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Human epidermal growth factor receptor 2 (HER2)-positive breast cancer and triple-
negative breast cancer have their own genetic, epigenetic, and protein expression profiles.
In the present study, based on bioinformatics techniques, we explored the prognostic
targets of HER2-positive breast cancer from metabonomics perspective and developed a
new risk score system to evaluate the prognosis of patients. By identifying the differences
between HER2 positive and normal control tissues, and between triple negative breast
cancer and normal control tissues, we found a large number of differentially expressed
metabolic genes in patients with HER2-positive breast cancer and triple-negative breast
cancer. Importantly, in HER2-positive breast cancer, decreased expression of
metabolism-related genes ATIC, HPRT1, ASNS, SULT1A2, and HAL was associated
with increased survival. Interestingly, these five metabolism-related genes can be used to
construct a risk score system to predict overall survival (OS) in HER2-positive patients.
The time-dependent receiver operating characteristic (ROC) curve analysis showed that
the predictive sensitivity of the risk scoring system was higher than that of other clinical
factors, including age, stage, and tumor node metastasis (TNM) stage. This work shows
that specific transcriptional changes in metabolic genes can be used as biomarkers to
predict the prognosis of patients, which is helpful in implementing personalized treatment
and evaluating patient prognosis.

Keywords: HER2-positive breast cancer, metabonomics, prognostic risk scoring system, lasso cox regression
analysis, survival prediction
INTRODUCTION

Nearly 1.7 million new cases of breast cancer are reported worldwide every year (1). However, while
the incidence continues to rise, breast cancer-specific mortality has fallen sharply—in part due to
earlier detection, and in part due to improved adjuvant therapies (2). Increasing evidence indicates
that metabolic changes may be potential biomarkers and therapeutic targets for cancer and can be of
great significance in predicting outcomes and guiding treatment. Metabolic changes are one of the
important characteristics of tumors. To maintain continuous proliferation, tumor cells must adjust
n.org May 2022 | Volume 13 | Article 8133061
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their metabolism and nutrient acquisition methods, playing an
important role in maintaining intracellular homeostasis and
responding to intracellular and extracellular stimuli (3). Recent
studies have shown that metabolic reprogramming, including
changes in lipid metabolism, is manifested in various types of
cancer, including breast cancer (4).

Metabolic pathways are tightly intertwined with cellular
signals and epigenetic networks. Due to the heterogeneity of
breast cancer and the diversity of molecular subtypes, the
molecular mechanisms of different subtypes of breast cancer
are different (5). From a molecular perspective, HER2-positive
and triple-negative breast cancer have their own characteristic
inheritance, epigenetics, and protein expression profiles (6).
HER2-positive breast cancer has a better prognosis, which is
mainly due to the effective treatment of HER2-positive breast
cancer with surgery, radiotherapy and chemotherapy, endocrine
therapy, molecular targeted therapy, and other treatments (7).
Identification of biomarkers and cellular pathways that lead to
poor prognosis can lead to the development of new effective
therapies for those who do not respond to current treatments.

The reprogramming of cellular metabolism is one of the
hallmarks of breast cancer. Breast cancer cells reshape the
metabolic network to maintain their transformed state and
survive in the harsh tumor microenvironment in ways such as
promoting tumor blood vessel formation and destroying tumor
immunity (8). Studies have reported that crosstalk between
estrogen signaling elements and several key metabolic
regulators alters the metabolism of breast cancer cells and
reshapes the tumor metabolic network to accommodate poor
perfusion, transient nutritional deficiencies, and added acidity
(9). The relationship between cancer and metabolic pathways
may reveal novel biomarkers and therapeutic targets. Targeting
tumor metabolism is a potentially effective treatment for
inhibiting breast cancer. Examining the metabolic phenotype
between HER2-positive and triple-negative breast cancers can
identify targeted metabolic changes and potential new treatment
options. Identifying multiple metabolic targets for a cancer type
from a large data set containing a large amount of tumor
information, such as the Cancer Genome Atlas (TCGA), is an
ideal step for selecting or generating useful anti-metabolic cancer
therapies (10).
METHODS

Data source
The TCGA database (https://cancergenome.nih.gov/) (11)
provides data on mRNA expression and clinical information
related to HER2-positive and triple-negative breast cancer. All
the data needed for this study was downloaded from the TCGA
data download window GDC (https://portal.gdc.cancer.gov/),
including 161 cases of HER2-positive breast cancer samples,
115 cases of triple-negative breast cancer samples, and 34 normal
samples. TCGA is used as a public open database, and the
relevant information retrieved from it does not require further
ethical approval.
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Analysis of mRNA Expression and
Extraction of Metabolism-Related Genes
The Molecular Signatures Database (MSigDB) is a collection of
annotated gene sets for use with Gene Set Enrichment Analysis
(GSEA) software (https://www.gsea-msigdb.org/gsea/
downloads.jsp) (12). From this website, we downloaded the
background pathway gene set. Using R, we extracted the
metabolic pathway in the background of GSEA and compared
the genes in the pathway with the related genes in HER2-positive
and triple-negative breast cancers, further obtaining the
metabolic genes related to HER2-positive and triple-negative
breast cancers.
mRNA EXPRESSION COMPARISONS AND
PATHWAY ENRICHMENT ANALYSIS

Using the edgeR software package, the metabolism-related gene
expression data of HER2-positive breast cancer, triple-negative
breast cancer, and normal samples were standardized, and the
differences were analyzed to obtain abnormal metabolism-
related mRNA. In addition, in order to understand the
functional abnormalities caused by abnormal expression of
metabolic genes in patients with HER2-positive breast cancer
and triple-negative breast cancer, and to explore the possible
biological processes and possible pathways, the functional
enrichment analysis of gene expression was carried out by
using the DAVID (http://david.abcc.ncifcrf.gov/) database (13).
0.05 was set as a cut-off condition for screening enrichment
analysis of Kyoto encyclopedia of genes and genomes.

Survival Analysis and Construction of the
Prognostic Risk Scoring System
Using the survival software package and Cox proportional
hazard model, the metabolism-related mRNA of HER2-
positive breast cancer was analyzed by univariate analysis, and
a survival curve was drawn. The genes with P<0.01 as a cutoff
condition were of great significance to HER2-positive prognosis.
Then, least absolute shrinkage and selection operator (lasso)
penalized Cox regression analysis (14) was used to further screen
it as an independent metabolic factor for predicting the
prognosis of HER2-positive breast cancer. The complexity of
the minimum absolute contraction and the lasso regression of
the selection operator is controlled by the coefficient lambda.
Using the cross-validation program cv.glmnet to determine the
lambda value with minimum error to further reduce the number
of prognosis-related metabolic mRNAs selected by univariate
COX analysis, the risk scoring system can be constructed.

The formula for constructing a risk scoring system is as
follows:

Risk score  =o
N

i=1
Expi � bi

b represents the coefficient, while Exp represents the expression
value of metabolism-related mRNA. Taking the median risk
score as the critical value, patients with HER2-positive breast
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cancer were divided into low risk and high risk groups. The
survival rates of each group were compared by the Kaplan-Meier
method and log-rank method.
Comparison of Predictive Ability of Risk
Scoring System Combined With
Clinical Factors
In this study, in order to further compare the predictive
performance of our HER2-positive breast cancer risk scoring
system constructed by metabolic mRNA and evaluate whether it
can be independent of other clinical parameters, univariate and
multivariate analysis was conducted on the clinical data of
HER2-positive breast cancer patients, including age, stage,
TNM stage, survival time, and survival status. P<0.05 was
considered to be statistically significant.
RESULTS

Expression of Metabolism-Related Genes
Was Altered Between HER2-Positive
Breast Cancer, Triple-Negative Breast
Cancer, and Normal Control Samples
From the TCGA Database
In order to determine the difference in the expression of
metabolic genes, we first compared the expression of mRNA in
HER2-positive and triple-negative breast cancer samples with
the genes of metabolism-related pathways in GSEA, so as to
obtain metabolism-related genes. Then, the Edger software
package was used to extract and analyze the differentially
expressed data. Using | LogFC | >1 and P<0.01 as filter cutoff
Frontiers in Endocrinology | www.frontiersin.org 3
criteria, a total of 275 metabolic genes were obtained in HER2-
positive breast cancer samples, including 154 up-regulated and
121 down-regulated (Figure 1A), while 320 metabolic genes
were obtained in triple-negative breast cancer samples, including
181 up-regulated and 139 down-regulated (Figure 1B). In the
cohort of difference analysis, we downloaded a total of 1096
breast cancer samples, including 161 HER2-positive breast
cancer samples and 115 triple-negative breast cancer samples,
which HER2-positive breast cancer accounted for 14.7% of the
total and triple-negative breast cancer accounted for 10.5%of the
total, and 34 cases of normal control samples. After removing the
samples with incomplete prognostic information, the remaining
156 HER2-positive samples were used to construct the
metabolism-related gene risk score model.
Analysis of Characteristic Metabolic
Pathways in HER2 Positive Breast Cancer
and Triple Negative Breast Cancer
In order to further understand the characteristic metabolic
pathways of HER2 positive breast cancer and triple negative
breast cancer, the differential metabolism-related genes of the
two types of breast cancer were enriched and separated by the
DAVID database (Table 1). The results showed that there were
some differences in the enrichment pathways of differential
metabolic genes between the two types of breast cancer. We
screened the first five pathways of the two types of breast cancer
according to P value, in which purine metabolism, tyrosine
metabolism, metabolism of xenobiotics by cytochrome P450,
and drug metabolism were the main enrichment pathways of
differential metabolic genes in HER2-positive breast cancer. The
enrichment pathways of differential metabolic genes in triple-
negative breast cancer mainly include purine metabolism,
A B

FIGURE 1 | The volcano map of differentially expressed metabolism-related genes, Khaki represents up-regulated metabolic genes, blue represents down-regulated
metabolic genes. (A) HER2-positive breast cancer, 154 up-regulated genes and 121 down-regulated genes. (B) triple-negative breast cancer, 181 up-regulated
genes and 139 down-regulated genes.
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biosynthesis of antibiotics, pyrimidine metabolism, and
metabolism of xenobiotics by cytochrome P450.

Low Expression of Five Genes Is
Associated With Increased Survival
in Patients With HER2-Positive
Breast Cancer
Changes in the expression of tumor-related metabolic genes
affect disease progression, response to treatment, and
functional consequences of patient survival. We analyzed the
prognosis of abnormal expression of metabolism-related genes in
HER2-positive breast cancer by univariate Cox method, and
finally identified five genes significantly related to the survival of
HER2-positive breast cancer patients, but it is worth noting that
these five genes are not related to the survival of triple-negative
breast cancer patients. These genes are ATIC, HPRT1, ASNS,
SULT1A2, HAL. ATIC, HAL, ASNS, and HPRT1 are enriched in
purine metabolism and drug metabolism as well as other
enzymatic pathways and SULT1A2 is mainly enriched in the
sulfur metabolism pathway. The following is a review of the
relative expression of these genes in HER2-positive breast cancer
and normal control tissues and their relationship with
overall survival.

Compared with normal control tissues, the expression of
HPRT1, ASNS, ATIC, SULT1A2, and HAL was significantly
increased in HER2-positive breast cancer samples (Table 2).
According to the median expression of these five genes, the
overall survival time of patients with HER2-positive breast
cancer was divided into two parts. We found that the low
Frontiers in Endocrinology | www.frontiersin.org 4
expression of the five genes was associated with good survival
in HER2-positive breast cancer patients (Figure 2).

Derivation of the HER2-Positive Breast
Cancer Risk Scoring System
According to the results of the previous analysis, five abnormally
expressed metabolic genes in survival-related HER2-positive breast
cancer were identified for further construction of the risk scoring
system. The lambda value with minimum error was determined by
the cross-validation program to screen the genes that finally
construct the risk scoring system. Through analysis, we found
that the five abnormally expressed metabolic genes can be used as
independent prognostic factors to construct the final metabolism-
related risk scoring system for HER2-positive breast cancer
(Figure 3). Based on the lasso Cox regression model, the risk
score was determined for each sample based on the status of the 5
genes: Risk score = (0.000198599142304591 × ATIC expression) +
(0.000454057389823286 × HPRT1 expression) + (0.000161981657
260441 × ASNS expression) + (0.000893755637962911 × SULT1A2
expression) + (0.0016333682644294 × HAL expression).

Taking the median risk score as the critical value, 156 HER2-
positive breast cancer samples with complete prognostic
information were divided into high risk and low risk groups,
and the OS of the high risk group was significantly shorter than
that of the low risk group (Figure 4). In addition, the coefficients
of the five genes defined by the lasso Cox regression model are all
positive, indicating that these genes are closely related to the
prognostic risk of HER2-positive breast cancer patients, and high
expression corresponds to shorter OS.
TABLE 2 | Results of differential expression analysis of five metabolism-related genes.

Gene logFC PValue FDR

HER2-positive ATIC 1.101524281 3.96E-29 6.31E-28
HPRT1 1.124637282 5.95E-16 3.81E-15
ASNS 1.047687465 2.03E-08 6.37E-08
SULT1A2 1.177289372 0.000365503 0.000695067
HAL 1.294131028 0.001153075 0.002031288

Triple-negative HPRT1 1.678941692 4.73E-31 1.17E-29
ASNS 1.915650172 1.81E-23 2.27E-22
ATIC 0.931555679 3.64E-15 2.26E-14
SULT1A2 -0.999901859 0.000228191 0.000446121
HAL -0.143030583 0.543223358 0.58463112
May 2022 | Volume 13 | A
TABLE 1 | KEGG pathway analysis about the differential metabolism-related genes in HER2-positive and triple-negative breast cancer.

Terms Count PValue FDR

HER2-positive Metabolic pathways 199 3.99E-95 4.88E-92
Purine metabolism 47 2.06E-26 2.52E-23
Tyrosine metabolism 22 1.62E-21 1.98E-18
Metabolism of xenobiotics by cytochrome P450 27 7.95E-19 9.70E-16
Drug metabolism - cytochrome P450 25 1.63E-17 2.00E-14

Triple-negative Metabolic pathways 230 9.34E-109 1.15E-105
Purine metabolism 59 1.54E-35 1.89E-32
Biosynthesis of antibiotics 50 2.64E-22 3.25E-19
Pyrimidine metabolism 33 2.99E-19 3.68E-16
Metabolism of xenobiotics by cytochrome P450 26 5.04E-16 6.88E-13
rti
If there were more than 5 terms enriched in this category, top 5 terms were selected according to PValue. Count, the number of enriched genes in each term.
cle 813306
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Comparative Analysis of Risk Scoring
System and Clinical Factors
Through the analysis using the lasso Cox regression model, it was
found that the risk score system constructed by five metabolism-
related genes could be used to predict the OS of HER2-positive
patients. For further analysis, we included clinical factors in this
study (Table 3). Univariate Cox analysis showed that risk score,
age, stage, and T stage were closely related to OS in HER2-
positive patients, which was statistically significant (Figure 5A).
Multivariate Cox analysis showed that age and risk score could
be used as independent prognostic factors to evaluate the survival
rate of patients (Figure 5B). It can be seen that, whether using
univariate analysis or multivariate analysis, our risk scoring
system can effectively evaluate the prognosis, which further
shows the evaluation value of the model. In order to further
evaluate its predictive performance, we compared the predictive
sensitivity of the risk scoring system with other clinical factors
through the ROC curve and found that the predictive ability of
the scoring system was higher than that of other clinical factors
in predicting the 1-year, 3-year, or 5-year survival rate of
patients (Figure 6).
DISCUSSION

In this study, we downloaded the RNA-SEQ data of HER2-
positive breast cancer and triple-negative breast cancer from the
TCGA database, then identified and compared the differential
Frontiers in Endocrinology | www.frontiersin.org 5
metabolic genes in HER2-positive, triple-negative, and normal
adjacent control tissues and analyzed the pathway enrichment.
Our results show that metabolic genes in HER2-positive breast
cancer were significantly enriched in purine metabolism,
metabolism of xenobiotics by cytochrome pathway, tyrosine
metabolism and drug metabolism, indicating that HER2-
positive breast cancer is significantly related to amino acid
metabolic pathways and drug metabolism. while the metabolic
genes in triple-negative breast cancer were significantly enriched
in purine metabolism, metabolism of xenobiotics by cytochrome
pathway. This may be related to the response of HER2-positive
breast cancer on a variety of therapeutic modalities. In addition,
we found that the low expression of five metabolic genes (ATIC,
HPRT1, ASNS, SULT1A2, and HAL) was associated with
significant improvement in the survival rate of HER2-positive
patients. Based on results we propose that the products of these
genes may be developed as therapeutic targets for the treatment
of HER2-positive breast cancer. In addition, the prognostic risk
prediction model constructed by these five genes could
independently predict the prognosis of HER2-positive breast
cancer patients, and could be used as a biomarker for patient
prognosis.Therefore, on the basis of the current clinical
prognosis data, the comprehensive use of the prognostic
scoring system can help clinicians to better predict the
prognosis of patients, so as to adopt more suitable intervention
measures for patients, so as to implement individualized
treatment for patients, better treat the patient’s condition.

ATIC catalyzes two steps of bifunctional enzymes in purine
biosynthesis (aminoimidazole-4-carboxamide ribonucleotide
converting enzyme/IMP cyclohydrolase) and participates in
A B C D E

FIGURE 2 | low expression of the five metabolism-related genes was associated with good survival in HER2-positive breast cancer patients, but not in triple-
negative breast cancer patients. There were 156 positive cases of HER2-positive samples,114 cases of triple-negative samples. (A) ASNS (B) ATIC (C) HAL (D)
HPRT1 (E) SULT1A2.
May 2022 | Volume 13 | Article 813306
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catalyzing the last two steps of purine biosynthesis from scratch
(15). Uncontrolled proliferation is the hallmark of cancer that
leads to an increased demand for de novo synthesis of purine and
pyrimidine bases required for DNA and RNA biosynthesis. The
purine biosynthetic pathway is often up-regulated in cancer (16).
Our results suggest that limiting ATIC may provide a unique
target for limiting purine biosynthesis in HER2-positive breast
cancer . Ant i fo la te Aminoimidazole-4-carboxamide
Ribonucleotide Formyltransferase (AICARFT) is a folic acid-
dependent catalytic site within the ATIC gene. LSN3213128 is a
potent antifolate inhibitor of AICARFT. Treatment with this
inhibitor in a mouse-based triple-negative breast cancer
xenograft model showed inhibition of tumor growth (17).
Considering that the experiments were performed using triple-
negative breast cancer, but based on the correlations we observed
between the expression of ATIC and the survival outcome of
HER2-positive breast cancer, the targeted ATIC products may be
more toxic to HER2-positive breast cancer.
Frontiers in Endocrinology | www.frontiersin.org 6
HPRT1 can transfer 5-phosphate ribosyl from 5-phosphate
ribosyl pyrophosphate to purines, and plays an important role in
purine nucleotide production through the purine rescue pathway.
Our results show that low expression ofHPRT1 was associated with
improved prognosis of HER2-positive breast cancer, which may be
related to HPRT1’s involvement in the purine rescue pathway.
Gedatolisib is a dual PI3K/mTOR inhibitor, and levels of mRNAs
encoding HPRT1 (a key component of the purine rescue pathway)
differ significantly between non-small cell lung cancer cells that are
sensitive or resistant to gedatolisib. The resistance mechanism of
PI3K pathway inhibitors is mediated by the activation of the purine
rescue pathway, which provides a purine resource for tumor
nucleotide biosynthesis (18). 8-azaguanine is an anti-metabolic
drug activated by HPRT1. Increasing the gene dose of HPRT1 in
hyperploid breast cancer can control the sensitivity of this drug,
which may be related to the function of HPRT1 in purine
biosynthesis (19). The relationship between HPRT1 and drug
treatment of HER2-positive breast cancer needs further exploration.
A

C

B

FIGURE 3 | 5 metabolism-related genes were identified for construction of the risk scoring system. (A) Validation was performed for tuning parameter selection
through the LASSO regression model; (B) Elucidation for LASSO coefficient profiles of prognosis-related genes; (C) A heat map showing the expression of 5
metabolism-related genes. A total of 156 HER2-positive samples were analyzed here.
May 2022 | Volume 13 | Article 813306
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Asparagine synthetase (ASNS) is encoded by the asparagine
synthetase (ASNS) gene and catalyzes the biosynthesis of L-
asparagine (20). In our study, the low expression of ASNS in
HER2-positive breast cancer is associated with patient survival,
which may be due to ASNS-mediated asparagine synthesis in
tumor cells. Asparagine synthetase is associated with apoptosis
inhibition, protein biosynthesis, andmTORC1 activation in non-
small cell lung cancer, which inhibits ASNS expression, and,
combined with the depletion of extracellular asparagine, can
reduce the risk of non-small cell lung cancer growth (21). In cells
with transient nuclear topoisomerase I downregulation, ASNS
expression is reduced. In contrast, nuclear topology isomerase I
complementary increased ASNS, suggesting that there is a causal
relationship between nuclear topoisomerase I and ASNS
expression, which needs to be further explored (22).
Deprivation of endogenous ASNS expression can lead to
Frontiers in Endocrinology | www.frontiersin.org 7
inhibition of MDA-MB-231 cell proliferation, impaired colony
formation, and impeded cell cycle progression. This may be
because down-regulating ASNS expression can reduce the
accumulation of pyrimidine bases in breast cancer cells, which
is consistent with our findings that ASNS expression is elevated
in triple-negative breast cancer (23). ASNS may be an attractive
therapeutic target for HER2-positive breast cancer, and warrants
further studies.

Sulfotransferase 1A2 (SULT1A2) mediates the metabolic
activation of DNA-binding products by cancerous N-
hydroxyarylamines. As a gene in the hormone metabolism and
growth factor pathway, SULT1A2 is related to breast density (24)
and is involved in catechol estrogen metabolism (25). It is related
to a variety of known risk factors for breast cancer carcinogenesis,
and therefore may be a regulator of HER2-positive breast cancer
risk. Patients with SULT1A2*2 and SULT1A2*3 alleles showed
A

B

C

FIGURE 4 | A risk scoring system was derived from the prognostic 5 metabolism-related genes. (A) Heatmap of the 5 metabolism-related genes expression in
HER2-positive breast cancer. (B) The risk score distribution on the basis of the 5 metabolism-related genes; (C) The vital status of 156 patients with HER2-positive
breast cancer in high‐ and low‐risk groups. A total of 156 HER2-positive samples were analyzed here.
May 2022 | Volume 13 | Article 813306
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significantly higher plasma levels of 4-hydroxytamoxifen and
endoxifen, and SULT1A2 appears to maintain optimal levels of
4-hydroxytamoxifen and endoxifen (26). Our results show that
low expression of SULT1A2 is associated with improved survival
in HER2-positive breast cancer. The risk regulation of SULT1A2
on HER2-positive breast cancer and its relevance to treatment
need to be further explored.

Histidine ammonia lyase (HAL) is regulated by protein
content and hormones (such as glucocorticoids and glucagon)
in the diet (27). Histidine catabolism plays a key role in the
formation and/or proliferation of certain stem cells, such as
intestinal stem cells (28). Tumor cells are in a state of continuous
division and proliferation, and amino acid metabolism is
vigorous. The high expression level of HAL leads to a poor
Frontiers in Endocrinology | www.frontiersin.org 8
prognosis of estrogen receptor-positive breast cancer, which may
be related to the involvement of HAL in amino acid metabolism
and may be a potential therapeutic target (29). Our results show
that low expression of HAL is associated with improved survival
in HER2-positive breast cancer, suggesting that inhibition of
tumor cell metabolism may be beneficial for tumor prognosis.

Based on the lasso Cox regression model, we constructed a risk
scoring system and found that ATIC, HPRT1, ASNS, SULT1A2,
andHALwere independently related to overall survival, indicating
that collective changes in the expression of these five genes may be
powerful predictors of clinical outcomes. Our results support this
hypothesis, a total of 156 HER2-positive breast cancer samples
with complete prognostic information were divided into high-risk
and low-risk groups. The OS of the high-risk group was
significantly shorter than that of the low-risk group. Therefore,
the expression of these genes may have prognostic effects. Next,
univariate and multivariate Cox analysis verified the predictive
independence of the risk scoring system, and the predictive ability
of the scoring system was higher than that of other clinical factors
in predicting the 1-year, 3-year, or 5-year survival rate of patients.
In addition, ATIC, HPRT1, ASNS, SULT1A2, and HAL may
represent attractive therapeutic targets for HER2-positive breast
cancer, and require further validation studies, especially
considering that treatment with specific inhibitors may alter the
expression of these metabolic genes.

Our study had a few limitations. Our breast cancer mRNA
research data is derived from the TCGA database, but mRNA
expression does not necessarily reflect protein expression levels
(30). In addition, the RNA-seq data from the TCGA reflects the
average mRNA expression in the entire tumor, but cannot
recognize the difference in RNA expression among various
tumor cells (that is, the expression differences between various
tumor cells obtained from single-cell RNA sequencing
platforms) (31). Finally, one must be aware that TCGA
contains breast cancer data from a single, high-quality cohort,
and it will be useful to verify these genes in other cohorts in the
future. However, despite these limitations, the five metabolic
genes identified in this study provide an interesting and reliable
TABLE 3 | The specific baseline clinicopathological characteristics of 156 Her2-
positive breast cancer samples.

156 Her2-positive breast cancer samples

Age
< =60 years 79
> 60 years 77

Stage
I-II 110
III- IV 44
Unknown 2

Pathologic T stage
T1 30
T2 103
T3-T4 23

Pathologic N stage
N0-1 119
N2-3 35
Unknown 2

Pathologic M stage
M0 132
M1 3
Unknown 21

Survival time
< =3 years 99
> 3 years 57
A B

FIGURE 5 | Univariate (A) and multivariate (B) analysis of risk score and clinical data related to HER2-positive breast cancer samples in TCGA database. The
squares represent HR values, khaki means HR>1, blue means HR<1.The blue line represents the 95% confidence interval. A total of 133 HER2-positive samples
were included in the analysis.
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starting point and can provide new insights and directions for
further study of disease mechanisms and treatment strategies at
the metabolic level.

CONCLUSION
Metabonomics can be used to identify novel prognostic markers or
potential therapeutic targets. In the present study, a risk scoring
system was constructed based on the expression data of
metabolism-related genes in HER2-positive breast cancer. Patients
were divided into different grades according to the expression of
differential metabolic genes ATIC, HPRT1, ASNS, SULT1A2, and
HAL in the system to evaluate the prognosis of patients. The
products of these genes may be useful new therapeutic targets for
HER2-positive breast cancer. Inhibition of the function of these
metabolic genes can modulate the metabolism of tumors with low
levels of metabolic gene expression, thus improving the survival rate
of HER2-positive breast cancer patients.

DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation,
to any qualified researcher.
Frontiers in Endocrinology | www.frontiersin.org 9
ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS

CG and CS conceived and designed the study; JZ and CL
performed data analysis; CZ and LL contributed analysis tools;
CG and HL wrote the paper. All authors contributed to the
article and approved the submitted version.
FUNDING

This work is supported by the grants from National Natural
Science Foundation of China (81973677) and National Natural
Science Foundation of China (82174222).
REFERENCES
1. Cui H, Kong H, Peng F, Wang C, Zhang D, Tian J, et al. Inferences of

Individual Drug Response-Related Long Non-Coding RNAs Based on
Integrating Multi-Omics Data in Breast Cancer. Mol Ther Nucleic Acids
(2020) 20:128–39. doi: 10.1016/j.omtn.2020.01.038

2. Munoz D, Near AM, van Ravesteyn NT, Lee SJ, Schechter CB, Alagoz O, et al.
Effects of Screening and Systemic Adjuvant Therapy on ER-Specific US Breast
Cancer Mortality. J Natl Cancer Inst (2014) 106. doi: 10.1093/jnci/dju289

3. Li X,WenesM, Romero P, Huang SC, Fendt SM, Ho PC. Navigating Metabolic
Pathways to Enhance Antitumour Immunity and Immunotherapy. Nat Rev
Clin Oncol (2019) 16:425–41. doi: 10.1038/s41571-019-0203-7
4. Dinarvand N, Khanahmad H, Hakimian SM, Sheikhi A, Rashidi B,
Pourfarzam M. Evaluation of Long-Chain Acyl-Coenzyme A Synthetase 4
(ACSL4) Expression in Human Breast Cancer. Res Pharm Sci (2020) 15:48–
56. doi: 10.4103/1735-5362.278714

5. Li XX, Wang LJ, Hou J, Liu HY, Wang R, Wang C, et al. Identification of Long
Noncoding RNAs as Predictors of Survival in Triple-Negative Breast Cancer
Based on Network Analysis. BioMed Res Int (2020) 2020:8970340. doi:
10.1155/2020/8970340

6. Ronchi A, Pagliuca F, Zito Marino F, Accardo M, Cozzolino I, Franco R.
Current and Potential Immunohistochemical Biomarkers for Prognosis and
Therapeutic Stratification of Breast Carcinoma. Semin Cancer Biol (2020)
72:114–22. doi: 10.1016/j.semcancer.2020.03.002
A B C

FIGURE 6 | Time-dependent ROC curves for risk score and clinical data based on 5 metabolism-related genes. A total of 133 HER2-positive samples were
included in the analysis. (A) 1 year-(B) 3 year-(C) 5year-.
May 2022 | Volume 13 | Article 813306

https://doi.org/10.1016/j.omtn.2020.01.038
https://doi.org/10.1093/jnci/dju289
https://doi.org/10.1038/s41571-019-0203-7
https://doi.org/10.4103/1735-5362.278714
https://doi.org/10.1155/2020/8970340
https://doi.org/10.1016/j.semcancer.2020.03.002
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Gao et al. Metabolic Genes Risk Scoring System
7. Waks AG, Winer EP. Breast Cancer Treatment: A Review. Jama (2019)
321:288–300. doi: 10.1001/jama.2018.19323

8. Wang YP, Lei QY. Perspectives of Reprogramming Breast Cancer Metabolism.
Adv Exp Med Biol (2017) 1026:217–32. doi: 10.1007/978-981-10-6020-5_10

9. Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk Between
Estrogen Signaling and Breast Cancer Metabolism. Trends Endocrinol
Metabol: TEM (2019) 30:25–38. doi: 10.1016/j.tem.2018.10.006

10. Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. PanCancer
Insights From The Cancer Genome Atlas: The Pathologist's Perspective.
J Pathol (2018) 244:512–24. doi: 10.1002/path.5028

11. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas
(TCGA): An Immeasurable Source of Knowledge. Contemp Oncol (Poz Pol)
(2015) 19:A68–77. doi: 10.5114/wo.2014.47136

12. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for
Interpreting Genome-Wide Expression Profiles. Proc Natl Acad Sci USA
(2005) 102:15545–50. doi: 10.1073/pnas.0506580102

13. Jiao X, Sherman BT, Huang da W, Stephens R, Baseler MW, Lane HC, et al.
DAVID-WS: A Stateful Web Service to Facilitate Gene/Protein List Analysis.
Bioinf (Oxf Engl) (2012) 28:1805–6. doi: 10.1093/bioinformatics/bts251

14. Gao J, Kwan PW, Shi D. Sparse Kernel Learning With LASSO and Bayesian
Inference Algorithm. Neural Networks Off J Int Neural Net Soc (2010) 23:257–
64. doi: 10.1016/j.neunet.2009.07.001

15. Cheong CG, Wolan DW, Greasley SE, Horton PA, Beardsley GP, Wilson IA.
Crystal Structures of Human Bifunctional Enzyme Aminoimidazole-4-
Carboxamide Ribonucleotide Transformylase/IMP Cyclohydrolase in
Complex With Potent Sulfonyl-Containing Antifolates. J Biol Chem (2004)
279:18034–45. doi: 10.1074/jbc.M313691200

16. Fales KR, Njoroge FG, Brooks HB, Thibodeaux S, Torrado A, Si C, et al.
Discovery of N-(6-Fluoro-1-Oxo-1,2-Dihydroisoquinolin-7-Yl)-5-[(3R)-3-
Hydroxypyrrolidin-1-Yl]T Hiophene-2-Sulfonamide (LSN 3213128), a
Potent and Selective Nonclassical Antifolate Aminoimidazole-4-
Carboxamide Ribonucleotide Formyltransferase (AICARFT) Inhibitor
Effective at Tumor Suppression in a Cancer Xenograft Model. J Med Chem
(2017) 60:9599–616. doi: 10.1021/acs.jmedchem.7b01046

17. Brooks HB, Meier TI, Geeganage S, Fales KR, Thrasher KJ, Konicek SA, et al.
Characterization of a Novel AICARFT Inhibitor Which Potently Elevates
ZMP and has Anti-Tumor Activity in Murine Models. Sci Rep (2018) 8:15458.
doi: 10.1038/s41598-018-33453-4

18. Makinoshima H, Umemura S, Suzuki A, Nakanishi H, Maruyama A, Udagawa
H, et al. Metabolic Determinants of Sensitivity to Phosphatidylinositol 3-Kinase
Pathway Inhibitor in Small-Cell Lung Carcinoma. Cancer Res (2018) 78:2179–
90. doi: 10.1158/0008-5472.CAN-17-2109

19. Choudhary A, Zachek B, Lera RF, Zasadil LM, LasekA, DenuRA, et al. Identification
of Selective Lead Compounds for Treatment of High-Ploidy Breast Cancer. Mol
Cancer Ther (2016) 15:48–59. doi: 10.1158/1535-7163.MCT-15-0527

20. Richards NG, Schuster SM. Mechanistic Issues in Asparagine Synthetase
Catalysis. Adv Enzymol Relate Area Mol Biol (1998) 72:145–98. doi: 10.1002/
9780470123188.ch5

21. Gwinn DM, Lee AG, Briones-Martin-Del-Campo M, Conn CS, Simpson DR,
Scott AI, et al. Oncogenic KRAS Regulates Amino Acid Homeostasis and
Asparagine Biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase.
Cancer Cell (2018) 33:91–107.e6. doi: 10.1016/j.ccell.2017.12.003
Frontiers in Endocrinology | www.frontiersin.org 10
22. Miao ZH, Player A, Shankavaram U, Wang YH, Zimonjic DB, Lorenzi PL,
et al. Nonclassic Functions of Human Topoisomerase I: Genome-Wide and
Pharmacologic Analyses. Cancer Res (2007) 67:8752–61. doi: 10.1158/0008-
5472.CAN-06-4554

23. Yang H, He X, Zheng Y, Feng W, Xia X, Yu X, et al. Down-Regulation of
Asparagine Synthetase Induces Cell Cycle Arrest and Inhibits Cell
Proliferation of Breast Cancer. Chem Biol Drug Des (2014) 84:578–84. doi:
10.1111/cbdd.12348

24. Ellingjord-Dale M, Lee E, Couto E, Ozhand A, Qureshi S, Hofvind S, et al.
Polymorphisms in Hormone Metabolism and Growth Factor Genes and
Mammographic Density in Norwegian Postmenopausal Hormone Therapy
Users and Non-Users. Breast Cancer Res BCR (2012) 14:R135. doi: 10.1186/
bcr3337

25. Hui Y, Yasuda S, Liu MY, Wu YY, Liu MC. On the Sulfation and Methylation
of Catecholestrogens in Human Mammary Epithelial Cells and Breast Cancer
Cells. Biol Pharm Bull (2008) 31:769–73. doi: 10.1248/bpb.31.769

26. Fernandez-Santander A, Gaibar M, Novillo A, Romero-Lorca A, Rubio M,
Chicharro LM, et al. Relationship Between Genotypes Sult1a2 and Cyp2d6
and Tamoxifen Metabolism in Breast Cancer Patients. PloS One (2013) 8:
e70183. doi: 10.1371/journal.pone.0070183

27. Aleman G, Ortiz V, Langley E, Tovar AR, Torres N. Regulation by Glucagon
of the Rat Histidase Gene Promoter in Cultured Rat Hepatocytes and Human
Hepatoblastoma Cells. Am J Physiol Endocrinol Metab (2005) 289:E172-9. doi:
10.1152/ajpendo.00584.2004

28. Okada M, Miller TC, Fu L, Shi YB. Direct Activation of Amidohydrolase
Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the
Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.
Endocrinology (2015) 156:3381–93. doi: 10.1210/en.2015-1190

29. Wang CY, Chiao CC, Phan NN, Li CY, Sun ZD, Jiang JZ, et al. Gene
Signatures and Potential Therapeutic Targets of Amino Acid Metabolism in
Estrogen Receptor-Positive Breast Cancer. Am J Cancer Res (2020) 10:95–113.

30. Fortelny N, Overall CM, Pavlidis P, Freue GVC. CanWe Predict Protein From
mRNA Levels? Nature (2017) 547:E19–20. doi: 10.1038/nature22293

31. Hwang B, Lee JH, Bang D. Single-Cell RNA Sequencing Technologies and
Bioinformatics Pipelines. Exp Mol Med (2018) 50:96. doi: 10.1038/s12276-
018-0071-8

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gao, Li, Zhou, Liu, Zhuang, Liu and Sun. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
May 2022 | Volume 13 | Article 813306

https://doi.org/10.1001/jama.2018.19323
https://doi.org/10.1007/978-981-10-6020-5_10
https://doi.org/10.1016/j.tem.2018.10.006
https://doi.org/10.1002/path.5028
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/bts251
https://doi.org/10.1016/j.neunet.2009.07.001
https://doi.org/10.1074/jbc.M313691200
https://doi.org/10.1021/acs.jmedchem.7b01046
https://doi.org/10.1038/s41598-018-33453-4
https://doi.org/10.1158/0008-5472.CAN-17-2109
https://doi.org/10.1158/1535-7163.MCT-15-0527
https://doi.org/10.1002/9780470123188.ch5
https://doi.org/10.1002/9780470123188.ch5
https://doi.org/10.1016/j.ccell.2017.12.003
https://doi.org/10.1158/0008-5472.CAN-06-4554
https://doi.org/10.1158/0008-5472.CAN-06-4554
https://doi.org/10.1111/cbdd.12348
https://doi.org/10.1186/bcr3337
https://doi.org/10.1186/bcr3337
https://doi.org/10.1248/bpb.31.769
https://doi.org/10.1371/journal.pone.0070183
https://doi.org/10.1152/ajpendo.00584.2004
https://doi.org/10.1210/en.2015-1190
https://doi.org/10.1038/nature22293
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1038/s12276-018-0071-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

	Survival-Associated Metabolic Genes and Risk Scoring System in HER2-Positive Breast Cancer
	Introduction
	Methods
	Data source
	Analysis of mRNA Expression and Extraction of Metabolism-Related Genes

	mRNA expression comparisons and pathway enrichment analysis
	Survival Analysis and Construction of the Prognostic Risk Scoring System
	Comparison of Predictive Ability of Risk Scoring System Combined With Clinical Factors

	Results
	Expression of Metabolism-Related Genes Was Altered Between HER2-Positive Breast Cancer, Triple-Negative Breast Cancer, and Normal Control Samples From the TCGA Database
	Analysis of Characteristic Metabolic Pathways in HER2 Positive Breast Cancer and Triple Negative Breast Cancer
	Low Expression of Five Genes Is Associated With Increased Survival in Patients With HER2-Positive Breast Cancer
	Derivation of the HER2-Positive Breast Cancer Risk Scoring System
	Comparative Analysis of Risk Scoring System and Clinical Factors

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


