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SUMMARY

This protocol describes CAROM, a computational tool that combines genome-
scale metabolic networks (GEMs) and machine learning to identify enzyme tar-
gets of post-translational modifications (PTMs). Condition-specific enzyme and
reaction properties are used to predict targets of phosphorylation and acetyla-
tion in multiple organisms. CAROM is influenced by the accuracy of GEMs and
associated flux-balance analysis (FBA), which generate the inputs of the model.
We demonstrate the protocol using multi-omics data from E. coli.
For complete details on the use and execution of this protocol, please refer to
Smith et al. (2022).
BEFORE YOU BEGIN

Post-translational modifications (PTMs) such as phosphorylation and acetylation are highly

conserved mechanisms for regulation of cellular metabolism. However, the partitioning of regula-

tion among the different mechanisms is unclear. The huge diversity of PTMs make experimental

methods alone insufficient to understand their individual roles in metabolic regulation. To differen-

tiate the unique roles of each PTM, a data-driven approach called Comparative Analysis of Regula-

tors of Metabolism (CAROM) was developed (Smith et al., 2022). CAROM compares the properties

of PTM targets including essentiality, flux, molecular weight, and topology.

A list of protein targets of each regulatory mechanism is input to CAROM, and their properties are

analyzed using a genome-scale metabolic model (GEM). CAROM compares 13 properties (Table 1)

of eachmetabolic reaction to predict condition-specific PTM regulation sites. These properties were

chosen based on the hypothesis that target preferences of PTMs can be inferred from biochemical,

topological and flux properties of the targets. This hypothesis stems from prior experimental and

computational flux studies that have found an association between regulation by phosphorylation

and changes in reaction fluxes (Oliveira et al., 2012). By applying CAROM to multi-omics data in

yeast (Treu et al., 2014;Weinert et al., 2014; Murphy et al., 2015) and E. coli (Soares et al., 2013; Wei-

nert et al., 2013; Houser et al., 2015), we showed that essentiality and flux are useful features to pre-

dict regulation of different enzymes across different species.

CAROM was linked to a machine learning algorithm to create CAROM-ML, thereby allowing for

further analysis of the 13 key features’ influence on regulation. CAROM-ML was applied to well char-

acterized cellular processes in yeast, E. coli, and HeLa cells (Olsen et al., 2010; Kori et al., 2017). Each

gene-reaction pair is assigned a class corresponding to PTM type (phosphorylated, acetylated, or
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Table 1. Definitions of the thirteen features used by CAROM to compare and classify the targets of metabolic regulation

Feature number Feature name Definition

1. pFBA flux Fluxes from parsimonious flux balance analysis (pFBA). pFBA
eliminates futile cycles and redundancy by minimizing total flux
through the network while maximizing biomass.

2. Gene KO The maximum biomass/growth rate after gene knockout.

3. Max ATP after KO The maximum ATP generated after gene knockout.

4, 5. Vmax, Vmin Flux variability analysis (FVA) is used to find the maximum and
minimum flux through each reaction that still satisfies the maximum
biomass growth objective.

6. Growth across conditions A measure of organism viability across 87 different conditions. Gene
knockout is performed for each condition and the number of times a
gene is found to be lethal is used as the metric.

7. Closeness Inverse sum of the distance from a node to all other nodes.

8. Betweenness Measures how often each graph node appears on a shortest path
between two nodes in the graph.

9. Page rank Results from a random walk of the network. The score is the average
time spent at each node during the random walk.

10. Degree Number of edges connecting to each node. A self-loop counts as two
edges connecting to the node.

11. Reversible A binary variable (0 or 1) indicating whether the reaction is reversible.

12. MW Molecular weight of the enzyme

13. Kcat Catalytic activity of the enzyme
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unknown). CAROM-ML classifies PTM target proteins and proved to be highly accurate (AUC > 0.8,

MCC > 0.8, R > 0.6) across different conditions and species.

CAROM-ML was built with the Python XGBoost package. The XGBoost algorithm uses boosted de-

cision trees to minimize the error of the previous learner and prevent overfitting of the model (Chen

and Guestrin, 2016). SHapley Additive exPlanation (SHAP) was used to interpret the results from

CAROM-ML and to quantify the contribution of each feature to the accuracy of the model (Lundberg

et al., 2020). SHAP calculates the contribution from each feature to the ML model using the game

theory concept of Shapley values. Interpretation of SHAP values for all observations can clarify over-

all feature importance, how a feature impacts model output, and relationships between the predic-

tor features.

Overall, this approach can identify regulatory mechanisms dominant in different parts of the meta-

bolic network to improve accuracy of GEMs, and ultimately develop novel drug targets or direct

metabolic engineering efforts. This approach can lead to the development of more complete

next-generation GEMs with multiple regulatory mechanisms (Chung et al., 2021).

The subsequent section details the computational requirements and installation steps that should

be completed prior to using CAROM-ML. Users should be able to use this same set of instructions

to setup and run CAROM-ML whether using Windows or MacOS.
MATLAB

Timing: 1 h

1. The input data for CAROM-ML is generated and processed in MATLAB, primarily because we

require the COBRA toolbox (see next step). MATLAB can be downloaded at this link.
COBRA toolbox

Timing: 30 min
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2. COBRA (COnstraint-Based Reconstruction and Analysis) is a MATLAB toolbox used for

constraint-based modeling of biochemical networks (Heirendt et al., 2019). Detailed instructions

on setting up COBRA for MATLAB are found here: https://opencobra.github.io/cobratoolbox/

stable/installation.html.

Note: This toolbox is also available in Python (https://opencobra.github.io/cobrapy/).
Python and anaconda

Timing: 1 h

3. Python will be required to run the machine-learning code. For your Python platform, we recom-

mend installing Anaconda, a package and environment manager which also provides applica-

tions for running code. Anaconda can be downloaded at https://www.anaconda.com/

products/individual.

Note: Python will automatically be installed along with Anaconda. We recommend installing

the Python 3.8 version to avoid potential conflicts with the CAROM-ML, which has not yet

been tested with newer versions.
CAROM files

Timing: 5 min

4. Download the files required for running CAROM-ML, which can be found under the Files tab on

the project’s Synapse page: https://www.synapse.org/#!Synapse:syn20843407/wiki/597068

(alternatively use https://doi.org/10.7303/syn20843407).

a. After downloading the zipped file, unzip it within your project directory, which we will call proj-

ect_folder.

Note: The multi-organism dataset used by Smith et al. is included. As later detailed in the

step-by-step method details section, the CAROM-ML input matrix contains thirteen features,

along with a column for the PTM labels. These features are defined in Table 1.
Setting up your Python virtual environment

Timing: 10 min

5. Create a virtual environment using the environment.yml file, which should have been down-

loaded from Synapse into your project folder. This file contains all of the Python dependencies

required to run CAROM.

a. Navigate to the project folder using the command prompt or terminal:

(Windows/MacOS)
>cd Desktop/project_folder
b. Run the following command to create a virtual environment (here we call the environment

‘‘conda-env’’, however you may name it anything):

(Windows/MacOS)
>conda env create –prefix "./conda-env" –file environment.yml

STAR Protocols 3, 101799, December 16, 2022 3

https://opencobra.github.io/cobratoolbox/stable/installation.html
https://opencobra.github.io/cobratoolbox/stable/installation.html
https://opencobra.github.io/cobrapy/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.synapse.org/#!Synapse:syn20843407/wiki/597068
https://doi.org/10.7303/syn20843407


ll
OPEN ACCESS Protocol
You should now be ready to run CAROM-ML.
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CAROM supplementary data Smith et al. (2022) iScience main text: Supplementary material

E.coli acetylomics Weinert et al. (2013) Ecoli_Acetyl_Weinert.xlsx - syn34542449 - Files (synapse.org)

E.coli phosphoproteomics Soares et al. (2013) Ecoli_Phos_Soares.xlsx - syn34542450 - Files (synapse.org)

E.coli genome-scale metabolic model Orth et al. (2011) Ecoli_GEM_Orth_iJO1366.mat - syn34539904 - Files (synapse.
org)

E.coli KEGG to NCBI map N/A Ecoli_bnum_to_enzyme_map.xlsx - syn34542574 - Files
(synapse.org)

Software and algorithms

MATLAB N/A https://www.mathworks.com/products/matlab.html

Anaconda N/A https://www.anaconda.com/products/individual

COBRA Heirendt et al., (2019). ‘‘Creation and
Analysis of Biochemical Constraint-
Based Models Using the COBRA
Toolbox v.3.0.’’ Nature Protocols

https://opencobra.github.io/cobratoolbox/stable/

CAROM-ML source code Smith et al. (2022) carom.py - syn25792906 - Files (synapse.org)

CAROM-ML tutorial code Smith et al. (2022) carom_test_install.py - syn25886762 - Files (synapse.org)

Conda environment file Smith et al. (2022) environment.yml - syn25876213 - Files (synapse.org)
STEP-BY-STEP METHOD DETAILS

Here we describe the step-by-stepmethods for running CAROM-ML, from generating the input data

in MATLAB to running the source code in Python. This tutorial will use E.coli acetylation data from

the Weinert et al. study and phosphorylation data from Soares et al. The major steps of the data

workflow are summarized in Figure 1.
Generating the feature matrix for CAROM-ML

Timing: �6 h

CAROM-ML uses thirteen features to predict the PTM applied to each gene-reaction pair. As

detailed in Table 1, these predictors are related to metabolic flux, gene essentiality, network con-

nectivity and enzymes properties. Here we will demonstrate how to generate this matrix of N

gene-reaction pairs x 13 features.

1. Download the Orth et al. E.coli GEM from the CAROM-ML Synapse page or the BiGG database

(http://bigg.ucsd.edu/models/iJO1366) and load into MATLAB.

Note: It is important that the user selects the MATLAB file (with .mat extension) from the BiGG

download page.

2. Load the GEM into MATLAB, use the load function.

(MATLAB)
Note: It is important to constrain the GEM as necessary in order to better simulate the condi-

tion of interest. For modeling different metabolic states, experimental time-course

>ecoli_GEM=readCbModel(‘Ecoli_GEM_Orth_iJO1366.mat‘)
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Figure 1. Workflow diagram summarizing the steps involved in creating a CAROM-ML model
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metabolomics can be used with the Dynamic Flux Activity (DFA) algorithm (Chandrasekaran

et al., 2017; Campit and Chandrasekaran, 2020). For simulating other experimental conditions

from transcriptomics or proteomics, a list of up- and down-regulated genes/proteins can be

used as inputs to determine fluxes (Shen et al., 2019). Due to the various techniques that

can be used for adjusting the GEM, this is not covered in this protocol.

3. Generate the topological variables of the feature matrix.

a. Use the Centrality Toolbox to calculate closeness, betweenness, page rank and degree. The

topo_rxns matrix should therefore be N reactions x 4 topological features.

(MATLAB)
>[groups, orphans, R, C] = connectedComponents(ecoli_GEM);

>GG = graph(R);

>topo_rxns(:,1) = centrality(GG,’closeness’);

>topo_rxns(:,2) = centrality(GG,’degree’);

>topo_rxns(:,3) = centrality(GG,’betweenness’);

>topo_rxns(:,4) = centrality(GG,’pagerank’);
4. Extract reaction reversibility information from the GEM.

(MATLAB)
>reversible = ecoli_GEM.rev;

STAR Protocols 3, 101799, December 16, 2022 5



ll
OPEN ACCESS Protocol
5. Use FBA (Orth et al., 2010) to calculate the geneKO andmaxATPafterKO features by knocking out

each gene in the model one at a time and solving for the optimization problem for each iteration.

(MATLAB)
% initialize the COBRA toolbox and change solver to ‘gurobi’

initCobraToolbox(false)

changeCobraSolver(’gurobi’, ’all’);

% initialize variables

geneKO = NaN(length(ugenes),1);

maxATPafterKO = NaN(length(ugenes),1);

% find location of ATP in GEM metabolite list

ix_ATP = ismember(ecoli_GEM.metNames, ’ATP’);

for i = 1:length(ugenes)

% knockout gene ‘i‘ and solve model

GEM_temp = deleteModelGenes(ecoli_GEM, ugenes(i));

solution = optimizeCbModel(GEM_temp,[],’one’); % solve FBA problem

geneKO(i) = solution.f;

% change objective to ATP and resolve

GEM_atp = addDemandReaction(GEM_temp, ecoli_GEM.mets(ix_ATP));

GEM_atp = changeObjective(GEM_atp, GEM_atp.rxnNames(end));

solution = optimizeCbModel(GEM_atp,[],’one’);

maxATPafterKO(i) = solution.f;

end
6. Use flux variance analysis to derive a range of fluxes, Vmin and Vmax, through every reaction in

the network (Mahadevan and Schilling, 2003).

(MATLAB)
>[Vmin, Vmax] = fluxVariability(ecoli_GEM, 100, ’max’, ecoli_GEM.rxns, 1, true);
7. Calculate the ‘growth across conditions‘ values for each gene in the GEM.

Note: The 87 different conditions that are tested are controlled using exchange reactions.

(MATLAB)
% find exchange rxns in GEM

load carom_GEMs ecoli_exchanges

[ix, excpos] = ismember(ecoli_exchanges, ecoli_GEM.rxnNames);
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exc_pos = exc_pos(exc_ix)

% remove glucose and glutamine

GEM_temp = ecoli_GEM

GEM_temp.lb(ismember(ecoli_GEM.rxnNames, {’D-Glucose exchange’}))=0;

GEM_temp.lb(ismember(ecoli_GEM.rxnNames, {’L-Glutamine exchange’}))=0;

% initialize growth rate matrices

condition_wt1 = zeros(length(exchanges), 1);

geneko_biom_allcond = zeros(length(ugenes), length(ecoli_exchanges));

ll
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a. Loop through the exchange reactions, each time setting the LB for the current reaction to -1,

and then run gene knockout for all genes.

(MATLAB)
for i = 1:length(exc_pos)

% set lower bound of current exchange rxn to -1, then solve

modeltemp1 = GEM_temp;

modeltemp1.lb(exc_pos(i)) = -1;

ffgeneko = optimizeCbModel(modeltemp1);

condition_wt1(i,1) = ffgeneko.f;

% do gene KO for each j

for j = [1:length(ugenes)]

modeltemp2 = deleteModelGenes(modeltemp1,ugenes(j));

ffgeneko1 = optimizeCbModel(modeltemp2);

geneko_biom_allcond(j,i) = ffgeneko1.f; % rows=genes, cols=conditions

disp([j i])

end

end

% Anything that reduces by 1% is condition-specific essential.

growth_norm = geneko_biom_allcond./condition_wt1’;

growth_norm1 = (growth_norm < 0.99);

growthAcrossCond = sum(�growth_norm1,2)/length(exchanges); % fraction of conditions where

essential
8. Perform parsimonious flux balance analysis (pFBA), which maximizes growth rate while mini-

mizing the sum of fluxes.

(MATLAB)
>solution = optimizeCbModel(ecoli_GEM, [], ’one’);

>PFBAflux = solution.x

STAR Protocols 3, 101799, December 16, 2022 7
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9. Retrieve the enzyme-specific properties,MW and kcat, for each gene in the GEM. These features

will need to be gathered from biochemical databases like SABIO or BRENDA.

Note: In some cases, this data is provided with the GEMs and simply need to be extracted

from the GEMs for specific genes of interest.

10. Identify the significantly regulated enzymes using one or more omics datasets of interest. In

Smith et al. (2022), acetylomics and phosphoproteomics data from various growth conditions

were used for training.

Note: It is up to the user to decide how the significantly regulated enzymes will be identified,

whether that involves using fold change, z-scores or some other method. . For the CAROM

study, fold change was used to label the significantly regulated proteins and their correspond-

ing genes.

(MATLAB)
% load acetyl data w/ log2fc

ec_acet_data = readtable(‘‘Ecoli_Acetyl_Weinert.xlsx’’);

% load bnums-to-enzyme map for ecoli acetyl data

ec_bnums_to_enzymes = readtable("Ecoli_bnum_to_enzyme_map.xlsx");

% extract high and low acetyl genes

bnum_acet_high = string(ec_bnums_to_enzymes{ec_acet_data{:,4} > 2, "bnum"});

bnum_acet_low = string(ec_bnums_to_enzymes{ec_acet_data{:,4} < 0.5, "bnum"});

% load phos data w/ log2fc and gene names

phos_data = readtable(‘‘Ecoli_Phos_Soares.xlsx’’, ’Sheet’,’p-sites’);

expression = ’[b].\d*’; % extract KEGG IDs (start w/ ’b’, followed by #)

match = string(regexp(phos_data.Gene_Names, expression, ’match’,’once’));

bnum_phospho_high = string(match(phos_data.T1_Normalized_by_Protein > 2));

bnum_phospho_low = string(match(phos_data.T1_Normalized_by_Protein < 0.5));
11. Create the final feature matrix.
%%

%

[i

fe

fe

8

a. Map the gene-specific and reaction-specific features to the appropriate rows of the feature

matrix, which are gene-reaction pairs.

Note:Here we do not showMW and kcat, however the same procedure would follow once the

user has collected those values from outside sources.

(MATLAB)
% map features and PTM labels to gene-reaction pairs %%%

geneKO, maxATP and growth across conditions

x pos] = ismember(rxntable_bnums(:,1), ugenes); sum(ix)

atures(:,1) = geneKO(pos,1);

atures(:,2) = maxATPafterKO(pos,1);

STAR Protocols 3, 101799, December 16, 2022



features(:,3) = growthAcrossCond(pos,1);

% fva, pfba and reversibility

[ix pos] = ismember(rxntable_bnums(:,2), ecoli_GEM.rxns);

features(:,4) = PFBAflux(pos,1);

features(:,5) = Vmin(pos,1);

features(:,6) = Vmax(pos,1);

features(:,7) = reversible(pos,1);

% topology

[ix pos] = ismember(rxntable_bnums(:,2), ecoli_GEM.rxns); sum(ix) %

features(:,8:11) = topo_rxns(pos,:);

feat_names = {’geneKO’, ’maxATPafterKO’, ’growthAcrossCond’, ’PFBAflux’, ’Vmin’, ’Vmax’,

’reversible’, ’closeness’, ’degree’, ’betweenness’, ’pagerank’};

% create table and add gene+rxn names

tbl_ecoli = array2table(features,’VariableNames’,feat_names);

tbl_ecoli = addvars(tbl_ecoli,rxntable_bnums(:,1),rxntable_bnums(:,2),...

’Before’,’geneKO’,’NewVariableNames’,{’genes’,’rxns’});

%

ec

ec

%

ix

tb

%

ix

tb
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b. Map the significantly regulated enzyme to the gene-reaction pairs. The result should be an

array of binary values for each type of PTM.

Note: Any genes from the GEM that either do not meet the regulation threshold or are not

found within the omics dataset should be assigned to the ‘‘unknown regulation’’ class.

(MATLAB)
PTM labels

_acetyl = unique([bnum_acet_high; bnum_acet_low]);

_phos = unique([bnum_phospho_high; bnum_phospho_low]);

0=unknown, 1=acetylated

= ismember(rxntable_bnums(:,1), ec_acetyl); sum(ix)

l_ecoli.Acetyl = ix;

repeat for phosphorylation

= ismember(rxntable_bnums(:,1), ec_phos); sum(ix)

l_ecoli.Phos = ix;
c. If the user wishes to examine these two PTM types together as multi-class problem, another

column can be added which includes all three classes (acetylation, phosphorylation and un-

known).

Note: In this case, the user must decide how to handle overlapping labels. In Smith et al.

(2022), overlapping labels were assigned to the least represented class, phosphorylation.
STAR Protocols 3, 101799, December 16, 2022 9
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(MATLAB)
% create multi-class target variable (Acetyl=0, Unknown=1, Phos=2)

tbl_ecoli.PTM = ones(length(tbl_ecoli.Acetyl),1);

tbl_ecoli.PTM(tbl_ecoli.Acetyl==1)=0;

tbl_ecoli.PTM(tbl_ecoli.Phos==1)=2;
12. Additional preprocessing steps are up to the user. Below we detail the primary data transforma-

tion steps performed for the CAROM paper.
>tb

nan

no_

wt_

tbl

wt_

Vli

tbl

tbl

tbl

tbl

>tb

>tb

10
a. Fill in any missing feature data with the median value from its respective dataset. This should

only apply to theMW and kcat data, which must be collected from literature and may not be

available for all genes in the GEM.

(MATLAB)
l_ecoli = fillmissing(tbl_ecoli, "constant",

median(tbl{:, feat_names}), ’DataVariables’, feat_names);
b. Scale geneKO and maxATPafterKO by the wild-type growth rate.

(MATLAB)
deletion_solution = optimizeCbModel(ecoli_GEM,[],’one’);

gr = no_deletion_solution.f;

_ecoli{:,["geneKO","maxATPafterKO"]} = tbl_ecoli{:, ["geneKO", "maxATPafterKO"]}/

gr;
c. Limit Vmax and Vmin to values between -100 and 100.

Note: This threshold is applied to reduce the impact of extremely large fluxes, which can indi-

cate unconstrained reactions.

(MATLAB)
m = 100;

_ecoli.Vmax(tbl_ecoli.Vmax > Vlim) = Vlim;

_ecoli.Vmax(tbl_ecoli.Vmax < -Vlim) = -Vlim;

_ecoli.Vmin(tbl_ecoli.Vmin > Vlim) = Vlim;

_ecoli.Vmin(tbl_ecoli.Vmin < -Vlim) = -Vlim;
d. Scale kcat and pFBAflux by their mean values.

Note:We found that this method performed best for these features in terms of eliminating or-

ganism-specific signatures in the data distribution.

(MATLAB)
l_ecoli.kcat = tbl_ecoli.kcat / mean(tbl_ecoli.kcat);

l_ecoli.PFBAflux = tbl_ecoli.PFBAflux / mean(tbl_ecoli.PFBAflux);

STAR Protocols 3, 101799, December 16, 2022



>tb

num

nor

nor

tbl

>tb

>wr

c =

idx

tbl

idx

tbl
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e. reversible is a binary value, so does not need scaling.

(MATLAB)
l_ecoli.reversible = categorical(tbl_ecoli.reversible);
f. All features besides kcat, pFBAflux and reversible were normalized to values between 0 and 1.

Note: This step is not required for XGBoost, which is decision tree-based, however this step

can be performed if the user is interested in trying different types of machine-learning algo-

rithms which perform better with feature scaling.
(MATLAB)
_vars = tbl_ecoli(:,vartype("numeric")).Properties.VariableNames;

m_vars=num_vars;

m_vars(ismember(norm_vars,["kcat","PFBAflux"])) = []

_ecoli(:,norm_vars) = normalize(tbl_ecoli(:,norm_vars), ’range’);
13. If multiple datasets or organism types are to be analyzed together, they should be combined at

this stage. The datasets can simply be vertically concatenated.

(MATLAB)
l_carom = [tbl_ecoli; tbl_yeast];
a. Save data to file.
(MATLAB)
itetable(tbl_carom,"caromDataset.csv")
Running CAROM-ML in MATLAB

Timing: �15 min

The CAROM-ML code was written in Python due to the machine-learning tools available in this lan-

guage. However, if the user wishes to complete the entire project in MATLAB for simplicity reasons

or unfamiliarity with Python, they can reference the below code for training a PTM-classification

model.

14. Create a training and test set using the E. coli feature matrix that we created.

(MATLAB)
cvpartition(tbl_ecoli{:,’PTM’},’Holdout’,0.2,’Stratify’,true);

Train = training(c);

Train = tbl_ecoli(idxTrain,:);

Val = test(c);

Val = tbl_ecoli(idxVal,:);

STAR Protocols 3, 101799, December 16, 2022 11
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15. Use the fitcensemble function with the ‘‘Bag’’ method to train a random forest model.

Note: For the CAROM-ML Python code, XGBoost is used for the primary machine-learning

model, however this algorithm is not available in MATLAB.

(MATLAB)
t = templateTree(’MaxNumSplits’,5,...

’NumVariablesToSample’,’all’,...

’PredictorSelection’,’interaction-curvature’,...

’Surrogate’,’on’);

model = fitcensemble(tblTrain(:,feat_names),tblTrain{:,’PTM’},...

’Method’,’Bag’, ’Learners’,t, ’NumLearningCycles’,250);
16. Make predictions on the validation set using the trained model and evaluate the model perfor-

mance by displaying the resulting confusion matrix.

(MATLAB)
> y_pred = predict(model, tblVal(:,feat_names));

> confusionmat(tblVal{:,’PTM’}, y_pred)
17. Plot the feature importance scores for the train model. For more information on how MATLAB

calculates predictor importance, see the documentation page at this link.

(MATLAB)
[impGain, predAssociation] = predictorImportance(model);

figure()

bar(impGain);

title(’Predictor Importance Estimates’);

ylabel(’Estimates’);

xlabel(’Predictors’);

h = gca;

h.XTickLabel = model.PredictorNames;

h.XTickLabelRotation = 45;

h.TickLabelInterpreter = ’none’;
Running CAROM-ML in Python

Timing: �30 min
12 STAR Protocols 3, 101799, December 16, 2022
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The following instructions detail how to load the previously formatted data into Python and use it as

an input for the various CAROM-ML functions. In addition to training an XGBoost model for classi-

fying gene-reaction pairs by PTM labels, these steps will demonstrate how to explain the model and

its predictions.

18. Open your Python editor.

Note: For the Python editor, we recommend using Spyder, an integrated development envi-

ronment (IDE) that is included with Anaconda and allows you to run code interactively. By

opening Spyder in the conda environment that was setup in the previous steps, all required

Python libraries should already be installed and ready for use. For help on opening Spyder

in a specific environment, see the ‘‘Frequently Asked Questions’’ page from Spyder’s

documentation.

19. Load the feature matrix and the CAROM-ML functions (found in carom.py) into your Python ed-

itor of choice.

Note: Ensure that your working directory is set to your project folder (e.g., Desktop/project_-

folder) and that the conda environment has been activated (see troubleshooting Problems 1

and 2).

(Python)
# -*- coding: utf-8 -*-

"""

CAROM-ML script

"""

import pandas as pd

import carom

# load the CAROM data

df_carom = pd.read_csv("caromDataset.csv")

>df
a. You can inspect the first few rows of your data by running the following command:
(Python)
_carom.head()
If using Spyder, you can instead open the df_carom object in the Variable Workspace. The dataset

should look similar to the example data shown in Table 2.

20. Train the CAROM-ML model using the train_model function.

Note: This function trains an XGBoost model using cross-validation. Within each fold, hyper-

parameter tuning is performed and the model’s performance on the test fold is recorded. By

looking at the model’s performance across all five folds, we gain a better idea of its robust-

ness. By default, the train_model function performs 5-fold cross-validation. The number of

folds may be altered using the num_folds argument, however the use should be wary of using
STAR Protocols 3, 101799, December 16, 2022 13
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Table 2. Several rows from an example CAROM-ML input dataset

Genes Reactions geneKO maxATP . . . Closeness Pagerank Kcat MW PTM

b0002 ASPK 0.921 1 . . . 0.538 0.239 1.004 0.537 0

b0002 HSDy 0.921 0 . . . 0.793 0.638 1.004 0.5376 0

b0003 HSK 0 1 . . . 0.827 0.699 0.527 0.275 1

The dataset should contain two columns containing the gene and reaction IDs, the 13 CAROM features and an array of PTM

labels.
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too many folds on highly imbalanced datasets, thereby leaving too few regulated gene-reac-

tion pairs in each fold. After cross-validation, a final model is fitted to the entire dataset using

the hyperparameters from the best performing fold.

a. First, split the data into a training and validation set, so that there is data we can later test on

which the model has not been exposed to. If you already have a validation dataset to test on,

you can skip this step.

(Python)
om sklearn.model_selection import train_test_split

define the feature names

ature_names = df_carom.columns[3:16]

create X and y variables, then split into training-test

= df_carom[feature_names]

= df_carom[’PTM’]

train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123,

ratify=y)

g

o

e

b. Use the X (independent features) and y (class labels) training data as inputs into the train_-

model function.

(Python)
b_model, scores] = carom.train_model(X=X_train, y=y_train, class_names=["Acetyl","Un-

wn","Phos"], num_iter=5, condition="TestRun", fig_path="./figures/training")
Note: For any of the CAROM Python functions, running the help function will provide details

on the required and optional arguments:

(Python)
lp(carom.train_model)
c. Here we will highlight the possible inputs for the imbalance argument, which dictates how

the model training handles class imbalance.

i. Dictionary OR ‘‘auto’’: the Adaptive Synthetic (ADASYN) algorithm is implemented.

ADASYN is a method used for over-sampling the minority classes, but instead of repli-

cating existing observations (the feature values for gene-reaction pairs), entirely new

samples are interpolated (He et al., 2008). The user can enter a dictionary with the classes

and the corresponding number of samples they want for each class. For example, if the
STAR Protocols 3, 101799, December 16, 2022



>imba

# get

ix = X

test_

# make

[df_s
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unknown class contains 500 samples, but the phosphorylation and acetylation class have

only a fraction of this, the user may wish to generate twice as many samples for the two

classes of interest:
lance = {0:1000, 1:500, 2:1000}
Note that due to the way the class labels are encoded, the first class in the dictionary should

always be set to zero. To generate an even number of samples for all three classes (e.g., 500

each), the user can simply enter ‘‘auto’’.

ii. ‘‘undersample’’: random samples from the larger classes in the dataset are removed until

all classes have the same number of samples.

iii. ‘‘balanced’’: the inverse proportion of classes are used to assign a balanced set of class

weights. Classes with less samples will be given higher weights, meaning that the ma-

chine-learning algorithm will more heavily penalize misclassifying those points.

iv. ‘‘none’’ (default): no adjustments are made.

d. The two outputs from this function are the trained XGBoost model and a data frame contain-

ing the cross-validation classification scores. Additionally, three figures should be saved to

the folder specified in the fig_path argument: a confusion matrix with the cross-validation re-

sults, a bar graph showing the cross-validation scores (the error bars represent standard de-

viation) and the XGBoost feature importance plot (Figure 2). Note that the feature impor-

tance plot here is intended to assist with model explanation, as opposed to feature

selection. The feature importance scores demonstrate how all features contribute to the

model predictions with different degrees of importance, which is also highlighted in the

ensuing Shapley analysis.
21. Make predictions on the validation dataset using the trained model and the make_predictions

function.

Note: This function returns themodel’s classification scores on the validation set, as well as the

list of predicted class labels. Additionally, a CSV file is saved for each class indicating the

model’s performance for each gene-reaction pair (true/false positive, true/false negative). If

the user enables the plot argument within the function, a bar graph with the classification

scores is generated, as well as box plots for each numeric feature in each class. Example plots

are shown in Figure 3, including the confusion matrix (A), grouped box plots (B) and classifi-

cation scores bar plot (C).

(Python)
the gene-reactions pairs in the test set

_test.index

genes = df_carom.loc[ix,[’genes’,’rxns’]]

predictions on test set

cores, ypred] = carom.make_predictions(mdl= xgb_model,

X_test = X_test, y_test = y_test,

class_names = ["Phos","Unknown","Acetyl"],

gene_reactions = test_genes,

plot = True)

STAR Protocols 3, 101799, December 16, 2022 15
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Figure 2. Plots generated from the carom.train_model function

(A) Confusion matrix showing the cumulative classification results from the cross-validation training of the XGBoost

model.

(B) Various classification scoring metrics are plotted for the cross-validation results. The error bars shown represent

the 95% confidence interval for each metric.

(C) The feature importance scores from the XGBoost model. By default, XGBoost feature importance is measured in

gain, which is the improvement in accuracy that a feature adds to the branches it is on (click here for more information).
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22. If you do not know the true labels of the test set, or if you are simply interested in getting a list of

predicted labels for the test set, use the following command:

(Python)
>ypred = xgb_model.predict(X_test)
23. Use the shapley function to explain and interpret the trained model.

Note: This function is a wrapper for several functions from the SHAP library. While Shapley

values can potentially be used for feature selection or reduction, the primary purpose of

this function is to aid in model interpretation.

The inputs include the XGBoost model and the feature matrix for the observations that we want to

explain (e.g., X_test).

(Python)
[shap_explainer, shap_values] = carom.shapley(

xgbModel = xgb_model,

X = X_test[feature_names],

condition = "TestInstall",

fig_path = "./figures/shap")
The function’s outputs include the SHAP explainer object and the Shapley values. The shap_values

variable should be a matrix ofN observations xM features. The explainer object may be useful if the

user wishes to perform their own additional analyses with the SHAP package. Examples of the output

plots are shown in Figure 4. It is recommended to review SHAP documentation page for interpreting

these figures (https://shap.readthedocs.io/en/stable/index.html).

24. Analyze specific genes of interest using the select_genes function, as shown in Figure 5.

Note: The required inputs include the feature matrix and PTM labels from the background da-

taset (e.g., X_test, y_test), the gene-reactions pairs associated with that data, a list of genes of

interest, the trained XGBoost model and the SHAP explainer from the above step. A multi-

output decision plot will be generated for each reaction linked to the genes of interest.
a. In the below example, we pick two gene-reaction pairs to analyze: the first instance of phos-

phorylation and acetylation in the test dataset. In order to calculate the Shapley values for

these two observations, we have to pass several pieces of data to the function, including

the test data, the entire set of gene-reaction pairs, the trained XGBoost model and the Shap-

ley explainer from the previous section.
STAR Protocols 3, 101799, December 16, 2022 17
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(Python)
# get first Phos gene and first Acetyl gene

phos_gene = test_genes.genes[y_test==-1].iloc[0]

acetyl_gene = test_genes.genes[y_test==1].iloc[0]

select_genes = [phos_gene, acetyl_gene]

carom.select_genes(X = X_test, y = y_test,

all_geneRxns = test_genes,

select_genes = select_genes,

condition = "my_selecet_genes",

class_names = ["Phos", "Unknown", "Acetyl"],

model = xgb_model,

explainer = shap_explainer)
25. Build a single decision tree model using the decision_tree function, which provides another

method for deconstructing the model’s predictions and measuring feature importance.

Note: This function is a wrapper for the decision tree classifier and hyperparameter tuning

from scikit learn. The outputs of this function include a separate decision tree model trained

for each maximum depth that the user inputs, along with a saved PNG file for visualizing the

tree (Figure 6). For example, if the user inputs depths=[2, 3], two models will be stored in the

assigned variable and two images should be saved to the project folder.

(Python)
my_weights = [{0:2,1:1,2:2}, {0:5,1:1,2:5}]

my_trees = carom.decisionTree(X = df_carom[feature_names],

y = df_carom["PTM"],

class_names = ["Phos", "Unknown", "Acetyl"],

imbalance=my_weights,

condition = "weighted_dTree",

make_viz=True,

depths=[2],

pruneLevel=5,

random_seed=123)

18
a. Class imbalance: similar to the train_model function, several options are available within the

imbalance argument for adjusting how the model addresses class imbalance.

i. The user may enter a list of dictionaries, each containing the class weights (see the

example above). As described previously, typically the less represented classes are given

higher weights, so that the model penalizes misclassifications of that class more severely.

In this case, a separate model is trained using cross-validation and hyperparameter tun-

ing for each set of weights within the list. This allows the user to experiment with different
STAR Protocols 3, 101799, December 16, 2022



Figure 3. The carom.make_predictions function is used to test the trained CAROM-ML model on a validation dataset where the true PTM labels

are already known

Several figures are generated by default which help visualize the model’s performance.

(A) Confusion matrix showing the true labels on the y-axis and the predicted labels on the x-axis.

(B) Various classification metrics showing the model’s performance on the test set.

(C) Boxplots for each numerical feature and for each class, showing the feature distribution grouped by true positives, false positives, true negatives and

false negatives.
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sets of weights. Themodel with the best cross-validation score is then selected as the final

model.

ii. ‘‘adasyn’’: Uses the ADASYN oversampling method described in the train_model section,

with all classes set to the same size.

iii. "balanced": the inverse proportion of classes are used to assign a balanced set of class

weights.

iv. ‘‘none’’: no adjustments are made to the model training.

b. Pruning – the pruneLevel argument is used to remove any leaves on the decision tree with

less observations than the specified integer.
STAR Protocols 3, 101799, December 16, 2022 19



Figure 4. The carom.shapley function outputs several figures from the SHAP package, all of which help explain the model’s predictions

(A) The multi-class summary plot shows the feature importance according to the Shapley values across all three classes.

(B) A separate Shapley summary plot is generated for each class. The features are sorted from top to bottom by average absolute Shapley value for the

specific class. Unlike the multi-class plot, the single class plot shows how each feature is correlated with the model’s output.

(C) A Shapley value heatmap is created for each class. The model’s output for the respective class is shown on the top x-axis in log odds, the features are

ordered on the y-axis by importance, and the observations are clustered according to f(x).

(D) For each class, a Shapley dependence plot is generated for the top three most importance features (according to that class’ summary plot). The

feature’s values are on the x-axis and the feature’s Shapley values on the y-axis. The data points are colored by the values of the feature which most

interacts with the main feature of the plot.
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EXPECTED OUTCOMES

The primary outcome of this analysis is a better understanding of why metabolic enzymes are tar-

geted by a certain PTM in the condition of interest. By following the CAROM-ML pipeline, the

user is left with a trained machine-learning model which can be used to make predictions for

gene-reaction pairs whose regulation is unknown. More importantly, the CAROM-ML tool contains

several methods for explaining these predictions, which are based on a small set of thirteen features

related to biochemical properties, metabolic activity, and network connectivity.

As demonstrated in the graphical abstract figure, the bulk of the work for the user falls within setting

up and preprocessing the feature matrix in MATLAB. Six of features used in the machine-learning

model are generated from flux balance analyses. It is critical that the GEM being used for these cal-

culations is reflective of the condition of interest. This may require adjusting the GEM using condi-

tion-specific transcriptomics. Once the entire feature matrix has been created and PTM labels have

been assigned to the gene-reaction pairs, the CAROM-ML functions in Python make it easy to begin

creating and interpreting a ML model based on the data. The primary analyses include training a
20 STAR Protocols 3, 101799, December 16, 2022



Figure 5. The carom.select_genes function outputs Shapley decision plots for each gene-reaction pair associated with the input genes

The features are ordered by descending importance for the specific observation. The gray line intersects the x-axis at the expected value, which is

essentially the model’s average prediction for that class in log odds. Moving up the plot from this mark on the x-axis, we can see how the model’s output

for each class is changed as features are added. The final outputs are where the colored lines intersect the top x-axis, meaning that the line farthest to

the right corresponds to the model’s prediction. The dashed line represents the true class.
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XGBoost model and using Shapley values to explain both the entire model and specific gene-reac-

tion pairs. These results can help uncover which enzyme properties play a role in dictating why a PTM

is or is not active in a condition. While this approach has currently only been applied to two types of

regulation (phosphorylation and acetylation), in the future the types of PTMs could be expanded

upon. Ultimately the goal is for CAROM-ML to guide metabolic engineering and drug discovery ef-

forts by informing researchers which regulators to expect in various parts of the metabolic network.
LIMITATIONS

The main limitations of this study stem from the use of GEMs. Because roughly half of the features

used in the machine-learning tool are generated using FBA methods, any inaccuracies within the

GEMmay have significant effects on the classification results. However, previous studies have shown

that fluxes generated from FBA closely resemble their corresponding experimental values. We have

also shown that CAROM-ML’s PTM predictions closely resemble experimental regulation data.

Another limitation is the availability of training data. When applying a previously trained CAROM

model to a new condition, only the condition-specific parameters are needed to update the flux

data and generate PTM labels. However, when training a new model, data availability may be

another limiting factor. In addition to needing a GEM that represents the organism of interest,

the user must be able to gather the enzyme-specific properties (MW, kcat), as well as the phospho-

proteomics and acetylomics levels. If data is not available for all genes present in the GEM, the user

must decide between filling in the missing data or removing those genes. In the primary study,

missing feature data was replaced by the median value, while missing target labels were assigned

to the ‘‘unknown’’ class. If there was zero literature evidence regarding the acetylation or phosphor-

ylation of the missing gene, then it was removed entirely.
TROUBLESHOOTING

Problem 1

There are several issues that may cause an error when trying to import Python packages into your

Python editor in Step 18, such as shown here:
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>ModuleNotFoundError: No module named ’pandas’
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Potential solution

� The first thing to check is that the conda environment, conda-env, exists and has been properly

setup using the environment.yml file. To do this, open the command line and enter the following

command in order to view a list of all of your conda environments:

(Windows/MacOS)
>conda env list
This command should produce a result similar to the line below if you have only the provided envi-

ronment installed:
>C:\Users\username\Desktop\project_folder\conda-env
� If this looks correct, the next step is to make sure that your editor has been opened within the envi-

ronment. We will assume that Spyder is being used as the editor, as suggested. After opening

Anaconda Navigator, it is important to switch the working environment. It may be necessary to

select the correct environment from the dropdownmenu, as shown in the red rectangle in Figure 7.

Once the correct environment has been selected, launch Spyder and the necessary libraries should

be ready to be imported.

Alternatively, Spyder can be opened in the CAROM-ML environment via the terminal (or using

Anaconda Prompt on Windows):

(Windows/MacOS)
cd project_folder

>conda activate conda-env

>spyder
Problem 2

Similar to problem 1, you may encounter the following error in Step 18 when trying to read in data

into Spyder.
FileNotFoundError: [Errno 2] No such file or directory: ’caromDataset.csv’
Potential solution

� Ensure the Spyder working directory is set to the project folder. The working directory can be

changed using the dropdown menu in the top right of the console, as shown In Figure 8.

� If the datasets are not saved in the main folder, ensure to either adjust the relative paths or to use

absolute file paths (e.g., ‘C:\Users\username\Desktop\project_folder\caromDataset.csv’).
22 STAR Protocols 3, 101799, December 16, 2022
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Figure 6. The carom.decision_tree function is another tool for understanding which features are instrumental in

differentiating between PTM classes

The function outputs a separate decision tree for each maximum depth value that is specified. The colors indicate the

majority class for each leaf, while the strength of the colors represents how dominant the major class is.
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Problem 3

The imbalanced nature of the omics data canmake it difficult for models to predict instances of regu-

lation. When training the model in Step 19, the model may be biased by the much higher number of

‘‘unknown’’ gene-reaction pairs, compared to the much lower number of phosphorylated or acety-

lated pairs.
Potential solution

� XGBoost handles class imbalance well by default. However, you may still find that your model has

poor recall on a test set or is predicting a lower-than-expected number of regulated gene-reaction
Figure 7. After opening Anaconda Navigator, ensure the ‘‘Applications on’’ dropdown menu is set to the correct environment
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Figure 8. If Spyder is not set to the correct working directory, any relative file paths will not work for reading in data

or Python libraries
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pairs. The imbalance argument for the train_model can be used to adjust how the model’s training

takes the minority classes into account. Refer to section 2c of running CAROM-ML in Python for

details on how to incorporate either oversampling, undersampling, or class weights into the

model training.

Problem 4

The XGBoostmodel’s performance in the cross-validation training is much different than themodel’s

performance on test or validation sets in Step 20.

Potential solution

� This may be due to the model being over- or under-fitted. If that is the case, try adjusting the

optional arguments of the train_model function. For example, for if you suspect the model is

over-fitted, ensure that depth is set to ‘‘shallow’’ in order to train less-complex trees within the

model, or try reducing the value of num_iter, which controls the number of hyperparameter tuning

searches.

� If the XGBoost training does not seem to be the issue, compare the distribution of the features in

the training versus validation data. If they are not similar, additional preprocessing may be

required.

Problem 5

The COBRA toolbox functions in Step 5 are not working or is producing unexpected results

regarding the flux balance-related features.

Potential solution

� First, ensure that your optimization solver is compatible with COBRA.

� Next, ensure that you use the following command to load the GEM into MATLAB, as other

methods can cause issues.

(MATLAB)
>readCbModel(GEM)
� Run the following commands to identify potential issues with the GEM’s structure fields and

missing biomass precursors, respectively.

(MATLAB)
>verifyModel(GEM)

>biomassPrecursorCheck(GEM)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Sriram Chandrasekaran (csriram@umich.edu).

Materials availability

No materials were generated in this study.

Data and code availability

d All data have been deposited at Synapse and are publicly available as of the date of publication at

https://www.synapse.org/CAROM. DOIs are listed in the key resources table.

d All original code has been deposited at Synapse and is publicly available as of the date of publi-

cation. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.
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