’-Diindolylmethane (DIM), a dietary Ahr ligand, shifts the balance

among T helper 2 (Th2)/Th17/Treg cells toward Treg cells to ameliorate colitis [16]. Moreover,

norisoboldine, a natural Ahr ligand identified by means of in silico, in vitro and in vivo investi-

gations, alleviates autoimmune inflammation by inducing the generation of Treg cells and sup-

pressing proinflammatory cytokines in experimental models of arthritis [17] and colitis [18].

In an experimental model of MS, DIM- and indole-3-carbinol (I3C)-activated Ahr were

shown to inhibit clinical symptoms and cellular infiltration within the CNS by promoting the
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generation of Treg cells while suppressing myelin oligodendrocyte glycoprotein (MOG)-spe-

cific Th17 cells [19]. Laquinimod, an oral drug being evaluated for the treatment of MS, atten-

uates experimental autoimmune encephalomyelitis (EAE) by inducing the generation of Treg

cells and suppression of proinflammatory cytokines in an Ahr-dependent fashion [20]. Fur-

thermore, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates Ahr to induce miR-

132-mediated cholinergic anti-inflammatory processes in EAE [11]. It has been recently

shown that type I interferons (IFN-Is) in combination with indole, indoxyl-3-sulfate (I3S),

indole-3-propionic acid (IPA) and indole-3-aldehyde (IAld) activate Ahr signaling in astro-

cytes to suppress CNS inflammation in EAE [21].

In the current study, we used a combination of in silico, in vitro and in vivo approaches to

identify a natural Ahr ligand with therapeutic potential in EAE. For the first time, we introduce

gallic acid (GA) as a novel Ahr ligand of natural origin and provide a mechanistic explanation

for the anti-inflammatory properties of GA.

Materials and methods

In silico analysis

The alignment of the Ahr PAS-A sequence (UniProt; P30561) with several orthologues was

performed by ClustalX 2.0 [22]. The Ahr PAS-A three-dimensional (3D) structure was

obtained from the RCSB Protein Data Bank (ID: 4M4X; http://www.rcsb.org), and the chemi-

cal structure of GA was obtained from the PubChem database (CID_370; www.ncbi.nlm.nih.

gov/pccompound). The sequence of mouse PAS-B (NP_038492.1) was obtained from NCBI

(https://www.ncbi.nlm.nih.gov/protein/). Modeling of the 3D structure was established for the

stereochemical value by SAVES version v5.0 software (https://services.mbi.ucla.edu/SAVES/),

and the 3D structure of PAS-B was coordinated by using PS2 software (http://www.ps2.life.

nctu.edu.tw/) [23]. The confirmation of model overlap with the retrieved human C-terminal

PAS domain of HIF2a was performed by using SALIGN software (https://modbase.compbio.

ucsf.edu/salign/).

The molecular docking simulation of GA against Ahr domains was performed by using

SYBYLX 2.1 (Tripos Associates Inc.). The docking conditions included applying the ChemPLP

scoring function within the genetic algorithm docking program GOLD 5.2 (Cambridge Crys-

tallographic Data Centre). Based on the obtained scores and the molecular orientation within

the binding pocket, the molecule with the best score was selected and merged into the receptor.

The model-ligand complexes were energetically adjusted using the Tripos Force Field (Gastei-

ger-Hückel charges, distance-dependent dielectric constant = 4.0) to optimize the interactions

between the ligand and receptor within the binding cavity.

Mice and ethics statement

The female 6-8-week-old C57BL/6 mice for all experiments were purchased originally from

Charles River Laboratories and maintained under specific pathogen-free conditions. All in
vivo and in vitro experiments were performed in accordance with protocols approved by the

Research Ethics Committee (KFU-REC/2018-3-1) of King Faisal University, Saudi Arabia.

The humane endpoints included� 25% body weight loss, paresis or forelimbs paralysis for

24 h.

Cell isolation and differentiation

Naïve T cells were isolated from the spleen by using a MACS CD4+CD62L+ isolation kit (Mil-

tenyi Biotec). The differentiation of Th17, Treg and type 1 regulatory T (Tr1) cells was induced
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as previously described [6, 24]. The purified CD4+CD62L+ T cells were cultured in the pres-

ence of Dynabeads Mouse T-Activator CD3/CD28 (Invitrogen). The cell culture contained IL-

6 (30 ng/mL), TGF-β1 (4 ng/mL), anti-IFN-γ and anti-IL-4 (10 μg/mL) to generate Th17 cells;

TGF-β1 (4 ng/mL) and IL-2 (20 U/mL) to generate Treg cells; and TGF-β1 (2 ng/mL) and IL-

27 (30 ng/mL) to generate Tr1 cells. All recombinant cytokines were purchased from R&D

Systems, and anti-IFN-γ and anti-IL-4 antibodies were obtained from BioLegend. Peritoneal

macrophages were stimulated with 0.5 μg/mL lipopolysaccharide (LPS; Sigma-Aldrich). GA,

DIM (30 μmol/L) and phytohemagglutinin (PHA; 5 μg/mL) were purchased from Sigma-

Aldrich. To isolate microglia, astrocytes and monocytes from the CNS, tissue samples were

prepared using the MACS Neuronal Dissociation Tissue Kit, and then cells were isolated using

MACS isolation kits. The absolute number of Ly-6Chi monocytes was assessed by flow cytome-

try. To isolate CD4+ and CD4+CD45+ cells from the CNS, mononuclear cells were separated

from the CNS using a gradient comprising 30% and 70% Percoll solutions (GE Healthcare) as

previously described [25], and then the cells were isolated using MACS CD4+ and CD45+ cell

isolation kits following the manufacturer’s instructions.

Quantitative real-time PCR

cDNA was synthesized by using a TaqMan reverse transcription kit and amplified by using a

ViiA7 system and TaqMan gene expression assays for Cyp1a1 (Mm00487218_m1), Rorc
(Mm01261022_m1), Foxp3 (Mm00475162_m1), Il6 (Mm00446190_m1), Il10 (Mm01288386_

m1), Ccl2 (Mm00441242_m1), Csf2 (Mm01290062_m1), Nos2 (Mm00440502_m1) and

Gapdh (Mm99999915_g1) for coding genes or TaqMan microRNA assays for has-miR-132

(ID: 000457), has-miR-212 (ID: 002551) and RNU6B (ID: 001093) for noncoding genes. Kits,

probes and reagents were obtained from Applied Biosystems. The relative expression of

mRNAs was calculated by the ΔΔCt method.

Transfection and luciferase activity

CD4+CD62L+ cells and peritoneal macrophages were transfected with oligonucleotides using

Primary Cell Nucleofector kits and a 4D-Nucleofector system (Lonza). An siRNA specific for

Ahr (siAhr, 75 nmol/L), a nonspecific siRNA (siNS, 75 nmol/L), an antisense (as)-miR-132

(250 μmol/L) and a scrambled control (250 μmol/L) were obtained from Ambion. qPCR and

immunoblotting were used to confirm transfection efficiencies. Reporter plasmid and lucifer-

ase activities in the presence of siAhr were assessed following a modified method described

elsewhere [26]. A 4,553 bp fragment of the mouse miR-212/132 promoter [27] was amplified

using the following oligonucleotide primers: forward, 5'-AGATCGCCGTGTAATTCTAGAGG
GAAGGTTCTGTCTTCAAATGAGGAACTC-3' and reverse, 5'-TTCTCGCCACCTTAGGCAG
CGATACCCGGCCGCCCCGACTCTAGA-3'. The purified PCR product was cloned into the

XbaI restriction site of the pGL3 plasmid (Promega) using the In-Fusion HD Cloning Kit

(Clontech). The empty or miR-212/132 promoter-encoding pGL3 vector (100 ng) was cotrans-

fected with siNS or siAhr into CD4+CD62L+ cultured under Th17 cell-conditions and macro-

phages by electroporation. Luciferase activity was quantified using the Dual-Luciferase

Reporter System (Promega) following the manufacturer’s instructions.

Protein quantification

Cell lysates were prepared using the RIPA Lysis Buffer System and fractionated by SDS-PAGE.

Target proteins in the lysates and in immunoprecipitation eluates were detected by rabbit

polyclonal antibodies specific for Cyp1a1, Ahr, Arnt and AChE (dilution; 1:500), mouse

monoclonal antibodies specific for β-actin (dilution; 1:1,000) and the corresponding
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horseradish peroxidase (HRP)-conjugated secondary antibodies (1:5,000). The Lysis Buffer

System and antibodies were purchased from Santa Cruz Biotechnology. Band intensity was

quantified by ImageJ software (version 1.48; https://imagej.nih.gov/ij/download.html). To

quantify the serum and supernatant cytokine levels, ELISA kits for IL-17a, IL-6, TNF-α, TGF-

β (Invitrogen), and IL-10 (GenWay) were used following the manufacturer’s instructions.

Flow cytometry

Isolated CD4+ T cells were stimulated with 50 ng/mL phorbol 12-myristate 13-acetate (Sigma-

Aldrich) and 800 ng/mL ionomycin (Sigma-Aldrich) for 5 h, with Protein Transport Inhibitor

(Invitrogen) added for the final 2 h. An Intracellular Staining kit (Life Technologies) and phy-

coerythrin (PE)-conjugated anti-IL-17 antibodies (eBioscience) were used following the man-

ufacturer’s instructions. Foxp3 was stained by using a Foxp3 Staining kit (Invitrogen)

including fluorescein isothiocyanate (FITC)-conjugated anti-Foxp3 according to the manufac-

turer’s instructions. For surface staining, PerCP-Cy5.5-conjugated anti-CD4 antibodies and

FITC-conjugated anti-CD45 antibodies from eBioscience were used. The analysis was per-

formed by using a FlowSight system (Amnis).

EAE models

Mice were immunized with MOG35-55 (150 μg; Peptide International) emulsified in complete

Freund’s adjuvant (CFA; Sigma-Aldrich) containing 10 mg/mL heat-killed Mycobacterium
tuberculosis H37Ra (Difco Laboratories). The mice were injected intraperitoneally with pertus-

sis toxin (List Biological Laboratories; 500 ng) on days 0 and 2. The adoptive transfer of

encephalitogenic CD4+ T cells isolated 9 days after immunization was also used to induce

EAE. The encephalitogenic CD4+ T cells were restimulated with MOG35-55 (30 μg/mL) and IL-

23 (20 ng/mL; R&D Systems) for 72 h before being injected in naïve mice at a dose of 1×107

cell/mouse. Scoring of clinical symptoms was as follows: 0, no clinical signs; 1, hind limb weak-

ness or limp tail; 2, paralyzed hind limb; 3, paralyzed forelimb; 4, complete paralysis; and 5,

death. The mice were injected intraperitoneally (i.p.) with GA (2 mg/day) or vehicle (corn oil)

for 10 days starting one day before the MOG35-55 immunization.

Statistical analysis

Data were pooled and are shown as the mean ± SD from three independent experiments per-

formed in triplicate using three mice per experiment unless otherwise indicated. The mean val-

ues were tested for statistical significance by one-way ANOVA. The statistical significance of

the differences between EAE clinical scores was analyzed by two-way ANOVA, and the X2 test

was used to test differences between EAE incidence rates (%). �p< 0.05.

Results

GA is a potential Ahr ligand

In an attempt to identify a novel Ahr ligand, we first ran an in silico screening experiment

using molecular docking simulation. Ahr, like other members of the bHLH family, contains

PAS-A and PAS-B domains that are involved in transforming Ahr into its transcriptionally

active form by the formation of the Ahr/Arnt complex. Therefore, both domains were used to

perform docking simulation with a customized screening library that included natural aro-

matic hydrocarbons. Among the tested molecules, GA formed a relatively strong interaction

with Ahr PAS-A residues with a binding score of 39.4 ChemPLP. It formed five hydrogen

bonds with the PAS-A residues Phe115, Leu116, Ala119, Gln211 and Glu234 (Fig 1A and 1B).
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Furthermore, GA formed an ionic interaction between its negatively charged carboxylate

group and the positively charged guanidine moiety of Arg236 (Fig 1A).

The PAS-B domain of Ahr plays a critical role in Ahr activation by serving as a ligand-bind-

ing domain. Docking analysis revealed that GA formed a relatively strong interaction with

PAS-B residues with a binding score of 46.24 ChemPLP. GA formed one hydrogen bond with

Gln83, one hydrogen bond with Asn85 and two hydrogen bonds with Arg103 (Fig 1B). In

addition, a hydrophobic interaction was predicted to occur between Thr101 and Ile5. Taken

together, these observations suggest that GA is a potential Ahr ligand. The 3D coordinates of

PAS-B, a Ramachandran plot and the analysis of G-factor parameters are presented in S1 Fig.

GA induces the expression of Ahr downstream genes

Ahr classically forms a heterodimeric complex with Arnt and translocates to the nucleus to

induce the transcription of downstream genes such as Cyp1a1. Therefore, we first examined

the effect of GA on Cyp1a1 gene expression in naïve CD4+ T cells cultured under Th17 condi-

tions cells and LPS-stimulated macrophages, the cells implicated in EAE pathogenesis. The

efficiency of the effector CD4+ cells-inducing milieus and the stimulation of macrophages

were confirmed (S2 Fig).

As depicted in Fig 2A and 2B, GA (40–120 μmol/L) upregulated Cyp1a1 mRNA and protein

expression in differentiating Th17 cells and macrophages in a concentration-dependent fash-

ion. Studying the effects of GA on cell viability showed a reduction in cell viability at a dose of

120 μmol/L GA (S3 Fig). Thus, 80 μmol/L GA was used hereafter. The depletion of Ahr by

Fig 1. GA has binding potential to Ahr domains. The binding mode of docked GA (ball and stick model) in mouse

Ahr (A) PAS-A and (B) PAS-B binding sites. The labelled residues in left panel represent the major interacting amino

acids in the binding site that interact with GA. Right panel represents contour maps for the binding site of GA showing

polar areas (blue and red) and hydrophobic areas (gray).

https://doi.org/10.1371/journal.pone.0215981.g001
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RNA interference abolished the enhancing effects of GA (80 μmol/L) on Cyp1a1 gene expres-

sion (Fig 2C and 2D), suggesting an Ahr-dependent mode of action. The efficiency of Ahr

depletion by a specific siRNA (siAhr) was confirmed (Fig 2E).

Fig 2. GA induces gene expression of Cyp1a1 and formation of Ahr/Arnt complex. The CD4+CD62L+ T cells were isolated from the spleen and cultured

under Th17-polarizing conditions, and peritoneal macrophages were cultured in presence of LPS. The expression of Cyp1a1 mRNA was assessed by

quantitative real-time PCR and normalized to Gapdh mRNA, and protein level was assessed by immunoblot using Actin as a loading control. (A) Relative

expression of Cyp1a1 mRNA at 12 h in CD4+CD62L+ T cells cultured under Th17-polarizing conditions and macrophages in presence of GA (40–120 μmol/L)

compared to vehicle (DMSO). (B) Immunoblot and relative protein level of Cyp1a1 at 48 h in CD4+CD62L+ T cells cultured under Th17-polarizing conditions

and macrophages in presence of GA (40–120 μmol/L) compared to DMSO. (C) Relative expression of Cyp1a1 mRNA at 12 h in CD4+CD62L+ T cells cultured

under Th17-polarizing conditions and macrophages electroporated with Ahr siRNA (siAhr) or non-specific siRNA (siNS) in presence of GA (80 μmol/L)

compared to DMSO. (D) Immunoblot and relative protein level of Cyp1a1 at 48 h in CD4+CD62L+ T cells cultured under Th17-polarizing conditions and

macrophages electroporated with siAhr or siNS in presence of GA (80 μmol/L) compared to DMSO. (E) Efficiency of siAhr in CD4+CD62L+ T cells cultured

under Th17-polarizing conditions and macrophages was confirmed by immunoblot. (F) Detection of Arnt protein by immunoblot in the eluates pulled down

by Ahr antibodies using CD4+CD62L+ T cells cultured under Th17-polarizing conditions and macrophages. (G and H) Relative expression of (G) Cyp1a1
mRNA and (H) protein in presence of DIM (25 μmol/L) or GA (80 μmol/L) in CD4+CD62L+ T cells cultured under Th17-polarizing conditions and

macrophages compared to DMSO. Data were pooled from three independent experiments with three mice per experiment and shown as mean ± SD. �p< 0.05,

(one-way ANOVA); horizontal bars denote statistical comparison.

https://doi.org/10.1371/journal.pone.0215981.g002
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Because the dimerization of Ahr with Arnt is required to activate the transcriptional activity

of Ahr, we examined the formation of the heterodimer by immunoprecipitation using anti-

Ahr antibodies. Detection of the Arnt protein in an eluate confirmed the formation of the

Ahr/Arnt complex in GA-treated differentiating Th17 cells and macrophages (Fig 2F). Finally,

we compared the effects of GA and DIM, a well-known natural ligand of Ahr, on the expres-

sion of the Cyp1a1 gene. Interestingly, the Cyp1a1 mRNA and protein levels were significantly

higher with GA treatment than DIM treatment (Fig 2G and 2H).

We previously identified the miR-212/132 cluster as a downstream gene of ligand-activated

Ahr [11, 12]. Therefore, we tested whether GA-activated Ahr induces the expression of miR-

132 and miR-212. As predicted, GA treatment (80 μmol/L) induced the expression of miR-

132 and miR-212 in both polarized Th17 cells and macrophages (Fig 3A), and knocking down

Ahr expression abrogated these effects (Fig 3B and 3C). To examine whether Ahr has a direct

transcriptional activity on miR-212/132, differentiating Th17 cells and macrophages were

cotransfected with a reporter plasmid encoding the miR-212/132 promoter and siAhr. As

depicted in Fig 3D, GA-activated Ahr induced luciferase activity driven by the miR-212/132

promoter, whereas knocking down Ahr expression abolished this effect, indicating a direct

Fig 3. GA-activated Ahr induces the expression of miR-212/132 cluster. The CD4+CD62L+ T cells were isolated from the spleen and cultured under

Th17-polarizing conditions, and peritoneal macrophages were stimulated with LPS. The expression of miR-132 and miR-212 were assessed by quantitative

real-time PCR and normalized to RNU6B mRNA. (A) Relative expression of miR-132 and miR-212 in CD4+CD62L+ T cells cultured under Th17-polarizing

conditions (72 h) and macrophages (36 h) in presence of GA (80 μmol/L) compared to vehicle (DMSO). (B) Relative expression of miR-132 and miR-212 in

CD4+CD62L+ T cells cultured under Th17-polarizing conditions (72 h) and electroporated with Ahr siRNA (siAhr) or non-specific siRNA (siNS) compared to

DMSO. (C) Relative expression of miR-132 and miR-212 in macrophages (36 h) electroporated with siAhr or siNS compared to DMSO. (D) Relative luciferase

activity of miR-212/132 promoter reporter cotransfected with siNS or siAhr into CD4+CD62L+ T cells cultured under Th17-polarizing conditions and

macrophages compared to DMSO. Data were pooled from three independent experiments with three mice per experiment and shown as mean ± SD. �p<0.05,

(one-way ANOVA); horizontal bars denote statistical comparison.

https://doi.org/10.1371/journal.pone.0215981.g003
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transcriptional activation role for Ahr on miR-212/132. Taken together, these findings suggest

that GA is a novel Ahr agonist.

GA ameliorates EAE

To ascertain the biological significance of Ahr activation by GA in vivo, we first compared dis-

ease severity between control EAE (Control) and GA-treated EAE (GA) mice. Studying the

effects of different GA doses on the weight of the spleen and liver showed a significant increase

in liver weight at a GA dosage of 4 mg/day (S3 Fig). GA treatment for 10 days, starting one day

prior to MOG35-55 immunization, attenuated clinical and maximum EAE scores but not dis-

ease incidence (Fig 4A). The attenuated EAE symptoms were associated with lower cytokine

levels of IL-6, IL-1β and TNF-α on day 24 after MOG35-55 immunization (Fig 4B). Moreover,

the CD4+ T cells isolated from the inguinal lymph nodes of the GA mice 9 days after immuni-

zation produced less IL-17 in response to restimulation with MOG35-55 than the CD4+ T cells

from the Control mice (Fig 4C). Notably, GA enhanced the production of TGF-β but

decreased that of IL-10 (Fig 4C). Consistent with the ameliorated EAE symptoms and altered

levels of IL-17 and TGF-β, a flow cytometry analysis revealed that GA reduced the frequency

of CD4+IL-17+ T cells and increased that of CD4+Foxp3+ T cells (Fig 4D). Because the infiltra-

tion of activated T cells is important for clinical EAE symptoms, we compared the number of

CD4+CD45+ T cells in the CNS between the Control and GA EAE mice on day 12 after immu-

nization. As predicted, the total number of CD4+CD45+ T cells was significantly lower in the

CNS of the GA EAE mice (Fig 4E).

We next examined whether GA induces the transcription of the Cyp1a1 gene in CD4+ T

cells and CD11b+ macrophages collected from the spleen of EAE mice. In line with the in vitro
results, the mRNA expression of Cyp1a1 was upregulated in the examined cells (Fig 4F). Fur-

thermore, GA induced the expression of miR-132 and miR-212 in CD4+ T cells and CD11b+

macrophages from the spleen of EAE mice (Fig 4G). The activation of Ahr in vivo induces

acetylcholinesterase (AChE)-targeting miR-132 to potentiate cholinergic anti-inflammatory

processes [11, 28]. Interestedly, the AChE protein level was reduced in the spleens from the

GA EAE mice (Fig 4H), suggesting that GA could potentiate cholinergic anti-inflammatory

processes. This finding was supported by the in vitro data showing that GA suppressed the

AChE activity in PHA-stimulated CD4+ T cells and LPS-stimulated macrophages (S4 Fig).

Collectively, these results indicate that the ameliorative effects of GA are at least partially

attributed to Ahr activation.

The ameliorative effects of GA on EAE are not entirely mediated by CD4+

T cells

Th17 cells, which correlate reciprocally with Treg cells, play a pivotal role in the pathogenesis

of EAE. Therefore, we studied the effects of GA on the effector functions of polarized Th17,

Treg and Tr1 cells. Consistent with the in vivo observations, GA (80 μmol/L) suppressed the

production of IL-17 and enhanced that of TGF-β (Fig 5A). However, GA treatment showed a

discrepancy in IL-10 production between the in vitro and in vivo experiments. Subsequently,

we studied the intrinsic role of CD4+ T cells in EAE. Thus, we induced EAE by adoptively

transferring encephalitogenic CD4+ T cells isolated from the Control or GA EAE mice. These

CD4+ T cells were restimulated with MOG35-55 and IL-23 for 72 h before being transferred

into naïve mice. As shown in Fig 5B, the encephalitogenic CD4+ T cells from the GA mice

induced mildly ameliorated EAE symptoms, indicating that the ameliorative effects of GA on

EAE symptoms were not solely attributable to CD4+ T cells.

A novel Ahr agonist ameliorates autoimmune encephalomyelitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0215981 April 26, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0215981


Fig 4. GA-activated Ahr alleviates EAE severity. The mice were immunized with MOG35-55 emulsified in CFA. The mRNA expression of Cyp1a1 and miR-212/132

cluster were assessed in isolated CD4+ T cells and CD11b+ cells by quantitative real-time PCR and normalized to the mRNAs of Gapdh for Cyp1a1 and RNU6B for

miRNAs. The levels of cytokines were quantified by ELISA. (A) EAE clinical score, maximum score and incidence (%) of Control EAE (Control) and GA EAE mice,

n = 10 each. (B) Serum levels of IL-6, IL-1β and TNF-α in EAE mice 24 days after MOG35-55 immunization. (C) Levels of IL-17, TGF-β and IL-10 in culture supernatant

of encephalitogenic CD4+ T cells restimulated with MOG35-55 and IL-23 for 72 h. (D) Frequency (%) of CD4+IL-17+ and CD4+Foxp3+ T cells in total CD4+ T cells

isolated from inguinal lymph nodes 24 days after MOG35-55 immunization. (E) Absolute number of CD4+CD45+ T cells in the CNS 18 days after MOG35-55

immunization. (F) Relative expression of Cyp1a1 mRNA in CD4+ T cells and CD11b+ cells isolated from spleen 10 days after MOG35-55 immunization compared to

Control. (G) Relative expression of miR-132 and miR-212 in CD4+ T cells and CD11b+ cells isolated from spleen 10 days after MOG35-55 immunization compared to

Control. (H) Representative immunoblot of AChE in spleen WBCs 10 days after MOG35-55 immunization. Data were pooled from three independent experiments and
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Macrophages contribute to EAE pathogenesis by producing proinflammatory mediators.

Therefore, we studied the effects of GA on proinflammatory cytokines in the culture supernatant

of LPS-stimulated macrophages. Consistent with the in vivo data, GA (580 μmol/L) suppressed

the production of IL-6, IL-1β and TNF-α (Fig 5C). We also found that GA suppressed IL-23 pro-

duction in response to LPS stimulation (Fig 5C). Therefore, the anti-inflammatory effects of GA

on macrophages could be involved in the anti-inflammatory effects of GA on EAE.

GA modulates the pathogenic activities of astrocytes

IFN-Is in combination with Ahr ligands induce Ahr signaling in astrocytes, and this signaling

attenuates CNS inflammation in EAE by suppressing colony stimulating factor 2 (Csf2), nitric

oxide synthase 2 (Nos2) and monocyte chemotactic and activating factor (Ccl2) [21]. CCl2

shown as mean ± SD. �p<0.05; (A) EAE score, two-way ANOVA; (A) incidence (%), X2; (A) maximum score and (B-G), one-way-ANOVA; horizontal bars denote

statistical comparison.

https://doi.org/10.1371/journal.pone.0215981.g004

Fig 5. GA alleviates EAE by CD4+-dependent and -independent mechanisms. The CD4+CD62L+ T cells were isolated from the spleen and cultured under Th17-,

Treg- or Tr1-polarizing conditions, and peritoneal macrophages were cultured in presence of LPS. (A) Levels of IL-17, TGF-β and IL-10 at 72 h in culture supernatant

of polarized Th17, Treg or Tr1cells, respectively. (B) Clinical scores of EAE induced by adoptive transfer of encephalitogenic CD4+ T cells from control EAE (Control)

or GA EAE mice, n = 10 each. (C) Levels of IL-6, IL-1β, TNF-α and IL-23 at 16 h in culture supernatant of macrophages. Data were pooled from three independent

experiments with three mice per experiment and shown as mean ± SD. �p<0.05; (A and C), one-way-ANOVA; (B), two-way ANOVA.

https://doi.org/10.1371/journal.pone.0215981.g005
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exacerbates inflammation in EAE by recruiting monocytes to the site of inflammation [29].

Based on these observations, we examined whether GA affects monocyte infiltration within

the CNS. The GA EAE mice showed significantly reduced numbers of infiltrating monocytes

within the CNS on day 18 after MOG35-55 immunization (Fig 6A). This observation prompted

us to quantify the mRNA expression of Ccl2 in astrocytes from EAE mice. Interestingly, a sig-

nificant reduction in the mRNA expression of Ccl2 was found with GA treatment (Fig 6B).

Ahr signaling in astrocytes modulates the polarization and activation of microglia and

monocytes [21]. Therefore, we quantified the mRNA expression of Ccl2 and Il6 in microglia

from the CNS of EAE mice 18 days after MOG35-55 immunization. Interestingly, GA also

repressed the mRNA expression of Ccl2 and Il6 in these cells (Fig 6C), suggesting that the

Fig 6. GA modulates pathogenic activities of astrocytes and microglia in EAE mice. The mice were immunized with MOG35-55 emulsified in CFA, and samples

were collected 18 days later. The mRNA expressions of Ccl2, Il6, Csf2 and Nos2 were assessed by quantitative real-time PCR and normalized to Gapdh mRNA. (A)

Absolute number of infiltrated monocytes within the CNS of control EAE (Control) and GA EAE mice. (B) Relative expression of Ccl2 mRNA in isolated astrocytes

compared to Control. (C) Relative mRNA expression of Ccl2 and Il6 in isolated microglia compared to Control. (D) Relative expression of Csf2 and Nos2 in isolated

astrocytes compared to Control. Data were pooled from two independent experiments with three mice per experiment and shown as mean ± SD. �p<0.05, (one-way

ANOVA); horizontal bars denote statistical comparison.

https://doi.org/10.1371/journal.pone.0215981.g006
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modulatory effects of GA on the pathogenic activities of astrocytes might contribute to the

ameliorative effects of GA on EAE. Notably, further investigation showed that the inhibitory

effects of GA on the mRNA expression of Csf2 and Nos2 in astrocytes did not achieve statistical

significance (Fig 6D).

Discussion

Despite the remarkable progress in understanding the genetic control of MS [30], limited evi-

dence is available about the roles of environmental factors [4]. In this context, Ahr exemplifies

a unique link between the immune system and environment by interacting with a variety of

exogenous aromatic hydrocarbons. The accumulated evidence clearly demonstrates that the

activation of Ahr by exogenous ligands attenuates inflammation in a murine model of MS

[19–21]. Therefore, identifying new Ahr ligands is a promising treatment strategy to control

proinflammatory mediators in MS patients. Herein, we identified GA as a novel Ahr agonist of

natural origin using in silico, in vitro and in vivo approaches.

Ahr includes two PAS domains, PAS-A and PAS-B, of which PAS-A is critically involved in

Ahr/Arnt dimerization [31]. Molecular docking simulation analysis revealed the formation of

five hydrogen bonds with five residues in the PAS-A domain. Importantly, three of these resi-

dues, Phe115, Leu116, and Ala119, are hydrophobic residues that play important roles in the

formation of the Ahr/Arnt complex [32]. The PAS-B domain of Ahr is essential for sensing the

environment and activating Ahr through interactions with ligands [31, 33, 34]. Furthermore,

PAS-B plays roles in the initiation of Ahr/Arnt dimerization [33]. An analysis of the predicted

interaction between PAS-B and GA revealed relatively strong interactions between PAS-B and

GA. It has been demonstrated that the formation of the Ahr/Arnt heterodimer, which trans-

forms Ahr into a transcriptionally active form, initiates the transcription of downstream genes

such as Cyp1a1 [35, 36] and the miR-212/132 cluster [8, 37]. Consistently, our data showed

that GA promotes the formation of the Ahr/Arnt complex and enhances the expression of

Cyp1a1 and the miR-212/132 cluster.

A number of reports have studied the modulatory effects of GA on different aspects of the

immune response [38, 39]. GA attenuates experimental colitis by suppressing IL-6, IL-1β,

TNF-α, IL-17 and IFN-γ production and inhibiting p65-NF-κB and IL-6/p-STAT3 (Y705)

activation [40]. GA suppresses the expression of several proinflammatory mediators, such as

IL-6, IL-1β, CCL2 and CCL7, in fibroblast-like synoviocytes from rheumatoid arthritis patients

[41]. However, to our knowledge, the effects of GA on the pathogenesis of autoimmune

encephalomyelitis have never been investigated. In the present study, we found that the activa-

tion of Ahr by GA in vivo ameliorated EAE severity by suppressing the production of IL-6, IL-

1β, TNF-α and IL-17 and enhancing that of TGF-β. In addition, GA reduced the frequency of

CD4+IL-17+ T cells and increased that of Foxp3+CD4+ T cells. Consistently, previous studies

have demonstrated that the activation of Ahr by exogenous ligands attenuates autoimmune

inflammation in EAE by inhibiting IL-17-producing Th17 cells and proinflammatory cyto-

kines and promoting the generation of TGF-β-producing Treg cells [19, 42, 43]. Several mech-

anisms have been proposed to elucidate the ameliorative effects of TGF-β on EAE. For

instance, TGF-β suppresses the proliferation, differentiation and effector functions of encepha-

litogenic effector CD4+ T cells [44]. Furthermore, the activation of TGF-β-secreting Treg cells

suppresses the infiltration of pathogenic T cells into the CNS [45]. Based on these observations,

the GA-mediated increases in the TGF-β level and CD4+Foxp3+ cell frequency might have

contributed to the reduced Th17 cell frequency, IL-17 production and number of infiltrating

CD4+CD45+ cells in the CNS of the GA EAE mice. However, further investigation is required

to identify the exact mechanism through which GA-induced TGF-β ameliorates EAE.
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AChE catalyzes the breakdown of acetylcholine (ACh) and mitigates its anti-inflammatory

potential. Therefore, targeting AChE augments cholinergic anti-inflammatory processes [46].

It has been demonstrated that the activation of Ahr upregulates the expression of AChE-target-

ing miR-132, followed by augmented cholinergic anti-inflammatory processes, in which IL-6,

IL-1β, TNF-α and IL-17 levels are downregulated [11, 28]. Herein, we found that the GA EAE

mice exhibited upregulation of miR-132 expression in CD4+ T cells and macrophages con-

comitant with downregulation of AChE, IL-6, IL-1β, TNF-α and IL-17 expression. Further-

more, GA inhibited AChE catalytic activity in CD4+ T cells and macrophages in vitro in a

miR-132-dependent fashion, suggesting that GA could potentiate cholinergic anti-inflamma-

tory processes. Consistent with the dual anti-inflammatory effects of GA on CD4+ T cells and

macrophages in vitro, the adoptive transfer of encephalitogenic CD4+ T cells from the GA

EAE mice induced mildly ameliorated disease symptoms. Taken together, our data indicate

that GA potentiates cholinergic anti-inflammatory processes in CD4+ T cells and macrophages

that contribute partially to the anti-inflammatory effects of GA on EAE.

Interestingly, we found that GA suppressed the expression of Ccl2 in astrocytes and micro-

glia from EAE mice. Recent supporting observations have shown that Ahr controls the proin-

flammatory functions of astrocytes during EAE by limiting the recruitment of NF-κB to the

promoters of responding factors such as Ccl2, Csf2 and Nos2 [21]. CCl2 is implicated in the

recruitment of monocytes [47] and T cells [48] to the site of inflammation. Therefore, the

reduced expression of Ccl2 in these CNS-resident cells might have contributed to the reduced

number of infiltrating monocytes and CD4+CD45+ T cells. Moreover, the reduced number of

infiltrating monocytes could be a part of the GA-potentiated cholinergic anti-inflammatory

processes. This suggestion is supported by recent findings showing that the ligation of nico-

tinic acetylcholine receptor inhibits the infiltration of monocytes and neutrophils into the

CNS and suppresses the mRNA expression of Ccl2 and chemokine C-X-C motif ligand 2

(CXCL2) in the brain [49]. It has been demonstrated that Ahr signaling in astrocytes regulates

their neurotoxic activities during EAE, the activation of microglia and monocytes and the

recruitment of monocytes to the CNS [21]. These observations may partially explain the

reduced expression of Il6 in microglia. Notably, IL-6 and IL-23a are associated with differenti-

ation and effector functions in Th17 cells [50]. Overall, the cholinergic anti-inflammatory pro-

cesses and modulation of the pathogenic activity of astrocytes might have contributed to the

anti-inflammatory effects of GA on EAE.

In summary, our findings identify GA as a novel Ahr ligand of natural origin and clearly

indicate that GA has anti-inflammatory properties in EAE. The mechanisms underlying the

ameliorative effects of GA on EAE involve promoting Treg cell generation, potentiating miR-

132-mediated cholinergic anti-inflammatory processes and modulating the pathogenic activi-

ties of astrocytes. These findings suggest that GA is a promising candidate to control inflam-

mation in autoimmune diseases such as MS.
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S1 Fig. In silico molecular modeling of mouse Ahr PAS-B domain. A) Superimposition of

predicted 3D structure of mouse Ahr PAS-B domain with the human C-terminal PAS domain

of HIF2a (PDB ID: 1p97). (B) Ramachandran plot of predicted mouse Ahr PAS-B domain.

(PDF)

S2 Fig. Efficiency of cell stimulation milieus. The CD4+CD62L+ T cells were isolated from

the spleen and cultured under Th17-, Treg or Tr1-polarizing conditions, and peritoneal mac-

rophages were cultured in presence of LPS. The mRNA expression of Rorc, Il6, FoxP3 and Il10
were assessed by quantitative real-time PCR and normalized to Gapdh mRNA. (A) Relative
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expression of Rorc in CD4+CD62L+ T cells cultured under Th17-conditions for 48 hr com-

pared to Th0. (B) Relative expression of Il6 mRNA in macrophages stimulated with LPS for 4

hr. (C) Relative expression of FoxP3 mRNA in CD4+CD62L+ T cells cultured under Treg-

polarizing conditions for 48 hr. (D) Relative expression of Il10 mRNA in CD4+CD62L+ T cells

cultured under Tr1-polarizing conditions for 56 hr. Data were pooled from independent

experiments and shown as mean ± SD.

(PDF)

S3 Fig. High levels of GA show toxic effects. (A and B) The CD4+CD62L+ T cells were iso-

lated from the spleen and cultured under Th17-polarizing conditions, and peritoneal macro-

phages were cultured in presence of LPS. Cell viability of (A) differentiating Th17 and (B)

peritoneal macrophages 48 hr after stimulation in presence of GA (20–120 μmol/L). (C and D)

The EAE was induced by immunizing mice with MOG35-55 emulsified in CFA. The mice were

injected intraperitoneally with vehicle (corn oil) or GA (1–4 mg/day) for 14 days starting one

day before MOG35-55 immunization. Weight of (C) spleen and (D) liver were measured 24 h

after last dose, n = 6. Data were pooled from independent experiments and shown as

mean ± SD. �p< 0.05.

(PDF)

S4 Fig. GA suppresses AChE activity in CD4+ T cells and macrophages. AChE catalytic

activity in culture supernatant of (A) CD4+ T cells isolated from naive mice and stimulated

with PHA and (B) peritoneal macrophages were stimulated with LPS. The PHA-stimulated

CD4+ T cells and LPS-stimulated macrophages were electroporated with antisense (as)-miR-

132, and cells treated with PHA, PHA+GA, LPS and LPS+GA were electroporated with scram-

ble hairpin inhibitor. Data were pooled from independent experiments and shown as

mean ± SD. �p< 0.05, PHA+GA versus PHA, and LPS+GA versus LPS; ǂp< 0.05, PHA+GA

+as-miR-132 versus PHA, and LPS+GA+as-miR-132 versus LPS; #p< 0.05, PHA+GA versus

PHA+GA+as-miR-132, and LPS+GA versus LPS+GA+as-miR-132.

(PDF)
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