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The aim of this work was to give an evidence of the likely presence of interstitial cells in the canine lower urinary tract and to
study their possible interactions with the musculature and the intramural innervation. Cryosections of normal canine bladder
and urethra were immunofluorescently labelled with c-kit, a transmembrane, tyrosine kinase growth factor receptor, known to
be expressed on the interstitial cells of Cajal (ICCs) of the gut. The relationship with antiactin positive smooth muscle cells and
PGP9.5-positive intramural innervation was also investigated by confocal microscopy. Anti-c-kit labelling demonstrated a network
of elongated and branched c-kit positive cells, which were located in interstitial spaces, oriented in parallel to the smooth muscle
bundles that form the bladder muscular layer, irrespective of dog sex. Cells with a similar localization were also PAS- and NADPH-
diaphorase-positive. A contact between c-kit immunofluorescent cells and intramural innervation was demonstrated, too. The
roles of interstitial cells might include regulation of smooth muscle activity of the bladder detrusor, integrating neuronal signals
during urine storage and voiding.

1. Introduction

The two main and correlate functions of the organs
belonging to the lower urinary tract are the storage and
periodic elimination of urine, which are basically mediated
by contraction of the muscular layer and are regulated by
the somatic, sympathetic, and parasympathetic innervations,
synergically working. Higher order modulation is from the
nervous centers of the cerebral cortex, the cerebellum, and
pons. In recent years, many investigators have suggested that
a network of cells triggering spontaneous contractions and
myogenic slow wave activity of the muscular wall in the
urinary tract of many mammalian species may exist [1–
5]. This is a current and topical research area in functional
urology, with possible interesting rebounds on different
pathologies [6].

In the intestinal muscular layer, the presence of a
harmonized activity necessary for movement is well known

and is operated, in the human [7] as well as in animal species
[8, 9] including the dog [10], by the intricate network of
the so-called interstitial cells of Cajal (ICCs). In analogy
with this system, many authors have invoked an ICC-
like system in the urinary tract, coordinating the urinary
“peristalsis” [4]. A similar network of cells has been described
as strategically located beneath the urothelium in guinea-
pigs, and humans [11–14], or at the level of the muscular
layer as well, in rabbits, guinea-pigs and human [4, 15–17].
Some authors described the presence of several populations
of ICC-like cells, either located below the urothelium, in
the lamina propria region, and throughout the detrusor [18,
19], making connections with intramural nerves and closely
associated with smooth muscle cells, in the detrusor. No
reports exist of the presence of these cells in the lower urinary
tract of the dog. Nevertheless, it is possible to conceive
that abnormalities of such an intrinsic system of motility
control in the dog urinary tract might be at the basis of a
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variety of important urological diseases, such as the urethral
incompetence mechanism, an acquired condition thought
to be a consequence of a dysfunction in the musculature
innervation [20]. Unequivocal methods usually used for
the demonstration of ICC are electron microscopy and a
growing number of markers applicable to bright field and
fluorescence microscopy [10]. C-kit is a transmembrane,
tyrosine kinase growth factor receptor expressed on fetal
and adult cells, including the interstitial cells of Cajal of the
gut. Also useful, although not definitive as sole tests, are the
histochemical reactions for diaphorases [10], and Periodic
acid-Shiff (PAS) reactivity due to the high glycogen content
in ICC [21].

Following our interest in the study of innervation of the
lower urinary tract in the dog [22], this work is aimed at
demonstrating the likely presence of interstitial cells (ICs)
in the canine lower urinary tract. Over-mentioned tools
were utilized for this purpose, together with the general
neuronal marker protein gene product (PGP) 9.5, which was
previously employed with the aim to mark nerve fibres in
relation to IC cells [14].

2. Materials and Methods

2.1. Animals. Samples were collected at the Department
of Veterinary Clinical Science of the Faculty of Veterinary
Medicine of Milan from adult dogs of both sexes (3 males and
3 females), which were euthanized after diagnoses excluding
urinary pathologies (mainly trauma). Organ sampling was
done after acceptance of the dog owners. It was verified that
the organs of the lower urinary tract were healthy. Several
fragments were obtained within 10 minutes of euthanasia
from the bladder apex, body, and neck, and from the urethra,
proximal to the bladder neck. The male urethra was collected
at the level of preprostatic part. Fragments of healthy small
intestine were collected as well, to be used as positive
controls.

2.2. Tissue Processing. Tissue fragments were immersed in
4% paraformaldehyde in 0.01 M phosphate-buffered saline
(PBS) pH 7.4 for 24 h fixation at 4◦C. Samples were either
(i) dehydrated in a graded series of ethanol, cleared in xylene
and paraffin embedded, or (ii) cryoprotected overnight by
infiltration with a 20% sucrose solution in PBS at 4◦C, then
snap frozen in liquid nitrogen-cooled isopenthane, using
OCT (Tissue-Tek, BDH, UK) as an embedding medium.
Either deparaffinized microtome sections (4–6 μm thick) or
cryosections (10–20 μm thick) were stained with routine
stains, haematoxylin/eosin, Azan, or Mallory trichromic
stain, for morphological purposes. Successive microtome or
cryo-sections of the specimens were processed as follows.

2.3. Histochemistry. Periodic Acid-Shiff (PAS) reaction,
which is known to selectively stain neutral glycoconjugates,
was performed on deparaffinized sections. Conventional PAS
reaction, with and without previous diastase digestion, was
performed with the aim to demonstrate the presence of
glycogen.

Cryostat sections picked up on gelatin-coated glass slides
were histochemically treated for demonstration of NADPH-
diaphorase or NADH-diaphorase according to Xue et al.
[10]. Both histochemical reactions were described as possible
markers of the intestinal ICC [21]. Sections were incubated
in PBS pH 7.4 containing 1 mM β-NADH or 1 mM β-
NADPH (Sigma, Italy) and 0.6 mM nitroblue tetrazolium
(Sigma) for 10–30 min at 37◦C [10]. After incubation with
either the solutions for NADPH-d or NADH-d the sections
were rinsed in PBS, exsiccated and mounted in Eukitt (Biop-
tica, Milan, Italy). The specificity of the stains was verified by
excluding NADH and NADPH, respectively, from the incu-
bating media, which in both cases abolished all the activities.

2.4. Immunohistochemistry and Double Immunofluohisto-
chemistry. On microtome sections, standard immunohisto-
chemical techniques were employed to test each primary
antiserum, according to previously described methods [22],
which are briefly summarized. After dewaxing, 4 μm-thick
sections were washed and immersed in a freshly prepared
3% H2O2 solution for 15 min to block the endogenous
peroxidase activity, followed by incubation in 1 : 20 normal
goat serum (code X0907, DakoCytomation, Denmark) in
Tris-Buffered Saline (TBS: 0.05 M Tris/HCl, 0.15 M NaCl)
for 30 min to prevent background prior to incubation
with primary antiserum. Sections were then incubated
overnight in a humidity chamber at room temperature
using the antibodies listed in Table 1, at the respective
dilutions. Peroxidase-antiperoxidase complex (PAP, Dako-
Cytomation) was employed to develop the reaction, there-
after the immunoreactive sites were visualized using a
freshly prepared 3,3′-diaminobenzidine tetrahydrochloride
(DAB, Sigma, Italy) solution. Sections were counterstained
with Mayers’ haematoxylin, dehydrated, and mounted using
Eukitt (Bioptica, Milan, Italy). The specificity of immunos-
taining was verified (1) by omission of the 1st layer; (2) by
the use of nonimmune mouse or rabbit serum in place of the
primary antiserum at the same dilution. The results of these
controls were negative. Positive controls were performed
utilizing sections of dog gut.

Histochemical and immunohistochemical stainings were
evaluated and photographed under an Olympus BX50
photomicroscope, equipped with a digital camera and DP
software (Olympus, Tokyo, Japan) for computer-assisted
image acquirement and managing.

Immunofluorescence histochemistry was conducted on
20–40 μm thick cryostatic sections. After inhibition of non-
specific reactivity with 1 : 20 Normal Goat Serum (DakoCy-
tomation) in Tris-HCl-buffered saline (TBS; 0.05 M, pH 7.4,
0.55 M NaCl) for 30 min, the sections were incubated with
the first primary antiserum (anti c-kit) overnight at 4◦C.
Slides were washed in TBS with 0.1% Triton-X 100 (TBS-T),
and then treated with the biotin-avidin blocking kit solutions
(Vector Laboratories, Burlingame, CA, USA). After being
rinsed in TBS-T, the sections were incubated with 10 μg/mL
goat biotinylated antimouse IgG (Vector Labs.) in TBS-T for
1 h at RT, thereafter, were treated with 10 μg/mL Fluorescein
Avidin D (Vector Labs.) in 0.1 M NaHCO3 pH 8.5 with
0.15 M NaCl for 1 h at RT. Double label of sections was
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Table 1: Primary and secondary antibodies used for immunohistochemistry and immunofluorescence, their sources, and working dilution.

Primary antisera tested,
working dilution

Source and code
Secondary antisera,
working dilution

Secondary antisera,
working dilution

Mouse Monoclonal
Anti-Human: biotinylated goat anti

mouse IgG, 1 : 25
Vector Lab. Inc., USA,
BA-9200C-kit oncoprotein

(CD117), 1 : 10
Novocastra, UK,
NCL-CD117

Smooth muscle actin
(clone 1A4), 1 : 1000

DakoCytomation, Italy,
H-7114

Rabbit Policlonal Anti-:
biotynilated goat anti
rabbit IgG, 1 : 100

Dakocytomation, Italy,
Z0421Protein Gene Product

9.5 (PGP9.5, Ubiquitin
C-Terminal Hydrolase),
1 : 1000

Chemicon Int. Inc.,
USA, AB-1761

Neuronal nitric oxide
synthase (NOS1) (R-20),
1 : 200

Santa Cruz
Biotechnology,
Inc.,USA, Sc-648

obtained by the sequential addition of a second primary anti-
body, either antiactin or anti-PGP9.5, thought to be a general
nerve marker [23], or anti-NOS1, followed by the suitable
secondary antibody (see Table 1) for 1 hour at RT, and
labelled with 10 μg/mL Rhodamine Avidin D (Vector Labs.)
in 0.1 M NaHCO3 pH 8.5 with 0.15 M NaCl for 1 hour at RT.
Staining with fluorescein-avidin DCS (Vector Labs.) was also
performed to exclude mast cell staining by c-kit [5]. Finally,
stained sections were embedded into Vectashield Mounting
Medium (Vector Labs.) and observed under a confocal laser
scanning microscope Olympus Fluoview FV300 (Olympus,
Tokyo, Japan), using excitation wavelengths of 488 and
668 nm, from a krypton-argon laser and a green Helium-
Neon laser and barrier filters set for flurescein isothiocyanate
and rhodamine. Images of superimposed fluorescence were
obtained after acquiring the image slice of each laser channel
sequentially.

3. Results

Identification of c-kit-immunoreactive cells was extremely
difficult to obtain in samples of the lower urinary tract of
dogs. Several attempts were firstly made by following the
antibody producer’s suggestion, using paraffin-embedded
tissues with the recommended working dilution, incuba-
tion time and temperature, as well as antigen unmask-
ing with high temperature. Only by immunofluorescence
techniques on thicker frozen sections, employ of double
antibody concentration (1 : 10 instead of 1 : 20–1 : 40, recom-
mended by manufacturer), and observation under a confocal
microscope, it was possible to recognize consistent c-kit-
labelling in tissues from at least five dogs. Actually, c-kit-
immunofluorescent (IF) cells, recognizable in the gut wall
(Figure 1(a)), were few in the dog lower urinary tract, and
localized only in the bladder wall (Figure 1(b)). Immunopos-
itive cells were elongated and showed slender processes,
distributing through the depth of a thick section, discernible
as immunofluorescent bright dots (Figure 1(c), arrows),
whose path was possible to be followed only by confocal

microscopy. C-kit-immunoreactive cells were mostly located
in interstitial spaces on boundary of smooth muscle fascicles
that form the bladder detrusor, longitudinally oriented,
in parallel with the smooth muscle cells. Interstitial cells
were stained by PAS reaction (Figure 1(d)), being clusters
of cytoplasmic granules responsible of the PAS positivity.
PAS negativity after diastase digestion confirmed the large
accumulation of glycogen granules in the cytoplasm of
these cells (Figure 1(f)). Interstitial cells stained positively
by NAPDH-diaphorase technique (Figure 1(e)). In thick
sections of frozen formaldehyde-fixed samples, ICs were
arranged to form a three-dimensional network, contacting
each other above and below the plane of focus through their
long processes. Slender NADPH-d reactive cells showed an
aspect and localization very similar to the c-kit-IF interstitial
cells (compare Figure 1(c) with Figure 1(e)).

The localization of ICs on boundary of smooth muscle
fascicles was confirmed by double labelling with anti-c-kit
(Figure 2(a)) and antismooth muscle actin immunoreaction
(Figure 2(b)). ICs were longitudinally oriented, in parallel
with the smooth muscle cells (Figure 2(c)).

The relationship between bladder ICs and intramural
innervation was investigated by double immunofluorescence
experiments using c-kit antibody followed by the antibody
protein PGP9.5, known to be a general phenotypic marker at
the level of the peripheral nervous system. An association was
occasionally noticed between c-kit-IF cells (Figure 2(d)) and
PGP9.5-IF (Figure 2(e)) nerve fibres innervating the bladder
wall (Figures 2(d), 2(e), and 2(f)).

NOS1-immunoreactive components of innervation were
scarce either in bladder or in urethral wall. Rarely, a relation-
ship of close vicinity of ICs to NOS-I-immunoreactive nerve
fibres was also detected at bladder level (Figures 2(g), 2(h),
and 2(i)).

4. Discussion

This paper is the first report demonstrating ICC-like cells
in the canine urinary tract. The techniques utilized in our
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(d)
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Figure 1: (a) Dog jejunum, anti-c-kit immunofluorescence. Interstitial cell bodies can be seen distributed in the smooth muscle wall. (b)
Dog bladder, anti-c-kit immunofluorescence. A compressed image obtained by confocal microscopy in a thick tissue section shows strong
immunoreactivity in the cytoplasm of an interstitial cell, which is distended among a group of smooth muscle cells. (c) Dog bladder, anti-
c-kit immunofluorescence, image obtained as in (b). Subtle c-kit-IF interstitial cells can be seen, elongated among smooth muscle cells and
branching with long processes, discernible as immunofluorescent bright dots (arrows). (d) Dog bladder, PAS reaction. Reactivity is present
in the cytoplasm of few interstitial cells (arrows), elongated among the smooth muscle bundles. Note the similarity of aspect and localization
compared to the c-kit-IF cells shown in (b). When transversally cut, ICs show a roundish shape. Nuclei are unstained. (e) Dog bladder,
NADPH-d reaction. Reactivity is present in interstitial cells, running parallel to each other, whose aspect and localization are very similar
to the c-kit-IF cells shown in (c). (f) Dog bladder, PAS reaction after diastase digestion. PAS-negativity in a serial section confirms the large
accumulation of glycogen granules in the cytoplasm of ICC-like cells shown in (d). Scale bars = 25 μm.

study for urinary ICs localization are recognized among
the best markers for intestinal ICs in light microscopy
[21]. Histochemical methods such as PAS and NADPH-
diaphorase reactions were never utilized before in the
identification of ICs in the urinary tract. Nevertheless,
PAS and NADPH-diaphorase positivity confirmed to be a
very useful tool in our specimens to identify ICs, a cell
type that we demonstrated to be rare. Actually, in dog
specimens, investigation on the ICs in situ was difficult, even
in the intestinal wall which was used as positive control
for immunoreactions, owing to their paucity, small dimen-
sions, and sparse distribution in the smooth muscle layer
of any organ wall. Moreover, use of immunofluorescence
techniques and observation under confocal microscope was
imperative to detect these slender and branching cells,
utilizing thick tissue sections. Another initial difficulty in
our research was linked to the fact that ICs appear to be
present in the bladder wall only and not in the urethra. This

finding is in contrast with the descriptions given in many
species, such as the rodents, man [18], boar [24], and rabbit
[2, 17]. In the male, pacemaker roles have been hypothesized
at urethral level, acting in the regulation of smooth muscle
activity including, beside control of bladder voiding, an
intervening in seminal emission during ejaculation [24] and
penile physiology [16]. Similar function was ascribed to ICs
which were identified at vas deferens level [25].

No suburothelial ICs were detectable, in contrast with
the descriptions given in literature for human [11, 12] and
guinea pigs [14].

In a recent review, Brading [15] observed that the
common function of the bladder in mammals is to store and
expel urine, thus similarities in the properties of the detrusor
in all species must exist. However, this author puts forward
very interesting suggestions regarding functional differences
in those mammals that use urine as a territorial scent marker,
since this requires a mechanism to produce small spurts of



Veterinary Medicine International 5
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Figure 2: [(a), (b), (c)] Dog bladder, c-kit, and actin double immunofluorescence. Two green-labelled c-kit-IF cells can be seen in the
bladder musculature (a). Anti-actin-IF smooth muscle bundles of the detrusor are rhodamine redstained (b). Superimposed image (c)
demonstrates the localization of ICs in close association with the smooth muscle cells. [(d), (e), (f)] Bitch bladder, c-kit, and PGP9.5
double immunofluorescence. One green-labelled c-kit-IF cell (d) is present in the bladder muscular layer. Anti-PGP9.5-IF nerve fibres
are rhodamine redstained (e). Overlay shows the close association of the IC and a PGP9,5-positive nerve fibre [(f), arrow]. [(g), (h), (i)]
Bitch bladder, c-kit and NOS-I double immunofluorescence. Green-labelled c-kit-IF cells (g) are present in the bladder muscular layer. Anti-
NOS-I-IF nerve fibres are rhodamine redstained (h). Overlay shows that ICs and nitrergic nerve fibres are closely associated (i). Scale bars =
25 μm.

urine in addition to a mechanism that will empty the bladder.
This observation can also be at the basis of the presence of
ICC-like cells in the bladder detrusor, perhaps responsible
for the occurrence of phasic contractions. When present in
the urethral wall and not in the bladder, as for instance in the
boar [24], the function of ICs might be to prevent leakage of
urine during filling by generating a urethral closure pressure,
and to allow voiding at micturition. In this respect, the
physical constraints might vary between the species.

Double immunofluorescence experiments on dog spec-
imens have shown that c-kit-IF cells lie in interfascicular
planes among the actin-IF smooth muscle cells of the
bladder detrusor, in such a way to form an intercellular
communication network cross talking with the PGP9.5-
IF intrinsic nerves. Their location and elongated fashion
with branching processes, as well as their contact with

nerve fibres, suggest a functional role in the transduction of
neuronal inputs and regulation of smooth muscle activity
between bladder and urethra during urine storage and
voiding. A spontaneous activity was demonstrated to arise
in cells located on the boundary of smooth muscle bundles
in guinea pig bladder [3]. Contraction waves occurring
almost simultaneously along the boundary of smooth muscle
bundles are likely to propagate through gap junctions, as
it was demonstrated by connexin immunohistochemistry in
the guinea pig bladder [3].

A relationship of close vicinity of ICs to NOS-I-
immunoreactive nerve fibres was occasionally detected at
the level of dog bladder. Control of ICs onto the inhibitory,
NOS-I-utilizing innervation, has been hypothesized in the
guinea pig bladder [1]. In this species, ICs having long
dendritic processes extending parallel to the smooth muscle
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fibres were noticed, which were cGMP-immunoreactive
after nitric oxide-mediated induction of cGMP. On this
basis, these authors hypothesized that in the guinea pig
bladder ICs may be the predominant targets of nitric oxide,
which was later confirmed by Lagou et al. [26]. A similar
hypothesis has been put forward by Hashitani [16], stating
that ICs may be targeted by nitrergic nerves and modulate
communications between muscle bundles. Thus, an increase
in their population may account for pathological excitability
of detrusor smooth muscle.

Nonetheless, nitrergic innervation is not abundant in the
dog lower urinary tract, as we previously demonstrated [22].
The contingent of nitrergic nerve fibres, which are present in
the lower urinary tract of adult dogs, has a likely local origin,
from NOS-IR neuronal bodies located in intramural ganglia.
The well-known inhibitory action of nitric oxide could be
exerted at this level, directly influencing the cholinergic
ganglion cells.

5. Conclusions

The finding of ICC-like cells in the canine urinary tract
is a noteworthy feature and shows a potential clinical
significance, worth of further researches to contribute in
understanding the pathogenesis of dog urinary dysfunctional
conditions. Investigations aimed at assessing implications of
interstitial cells in normal function and neurogenic detrusor
overactivity have only been performed on the normal and
neuropathic human bladder [27, 28], as well as in a rat model
of bladder overactivity [29].

The arrangement of ICs in the canine bladder, contacting
the muscle cells and the nerve fibres as well, can rise the
question whether they can be proposed as a physiologic
pacemaker system. According to the major authors who dealt
with the argument [7, 21, 30], several basic requirements
must be fulfilled before the hypothesis that certain popu-
lations of ICs are pacemakers, that is, generators of slow
waves. Basically, it is essential to correlate the presence and
distribution of ICs with the presence of slow-wave activity,
moreover, pacemaker activity should be present in isolated
ICs. At present, it is not possible to infer such a physiologic
role with certainty, in the canine bladder, even if it has
been proposed for other species [3, 4, 18]. Additional data
about expression of cyclooxygenase isoforms in the ICs of
rabbit bladder have been obtained recently [31], indicating
their possible role as important source of prostaglandins
that might likely play a role in regulation of spontaneous
rhythmic contractions. The hypothesis of prostaglandin-
dependent regulation of spontaneous rhythmic contractions
might offer opportunities for the application of novel
treatments for disorders leading to overactive bladder.
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