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A B S T R A C T

Introduction: Significant heterogeneity in cardiovascular disease (CVD) risk and healthcare resource allocation has
been demonstrated in the United States, but optimal methods to capture heterogeneity in county-level charac-
teristics that contribute to CVD mortality differences are unclear. We evaluated the feasibility of unsupervised
machine learning (ML)-based phenomapping in identifying subgroups of county-level social and demographic risk
factors with differential CVD outcomes.
Methods: We performed a cross-sectional study using county-level data from 2008 to 2018 from the Centers for
Disease Control (CDC) WONDER platform and the 2020 Robert Wood Johnson County Health Rankings program.
Unsupervised clustering was performed on 46 facets of population characteristics spanning the demographic,
health behaviors, socioeconomic, and healthcare access domains. Spatial autocorrelation was assessed using the
Moran’s I test, and temporal trends in age-adjusted CVD outcomes were evaluated using linear mixed effect
models and least square means.
Results: Among 2676 counties, 4 county-level phenogroups were identified (Moran’s I p-value <0.001). Phe-
nogroup 1 (N ¼ 924; 24.5%) counties were largely white, suburban households with high income and access to
healthcare. Phenogroup 2 counties (N ¼ 451; 16.9%) included predominantly Hispanic residents and below-
average prevalence of CVD risk factors. Phenogroup 3 (N ¼ 951; 35.5%) counties included rural, white resi-
dents with the lowest levels of access to healthcare. Phenogroup 4 (350; 13.1%) comprised counties with pre-
dominantly Black residents, substantial cardiovascular comorbidities, and physical and socioeconomic burdens.
Least square means in age-adjusted cardiovascular mortality over time increased in a stepwise fashion from 223 in
phenogroup 1 to 317 per 100,000 residents in phenogroup 4.
Conclusions: Unsupervised ML-based clustering on county-level population characteristics can identify unique
phenogroups with differential risk of CVD mortality. Phenogroup identification may aid in developing a uniform
set of preventive initiatives for clustered counties to address regional differences in CVD mortality.
Substantial improvements in life expectancy and mortality attribut-
able to cardiovascular disease (CVD) have been observed since the early
1980’s, driven by reductions in the burden of cardiovascular risk factors
and improvements in healthcare [1]. For the first time in decades,
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however, life expectancy in the United States declined in 2015 and 2016,
with rates of CVD on the rise among some groups [2]. Regional variation
is apparent in both of these alarming trends. Over 25 years, the Global
Burden of Disease 2016 Study found pronounced and persistent
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disparities in the burden of CVD across counties [2,3]. Despite declining
CVD rates nationally, counties that in 1990 had the lowest rates of CVD
and most rapid decline in disease burden continue to demonstrate low
rates of CVD today, while those counties experiencing high levels of
disease and mortality 25 years ago continue to lag and now report pla-
teauing or increasing rates of CVD [2,4–6].

The highest rates of CVD mortality can be found across the Gulf Coast
to West Virginia, concentrated in counties with high rates of cardiac risk
factors, inadequate access to healthcare and low socioeconomic status
[7–10]. Prior research has focused on the role of these independent risk
factors in driving regional disparities, and demonstrates the potential for
early intervention in high-risk communities to impact CVD trends.
However, targets for multi-level community health interventions to
address such disparities are ill-defined, and tools for identifying at-risk
communities are lacking [11]. Machine learning (ML) has emerged as a
tool uniquely suited to detecting patterns to explain the observed het-
erogeneity in CVD risk and outcomes [12].

In this study, we hypothesized that unsupervised ML-based clustering
could successfully identify clusters of phenotypically similar counties,
based on social, demographic, behavioral and health-related risk factors,
and that these phenogroups would demonstrate independent associa-
tions with observed disparities in CVD outcomes among U.S. counties.
Identifying subgroups of counties with overlapping characteristics and
potential drivers of CVD outcomes may inform preventive programs and
public health policies to address regional differences in CVD mortality.

1. Methods

1.1. Data sources

We analyzed publicly available data from the Robert Wood Johnson
Foundation’s 2020 County Health Rankings (CHR) database and Centers
for Disease Control and Prevention Wide-Ranging Online Data for
Epidemiologic Research (CDC WONDER). CHR data includes measures
collected between 2016 and 2018 and comprises information on county-
level measures of health for more than 3000 U S. counties from multiple
sources, including the Behavioral Risk Factor Surveillance System,
American Community Survey and National Center for Health Statistics
databases [13]. The database includes measures of health outcomes and
factors encompassing four domains: (1) health behaviors, (2) clinical
care, (3) social and economic factors, and (4) physical environment
characteristics (Supplemental Table 1). CHR 2020 data was used as it
provides the most contemporary cohort and includes the greatest number
of county-level covariates compared to previous years. Counties with
>10% missing covariates were excluded. This study was approved with
IRB exemption from the University of Texas Southwestern Medical
Center, Dallas, Texas.

Outcomes data were obtained from CDC WONDER, an online data-
base of county-level underlying cause of death reported for all U.S.
counties from 2008 to 2018 [30]. Our primary outcome of interest was
temporal trend in age-adjusted cardiovascular mortality per 100,000
population per year, derived from death certificates of U.S. residents and
classified by four-digit International Classification of Diseases 10th
Revision (ICD-10) codes [31]. Cardiovascular deaths were defined as
those attributed to ischemic heart disease (IHD), hypertensive disease,
rheumatic heart disease, myocarditis, heart failure (HF), and arrhythmias
under ICD-10 codes I00–I99. Secondary outcomes of interest included
age-adjusted mortality for IHD, mortality for HF, and all-cause mortality
per 100,000 population.

1.2. Exposures of interest

To identify clinically informative covariates from the CHR database
and eliminate redundancy among predictors we evaluated Pearson cor-
relation coefficients among 46 candidate variables, excluding covariates
with a correlation coefficient >0.7 (N ¼ 9). Among groups of correlated
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covariates, we eliminated more downstream risk factors, with the aim of
keeping upstream predictors of outcomes in the model. No covariates had
a high proportion of missing values (>10%). This process yielded 37
covariates, including measures from all four domains including de-
mographic indicators and markers of income, access to healthcare, high-
risk behaviors and physical environment. A list of the included and
excluded health factors and their definitions is provided in the
Supplement.

1.3. Statistical analysis

Data were scaled and standardized to a mean of 0 and standard de-
viation of 1. Missing data were imputed using random forest imputation
[14]. Phenotypic clusters were defined using unsupervised hierarchical
clustering of principal components (HCPC), a process by which data
undergo agglomerative hierarchical clustering followed by K-means
consolidation [15]. Because extraneous variables canmisguide clustering
results, principal components analysis was first performed to reduce the
dimensionality of the covariate data without losing significant variation
among important features. The optimal number of phenogroups was
determined based on the absolute loss of within-cluster inertia (a mea-
sure of variance). Once phenogroups were identified, spatial autocorre-
lation was assessed using the Moran’s I test [16]. Variable importance of
phenogroup characteristics was assessed by a V-test (a measure of the
over or underrepresentation of the variable within the phenogroup) with
an underlying hypergeometric distribution. Specifically, a positive V-test
value indicates the variable overrepresents the phenogroup while a
negative number indicates the variable underrepresents the phenogroup.
Characteristics across phenogroups were summarized as means (standard
deviations) and differences across phenogroups were evaluated using
one-way ANOVA.

Stepwise linear mixed effect regression with forward selection based
on Akaike Information Criterion was used to identify the 10 strongest
predictors of CVD mortality over time. Linear mixed effect modeling was
also performed to evaluate the temporal trends in age-adjusted CVD
outcomes with phenogroups. Differences in outcomes were displayed as
least square means. Models were adjusted for the same 10 covariates
identified in the stepwise forward selection step. To assess if phenogroup
membership improved prognostic performance above and beyond the
individual components, the improvement in the best fit model with
versus without phenogroup membership was assessed as previously
described [12]. The change in R2 between the best fit model with and
without phenogroup membership was determined by the
Davidson-MacKinnon J-test [17]. To assess the temporal stability in the
observed differences across phenogroups using the CHR 2020 dataset,
sensitivity analyses were performed comparing the county-level charac-
teristics across the phenogroups using data from the CHR 2010 cohort
(the earliest available dataset). Analyses were performed using R version
3.6.0 (R Foundation) using the FactoMineR, ape, and lmtest packages [15,
18,19]. A two-sided P < 0.05 was considered as statistically significant.

2. Results

Of the 3193 counties in the CHR dataset, 517 were excluded due to
missing outcomes data for a total of 2676 counties and 37 variables
included in the primary analysis. Eigenvalues for the first 24 components
were >1 and these components accounted for 91% of the variance in the
covariate data. Therefore, we used the first 24 components as input for
the HCPC model [15]. The optimal number of phenogroups was 4.
Baseline characteristics across county phenogroups are displayed in
Table 1. Differences between phenogroups, as determined by the V-test,
are summarized in Fig. 1 and Supplemental Table 2. Predictors of phe-
nogroup membership included risk factors such as race, ethnicity, co-
morbid disease with HIV and diabetes, markers of access to healthcare,
socioeconomic determinants such as stability of housing and medium
household income, and behavioral risk factors including rates of physical



Table 1
Baseline county-level demographic characteristics, health behaviors, social economic factors, physical environment attributes, and healthcare access measures assessed
across clusters.

Phenogroup 1 (n ¼ 924) Phenogroup 2 (n ¼ 451) Phenogroup 3 (n ¼ 951) Phenogroup 4 (n ¼ 350)

Demographic
Female, % 50.1 (1.3) 50.2 (2.0) 49.8 (2.2) 50.6 (3.1)
Age 65 and older, % 20.0 (4.6) 15.0 (3.7) 19.8 (3.8) 18.1 (3.3)
Age less than 18 years, % 21.7 (3.1) 23.2 (3.9) 21.7 (2.7) 22.4 (3.0)
Black, % 2.8 (3.9) 9.9 (11.1) 6.6 (8.0) 39.7 (17.0)
American Indian & Alaska Native, % 1.1 (2.0) 2.3 (5.6) 1.9 (4.7) 2.5 (10.1)
Native Hawaiian/Other Pacific Islander, % 0.1 (0.1) 0.3 (1.0) 0.1 (0.2) 0.1 (0.1)
Hispanic, % 5.6 (4.9) 25.6 (21.5) 6.9 (9.1) 6.0 (9.3)
Non-Hispanic White, % 87.8 (7.3) 55.6 (18.9) 82.3 (13.1) 49.8 (15.0)
Rural, % 54.2 (27.6) 18.1 (17.0) 68.5 (23.9) 59.7 (27.2)
Population, n 71,299.7 (94,847.3) 447,188.1 (773,317.9) 41,303.2 (55,985.2) 53,670.4 (126,859.6)
Health Behaviors
Smokers, % 15.6 (2.0) 15.3 (2.9) 19.4 (2.9) 20.9 (2.8)
Obesity, % 31.5 (4.5) 29.1 (5.0) 34.9 (4.3) 38.1 (4.9)
Diabetes, % 10.5 (2.7) 9.5 (2.6) 14.1 (3.6) 16.1 (4.0)
HIV Prevalence Ratea 99.7 (61.4) 269.3 (270.4) 141.0 (90.5) 396.0 (254.6)
Physically Inactive, % 24.6 (4.1) 22.6 (4.7) 30.7 (4.3) 32.8 (5.0)
Excessive Drinking, % 19.6 (2.7) 18.8 (2.7) 16.1 (2.4) 14.1 (2.3)
Vaccinated, % 46.6 (8.6) 44.3 (8.3) 40.6 (8.1) 39.1 (7.5)
Insufficient Sleep, % 30.7 (3.3) 33.2 (3.4) 34.9 (3.1) 38.0 (2.6)
Annual Mammogram, % 45.9 (6.2) 39.0 (7.0) 37.8 (6.0) 38.9 (6.1)
Social Economic Factors
Median Household Income, $ 60645.0 (12272.3) 61837.0 (18201.5) 46857.9 (7704.6) 39491.6 (5958.4)
Income Ratio 4.1 (0.4) 4.7 (0.8) 4.6 (0.6) 5.4 (0.8)
Unemployed, % 3.5 (1.0) 4.1 (1.6) 4.5 (1.3) 5.3 (1.4)
Segregation Index 51.9 (12.1) 47.9 (12.6) 45.2 (14.4) 33.5 (14.2)
Homeowners, % 74.4 (5.7) 62.1 (8.9) 73.9 (5.3) 66.4 (8.2)
Severe Housing Problem, % 12.2 (3.0) 18.6 (4.8) 12.9 (2.5) 16.5 (3.4)
Single-Parent Household, % 27.2 (6.9) 33.1 (8.4) 32.9 (6.2) 49.5 (9.5)
Drive Alone to Work, % 80.4 (4.6) 76.0 (9.5) 82.3 (4.0) 83.2 (4.6)
Limited Access to Healthy Foods, % 6.0 (4.3) 8.3 (5.9) 7.1 (5.7) 10.4 (7.9)
Physical Environment
Social Association Ratea 13.4 (5.5) 9.1 (3.5) 11.1 (4.3) 11.1 (3.9)
Violent Crime Ratea 170.9 (106.3) 367.7 (198.2) 240.7 (139.8) 464.6 (256.5)
Fine Particulate Matter, μg/m3 8.8 (2.0) 9.1 (2.0) 9.8 (1.4) 10.0 (1.0)
Healthcare Assess
Uninsured, % 8.5 (3.7) 11.8 (5.7) 12.3 (4.9) 13.9 (3.6)
Preventable Hospitalization Rate 4143.4 (1351.4) 4122.5 (1224.6) 5571.8 (1812.7) 6224.4 (1699.0)
Child Mortality Ratea 50.8 (12.0) 51.9 (14.2) 68.3 (15.7) 87.6 (21.9)
Primary Care Physicians Ratea 63.3 (33.5) 77.0 (37.0) 39.8 (21.1) 44.5 (24.0)
Dentist Ratea 52.9 (22.7) 72.3 (45.1) 33.6 (16.8) 36.7 (23.3)
Mental Health Provider Ratea 165.4 (130.6) 293.6 (246.7) 116.1 (142.2) 130.1 (133.9)

Numbers displayed as mean (standard deviation); CV, cardiovascular; HF, heart failure.
a Per 100,000 persons
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inactivity and smoking. A choropleth map of U.S. by counties grouped by
phenogroup is provided in Fig. 2 and demonstrates regional clustering of
observed phenogroups (Moran’s I ¼ 0.158, p-value<0.001). Phe-
nogroups 1 and 2 represent geographically diverse groups including
much of the Western and Northeastern United States. Conversely, phe-
nogroup 3 spans much of the rural Southeast and Midwest and phe-
nogroup 4 is most geographically centered in the urban Southeast and
East coast.

Phenogroup 1 (N¼ 924; 24.5%) included counties with non-Hispanic
white residents and highest median household income, percentage of
homeownership, access to healthy foods, and greatest access to preven-
tive health measures (Table 1). Phenogroup 2 counties (N¼ 451; 16.9%)
were the most populous with nearly 25% Hispanic occupants, the second
highest prevalence of Black residents, and the highest rates of severe
housing problems. This phenogroup also had the best access to health-
care and the lowest rates of diabetes, obesity, smoking, and social
isolation (Table 1). Phenogroup 3 counties (N ¼ 951; 35.5%) were pri-
marily non-Hispanic white and rural, with the worst access to healthcare,
higher rates of physical inactivity, obesity and diabetes, and limited ac-
cess to healthy food (Table 1). Phenogroup 4 (350; 13.1%) counties
consisted of primarily Black residents with the highest rates of single-
parent households, child mortality, income inequality, unemployment,
HIV prevalence, and traditional CVD risk factors (smoking, obesity,
3

diabetes, and physical inactivity) (Table 1). These counties also had the
second lowest rate of healthcare access (by prevalence of primary care
physicians) and the highest uninsured resident proportion and prevent-
able hospitalization rate. Similar differences between phenogroups were
observed using the limited county-level data from the 2010 CHR (Sup-
plemental Table 3).

In stepwise linear regression analysis, the ten strongest independent
predictors of CVD mortality included demographic and socioeconomic
characteristics (race, household income, and age), behavioral risk factors
(prevalence of smoking and physical inactivity), environmental factors
(fine particulate matter) and characteristics of healthcare access and
systems (percent with annual mammogram, child mortality rate, and
preventable hospitalization rates) (Supplemental Table 4). The age-
adjusted mortality rates across phenogroups over time are shown in
Fig. 3 and Table 2. Phenogroup 1 counties had the lowest age-adjusted
rates of CVD-related mortality with a stepwise increase in average
(least square means) age-adjusted mortality rates observed from phe-
nogroup 1 (223 deaths per 100,000 population) to phenogroup 4 (317
deaths) (p < 0.001 for trend). A similar trend was also seen in age-
adjusted overall mortality with phenogroup 1 having the lowest risk
(797 deaths per 100,000 population) and phenogroup 4 having the
highest (868 deaths) (p < 0.001 for trend). Conversely, while phe-
nogroup 4 still had the highest overall age-adjusted IHD and HF



Fig. 1. The top 5 most over and underrepresented variables in each phenogroup as determined by the V-test. A positive value indicates the variable overrepresents the
phenogroup while a negative number indicates the variable underrepresents the phenogroup.

Fig. 2. Choropleth map of United States counties by derived phenogroups.
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mortality, phenogroup 2 counties had the lowest overall age-adjusted
IHD and HF mortality (102 and 20 deaths per 100,000 population,
respectively).

The R2 for predicting CVD mortality with phenogroups alone was
4

0.48. The addition of phenogroup membership to the model with the top
10 optimal predictors significantly improved the R2 for predicting CVD
mortality from 0.69 to 0.71 (p < 0.001).



Fig. 3. Overall trends in A) cardiovascular (CV), B) ischemic heart disease, C) heart failure (HF), and D) all-cause mortality from 2008 to 2018 by phenogroups.

Table 2
Least square means age-adjusted mortality rates per 100,000 population between 2008 and 2018 by phenogroup. Differences between phenogroups were determined by
linear mixed effect models after adjusting for percent smoking, percent physically inactive, percent Black race, percent with annual mammogram, fine particulate
matter, median household income, preventable hospitalization rate, percent non-Hispanic white race, percent aged less than 18 years, and child mortality rate.a

Phenogroup 1 (95% CI) Phenogroup 2 (95% CI) Phenogroup 3 (95% CI) Phenogroup 4 (95% CI) P-value for difference (ref group: Phenogroup 4)

Phenogroup 1 Phenogroup 2 Phenogroup 3

CVD Mortality 222.9 (220.2–225.5) 223.8 (220.0–227.7) 284.0 (281.3–286.6) 317.0 (312.7–321.3) <0.001 <0.001 0.10
IHD Mortality 106.3 (104.0–108.5) 102.3 (99.1–105.4) 141.1 (126.2–138.9) 136.4 (132.7–140.2) 0.048 <0.001 0.35
HF Mortality 26.2 (24.3–28.0) 20.4 (18.5–22.4) 41.7 (39.7–43.7) 50.7 (47.7–53.8) 0.005 <0.001 0.21
All-Cause
Mortality

797.2 (789.4–804.9) 808.0 (801.8–814.2) 852.2 (846.7–857.7) 868.1 (855.5–880.6) <0.001 <0.001 0.02

a CI, confidence interval; CVD, cardiovascular disease; HF, heart failure; IHD, ischemic heart disease
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3. Discussion

Our study demonstrated the feasibility of an unsupervised ML clus-
tering strategy in identifying unique county phenogroups with differen-
tial CVD, IHD, HF, and all-cause mortality risk. We identified four
phenotypically distinct county phenogroups and observed increasing
rates of CVD outcomes and mortality over time from the predominantly
white, suburban communities in phenogroup 1 to the majority Black,
low-income, urban communities of phenogroup 4. While our ML algo-
rithm evaluated the contributions of socio-demographic, behavioral and
medical risk factors, phenogroup membership was in large part deter-
mined by social factors, including housing stability, household income,
access to health care and self-identified race. Phenogroup membership
was, moreover, associated with CVD outcomes independent of other
county-level predictors, demonstrating the robustness of the observed
association.

Despite declining national mortality rates from CVD, significant and
persistent regional disparities in CVD outcomes driven by disparities in
IHD were demonstrated in the first comprehensive county-level assess-
ment of CVD in the U.S. by Roth et. al [9]. Furthermore, while data from
the Behavioral Risk Factor Surveillance Survey [20] previously showed
marked disparities in CVD risk factors by region, the contributions of
heterogeneity in county-level characteristics toward the risk of mortality
5

and methods for accounting for these differences in developing cohesive
health policy interventions are not well understood. Our study represents
an important step forward by identifying county phenogroups based on
socio-demographic characteristics and demonstrating differences in CVD
mortality across phenogroups. The application of unsupervised ML in the
study of health disparities has been described previously [21], though no
prior study to our knowledge has employed these methods for evaluating
CVD disparities in a large, heterogeneous county-level population.
Furthermore, inclusion of demographic and social determinants data at
the county level—the smallest unit for which aggregate mortality data
are available—into a phenogroup analysis provides unique insight into
interactions among multiple related CVD mortality risk factors, which
can inform the development of health interventions at county and
regional levels [9,22]. By combining data on county-level risk factors and
CVD outcomes, our study builds on prior observations to further char-
acterize communities experiencing disproportionate CVD burden.

Our autonomous ML algorithm identified four mutually exclusive
county phenogroups, defined by differences in racial composition, social
determinants, access to healthcare, comorbid disease, and behavioral risk
factors. By evaluating the coalescence of markers of socioeconomic
distress including housing instability and household income, de-
mographic factors such as race, social environment including rural versus
urban differences, and access to healthcare at the county level, we are
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able to move beyond prior work that has established racial disparities in
order to better understand the effect of structural factors in driving car-
diovascular outcomes within communities. On the extremes of the
spectrum, phenogroups 1 and 4, demonstrated the lowest and highest
rates of CVD, respectively. Focusing on predominantly social markers,
this is largely expected. Phenogroup 1 represents high-income, pre-
dominantly White counties, with high access to healthcare, while phe-
nogroup 4 offers the opposite extreme: predominantly Black, urban
counties, with low household income, high rates of housing instability
and low access to care. However, the performance of intermediate phe-
nogroups is less predictable. Phenogroup 2, which represents counties
with the second lowest rates of CVD, demonstrates a number of high-risk
features, including a large Hispanic population, and high rates of housing
instability, but simultaneously exhibits high indices of healthcare access,
and low levels of CVD risk factors including diabetes and smoking. This is
likely due to phenogroup 2 counties hailing predominantly from regions
with large, racially diverse, urban centers that are historically White with
a growing Hispanic minority. Thus, though these communities experi-
ence housing instability due to increasing gentrification, their urban
status provides a higher density of healthcare resources. This is consistent
with our observations such that while phenogroup 2 had the highest
proportion of Hispanic residents compared to other phenogroups, only
26% of residents in phenogroup 2 were Hispanic compared to 56% of
Non-Hispanic White race. “Rural” identification was additionally the
strongest predictor of phenogroup non-membership, supporting that
phenogroup 2 largely represents urban communities. Similarly, phe-
nogroup 3 communities exhibit a mix of risk features: though predomi-
nantly White without housing insecurity issues, these counties
demonstrated high rates of traditional CVD risk factors, and low access to
healthcare, likely a result of their largely rural locations.

The significant role of race in determining cluster membership
highlights the role of race and racism in driving county-level health
disparities. Compared with non-Hispanic white adults, Black adults have
poor access to health care, higher burden of comorbid conditions, and
experience 30% higher risk of CV death [8,23–25]. In our study,
self-identified race was a driver of group membership in three of four
phenogroups, with high percentages of Black residents defining counties
in phenogroup 4 that exhibited the highest CVDmortality rates. The high
prevalence of social risk factors evident among counties with higher
proportion of Black and Hispanic residents further highlights the role of
structural racism—manifested in unstable housing, low income, and
inadequate access to care—in contributing to adverse health outcomes.
Though traditionally challenging to study, recent evaluations of CVD risk
factor prevalence in communities with high foreclosure risk and low
home-ownership find consistent results regarding the role of housing
instability in driving higher CVD risk as well [26]. Furthermore, the
confluence of elevated cardiovascular risk with childhood mortality risk
and HIV infection risk in counties with a higher proportion of Black
residents demonstrates the impact of social risk on multiple downstream
health outcomes. This points to the need for targeted multilayered in-
terventions, policies, and programs to produce health equity. By phe-
notyping counties based on multiple drivers of CVD risk, our study goes
beyond prior work in identifying related and overlapping modifiable
social risk factors for adverse CVD outcomes. Future studies are needed to
determine the impact of local policies and interventions aimed at housing
stability, housing insecurity, residential segregation, and social
infrastructure-building on long-term cardiovascular outcomes [27].

Our study can further the work of reducing CVD disparities by
informing the development of efficient community health interventions
targeted at specific county phenogroups. We demonstrated the value and
feasibility of a ML strategy in order to better capture drivers of CVD risk
at the regional level. Despite the development in recent years of
evidence-based community health interventions, matching appropriate
interventions to communities in need has remained a challenge and has
limited efforts to scale-up such programs. Our phenogroups identified
counties where funding for large-scale public health interventions aimed
6

at reducing physical and financial barriers to preventive care and/or
healthier lifestyles may have the largest impacts [28,29].
3.1. Limitations

This study is not without limitations. First, because we conducted a
cross-sectional analysis, causal relationships between county character-
istics and mortality cannot be drawn. Counties are large sociopolitical
(i.e., not tangible/ecological) boundaries that obscure more granular
variation in outcomes/covariates (confounding/measurement bias) and
influence the health policy that drives outcomes. Analysis in our study is
additionally limited to characteristics captured by the CHR, though data
presented represents over 97% of U.S. counties. Second, outcomes data
was based on ICD codes and not using adjudicated mortality events.
Third, this study included county-level data obtained from 2016 to 2018
and outcomes data recorded from 2008 to 2018. While the cardiovas-
cular outcomes occurring in 2008 may not be reflective in the current
county characteristics, our analysis showed that differences in county-
level mortality rates have been relatively stable between phenogroups.
Furthermore, the pattern of differences in county characteristics across
the phenogroups in 2010 data (the earliest available CHR) was consistent
with that observed in the primary analysis (2016–2018) highlighting the
temporal stability of our phenomapping approach. Finally, this is a
geographic analysis and our data was limited to the county level. Future
studies should examine smaller units of analysis – such as zip codes or
census tracts – in order to present a more granular area analysis which
may compliment the values we observe at the county level.

4. Conclusions

Unsupervised clustering of demographic and behavior data can
identify unique phenogroups with differential risk of CV-related and
overall mortality and may aid in designing tailored preventive in-
terventions for similar communities at highest risk for CVD-related
adverse events.
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