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Abstract

Epidemiological studies indicate a genetic contribution to ischemic stroke risk, but specific genetic variants remain
unknown. Recently independent studies reported an association between coronary heart disease and single-nucleotide
polymorphisms (SNPs) located at chromosome 9p21 (rs10757278 and proxy SNPs). Given that stroke is a common
complication after myocardial infarction, several validation studies have been conducted among various ethnic populations
to investigate if the same loci was associated with ischemic stroke (IS), but the results have been inconsistent. To investigate
this inconsistency and derive a more precise estimation of the relationship, a meta-analysis of 34,128 cases and 153,428
controls from 21 studies was performed. Potential sources of heterogeneity including ethnicity, sample size, control source
and ischemic stroke subtypes were also assessed. Overall, the summary odds ratio of IS was 1.11 (95% CI: 1.07–1.15,
P,1025) for rs10757278. In the subgroup analysis by ethnicity, significantly increased risks were found in East Asians (3188
cases and 4503 controls; OR = 1.14, 95% CI: 1.07–1.21, P,1025) and Caucasians (30505 cases and 145153controls; OR = 1.08,
95% CI: 1.04–1.12, P,1025) for the polymorphism; while no significant associations were found among African Americans
(435 cases and 3772 controls; OR = 0.97, 95% CI: 0.63–1.51, P = 0.90) in all genetic models. In the subgroup analyses by IS
subtypes, significant association was detected only in large vessel stroke group, while no significant associations among
small vessel or cardioembolic stroke. When stratified by sample size, and control source, significantly increased risks were
found for the polymorphism in all genetic models. This meta-analysis provides accurate and comprehensive estimates of the
association of genetic variant at chromosome 9p21 and IS, but these associations vary in different ethnic populations.
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Introduction

Ischemic stroke (IS) is a leading cause of death and disability

worldwide [1]. Traditional risk such as dyslipidemia, hypertension,

atrial fibrillation smoking, and diabetes mellitus can only explain a

small proportion of the observed clinical events [2]. However, a

large proportion of the population attributable risk for ischemic

stroke has remained unexplained [3]. Twin and familial aggrega-

tion studies suggest that the risk of stroke has a substantial genetic

component [4], but the genes underlying this risk in the general

population remain undetermined. Since the pathogenesis of

ischemic stroke is yet to be elucidated completely, the candidate-

gene approach is limited in power to detect novel disease-

susceptibility genes.

Recently, significant advance was made in identifying suscep-

tible genes underlying the risk of complex diseases such as type 2

diabetes and coronary disease through genome-wide association

strategy (GWAS) [5–7]. The strongest association signal in the

genome in GWAS for myocardial infarction (MI) and coronary

artery disease (CAD) that has been published thus far comes from

a number of SNPs with a high degree of linkage disequilibrium

between each other on chromosome 9p21 [7–9]. Given the fact

that ischemic stroke shares several common risk factors and

pathophysiological mechanism with CAD and MI [10,11], the

genomic interval on chromosome 9p21 could be a candidate locus

for IS as well. Only recently, several small studies have looked for

an association between sequence variants on 9p21 and IS risk

[8,12,13].

A number of studies have been conducted to investigate the

association between chromosome 9p21 polymorphisms and the

risk of IS in humans; however, these studies have yielded

inconsistent result. Genetic association studies can be problematic

to reproduce due to multiple hypothesis testing, relatively small

sample size, population stratification, source of controls, publica-

tion bias, and phenotypic heterogeneity. In addition, with the

increased studies in recent years among Asian, and other

populations, there is a need to reconcile these data. We therefore

performed a meta-analysis of the published studies to clarify this

inconsistency and to establish a comprehensive picture of the

relationship between genetic markers of chromosome 9p21 and IS.

Materials and Methods

Literature Search Strategy and Selection Criteria
Genetic association studies published before the end of August

2013 on ischemic stroke and polymorphisms within chromosome

9p21 gene were identified through a search of PubMed, ISI

Web of Science, EMBASE and CNKI (Chinese National

Knowledge Infrastructure) without language restrictions. Search
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term combinations were keywords relating to chromosome 9p21

(e.g., ‘‘chromosome 9p21’’, ‘‘CDKN2A/B’’, or ‘‘ANRIL’’) in

combination with words related to IS (e.g., ‘‘ischemic stroke’’,

‘‘stroke’’, ‘‘cerebral infarction’’, ‘‘cerebral ischemia’’, or ‘‘cerebro-

vascular disease’’) and polymorphism or variation. We replaced

one term each time until all possible combination mode were

searched to avoid any missing literature. The titles and abstracts of

potential articles were screened to determine their relevance, and

any clearly irrelevant studies were excluded. The full texts of the

remaining articles were read to determine whether they contained

information on the topic of interest. All reference lists from the

main reports and relevant reviews were hand searched for

additional eligible studies.

Eligible studies had to meet all of the following criteria: (a)

original papers containing independent data, (b) case–control or

cohort studies, (c) identification of IS case was confirmed

pathologically and (d) genotype distribution information or odds

ratio (OR) with its 95% confidence interval (CI) and P-value. The

major reasons for exclusion of studies were (a) overlapping data

and (b) case-only studies, (c) family-based studies and review

articles.

Data Extraction
Information was carefully extracted from all eligible publica-

tions independently by two authors according to the inclusion

criteria listed above. For each included study, the following data

was extracted from each report according to a fixed protocol: first

author, publication year, definition and numbers of cases and

controls, diagnostic criterion, frequency of genotypes, source of

controls, body mass index (BMI), age, sex, Hardy–Weinberg

equilibrium (HWE) status, ethnicity and genotyping method.

Discrepancies in data extraction were resolved by discussion

between all authors through consensus. Studies with different

ethnic groups were considered as individual studies for our

analyses. Not all researchers use the same 9p21 SNPs, and most

articles reported results for multiple SNPs (uniquely identified by

their rs number). We extracted data for all SNPs used by the 21

included articles, but we report herein 1 common SNP

(rs10757278) that was widely investigated, as other SNPs

(rs2383207, rs2383206, rs10757274, and rs4977574) are in high

linkage disequilibrium with rs10757278 (r2.0.85) [6,8,14,15,16].

Statistical Methods
The strength of association between chromosome 9p21

polymorphisms and IS risk was assessed by OR with correspond-

ing 95% CI. Deviation from Hardy–Weinberg equilibrium was

examined by Chi-square test. If controls of studies were found not

to be in HWE, sensitivity analyses were performed with and

without these studies to test the robustness of the findings. The

meta-analysis examined the association between chromosome

9p21 polymorphisms and the risk of IS: (1) allele contrast (effect of

each additional risk allele), (2) dominant model (presence vs.

absence of the risk allele), and (3) recessive model (presence vs.

absence of two copies of the risk allele). Random-effects summary

measure was calculated as inverse-variance-weighted average of

the log odds ratio [17]. The results of random-effects summary

were reported in the text because it takes into account the

variation between studies. Heterogeneity was assessed with

standard Q-statistic test and I2 test [18,19].

In addition, sources of heterogeneity were investigated by

stratified meta-analyses based on ethnicity, sample size (IS cases $

500 or ,500), ischemic stroke subtype and control source (hospital

or population based study). Ethnic group was defined as

Caucasian (i.e., people of white European origin), East Asian

(e.g., Chinese, Japanese, Korean), and African American. BMI,

sample size, age, sex and ethnicity were analyzed as covariates in

meta-regression. The 95% CIs were constructed using Woolf’s

method [20]. The significance of the overall OR was determined

by the Z-test. Funnel plots and Egger’s linear regression test were

used to assess evidence for potential publication bias [21]. In order

to assess the stability of the result, sensitivity analyses were

performed, each study in turn was removed from the total, and the

remaining were reanalyzed. All the analyses were carried out with

the STATA software version 10.0 (Stata Corporation, College

Station, TX, USA). All P values are two-sided at the P = 0.05 level.

Results

Study Characteristics
The combined search yielded 105 references. 84 articles were

excluded because they clearly did not meet the criteria or

overlapping references (Figure 1). Finally, a total of 21 studies

were finally included with 34,128 patients and 153, 428 controls

[12–15,22–38]. The detailed characteristics of the studies included

in this meta-analysis are shown in Table 1. The polymorphism on

chromosome 9p21 was found to occur in frequencies consistent

with HWE in the control populations of the vast majority of the

published studies. There are 26 data sets with 30505 cases and

145153 controls concerning Caucasians and 5 data sets with 3188

cases and 4503 controls concerning East Asians. For the African

American, 4 data sets involved a total of 435 cases and 3772

controls.

Meta-analysis Results
The main results of this meta-analysis were listed in Table 2. In

the overall analysis, the risk allele of rs10757278 polymorphism

was significantly associated with elevated IS risk. Under a random-

effect model, the per-allele OR for IS was 1.11 (95% CI: 1.07–

1.15, P,1025; Figure 2) with corresponding results under

dominant and receive genetic model of 1.19 (95% CI: 1.11–

1.25, P,1025) and 1.23 (95% CI: 1.19–1.29, P,1025), respec-

tively.

When studies were stratified for ethnicity, significant risks were

found among East Asians in all genetic model [allele contrast:

OR = 1.14, 95% CI: 1.06–1.21; dominant model: OR = 1.19,

95% CI: 1.10–1.31; recessive model: OR = 1.17, 95% CI: 1.05–

1.32]. Similar results were also found in Caucasian populations

[allele contrast: OR = 1.11, 95% CI: 1.07–1.15; dominant model:

OR = 1.18, 95% CI: 1.14–1.27; recessive model: OR = 1.26, 95%

CI: 1.19–1.31]. However, no significant association was found for

African American populations in all genetic models. Subsidiary

analyses of sample size yielded a per-allele OR for small studies of

1.11 (95% CI: 1.05–1.17, P = 0.001) and large studies of 1.10 (95%

CI: 1.06–1.15, P,1025). By considering control source subgroups,

the OR was 1.10 (95% CI: 1.06–1.14, P,1025) in population-

based controls compared to 1.27 (95% CI: 1.10–1.47, P = 0.001)

in hospital-based controls. In the subgroup analyses by ischemic

stroke subtype, significant associations were found for large vessel

stroke in all genetic modes [allele contrast: OR = 1.15, 95% CI:

1.10–1.19; dominant model: OR = 1.19, 95% CI: 1.08–1.30;

recessive model: OR = 1.24, 95% CI: 1.07–1.45]. However, we

failed to detect any association between small vessel stroke,

cardioembolic stroke, or other type of stroke risk and the

polymorphism (Figure 3 and Table S1). After adjusting for

multiple testing using Bonferroni correction, all significant

associations for rs10757278 under the three different genetic

models remained.

Ischemic Stroke Genetics
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Although the formal test for heterogeneity was not significant

(P.0.05), we conducted meta-regression as there were also

grounds for considering the ethnicity, sample size, IS subtype,

and clinical characteristics of cases and controls (age, BMI, and sex

distribution) as potential sources of heterogeneity. However, the

meta-regression showed that none of these covariates significantly

contributed to the heterogeneity among the individual study

results except for ethnicity (P = 0.01) and IS subtype (P = 0.002).

Sensitivity Analyses and Publication Bias
Sensitivity analysis indicated that no single study influenced the

pooled OR qualitatively, suggesting that the results of this meta-

analysis are stable (Figure S1). The shape of the funnel plots was

symmetrical (Figure S2). The statistical results still did not show

publication bias in these studies (Begg test, P = 0.55; Egger test,

P = 0.45).

Discussion

Genome-wide association studies have identified a locus for risk

of coronary artery disease on chromosome 9p21 [7–9]. Recent

studies have also analyzed the association between 9p21 and

overall ischemic stroke, with diverse outcomes [22–27]. The

present meta-analysis provides the most comprehensive assessment

of the risk of IS and 9p21 variant (rs10757278). Its strength was

based on the accumulation of published data giving greater

information to detect significant differences. In total, the meta-

analysis involved 21 studies for IS which provided 34,128 cases

and 153, 428 controls.

Our results demonstrated that the rs10757278 polymorphism

on chromosome 9p21 is a risk factor for developing ischemic

stroke. In the stratified analysis by ethnicity, significant associations

were found in East Asian and Caucasian populations for the

polymorphism in all genetic models. However, no significant

associations were detected among African populations. There are

several possible reasons for such differences. In fact, the

frequencies of the risk-association alleles in chromosome 9p21

are similar in European and East Asian populations, but

substantially lower in African descent [22,27,37,38]. Thus, failing

to identify any significant association in African populations could

be due to substantially lower statistical power caused by the

relatively lower prevalence of the risk allele. In addition, study

design or small sample size or some environmental factors may

affect the results. Most of these studies did not consider most of the

important environmental factors. It is possible that variation at this

locus has modest effects on IS, but environmental factors may

predominate in the progress of IS, and mask the effects of this

variation. Specific environmental factors like lifestyle and diabetes

that have been already well studied in recent decades. The

unconsidered factors mixed together may cover the role of the

polymorphism. Furthermore, different populations usually have

different linkage disequilibrium patterns. A polymorphism may be

in close linkage with another nearby causal variant in one ethnic

population but not in another. The rs10757278 polymorphism

may be in close linkage with different nearby causal variants in

different populations. Nevertheless, owing to the limited number

of relevant studies among African Americans included in this

meta-analysis, the observed ethnic difference in this meta-analysis

is also likely to be caused by chance because studies with small

sample sizes may have insufficient statistical power to detect a

slight effect or may have generated a fluctuated risk estimate.

Figure 1. Study selection process.
doi:10.1371/journal.pone.0090255.g001
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Thus, further studies including a wider spectrum of subjects to

investigate the role of chromosome 9p21 variants in this

population will be needed.

Meta-analysis is often dominated by a few large studies, which

markedly reduces the evidence from smaller studies. However, in

the stratified analysis according to sample size, significantly

increased IS susceptibility in risk allele carriers rs10757278

polymorphism was also found both in large and small studies for

all genetic models.

Ischemic stroke itself has a number of subtypes with the most

common being large-vessel atherosclerotic stroke, small-vessel

disease, and cardioembolism. As ischemic stroke subtypes was the

main source of heterogeneity in our meta-analysis, we performed

subgroup analyses by IS subtypes. We found that the risk allele has

an increased risk in large-vessel stroke subgroup but not in small-

vessel or cardioembolic stroke subgroup. This finding is in line

with previous family history studies on ischemic stroke subtypes,

showing a greater risk associated with large vessel stroke than small

vessel stroke [39]. Recently, Zhang et al. [37] reported that family

history of stroke further increased the stroke risk to 2.37-fold in

subjects carrying 4 copies of G-allele of rs10757274 and

rs10757278, and also increased the risk of stroke recurrence (2.45-

fold). Thus, a combination of the risk variants on 9p21.3 with family

stroke history could help to predict an individual’s risk of stroke. The

reason for the observed stroke-specific difference in the risk

conferred by the rs10757278 polymorphism is unknown. It has

been suggested that genetic predisposition may differ for these

subtypes [40], and of note, most monogenic forms of stroke

predispose to individual stroke subtypes [40]. This genetic

heterogeneity seems likely to reflect heterogeneity in the underlying

pathogenic mechanisms and reinforces the need for the consider-

ation of stroke subtypes separately in research and clinical contexts.

The association between ischemic stroke and SNPs at a locus

previously associated with coronary artery disease and diabetes

Figure 2. Meta-analysis of studies on the association of rs10757278 on chromosome 9p21 with ischemic stroke.
doi:10.1371/journal.pone.0090255.g002
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suggest that ischemic stroke shares common pathophysiological

pathways with these diseases. Recently, a common variant near

the CDKN2B gene in the chromosome 9p21 locus is associated

with a lower ankle-brachial index which is a simple and reliable

method to detect peripheral arterial disease [41]. The cardiovas-

cular disease-associated regions at the chromosome 9p21 locus are

adjacent to the last exons of a long noncoding RNA (lncRNA),

ANRIL (also known as CDKN2BAS) [42]. Two cyclin-dependent

kinases inhibitors, CDKN2A and CDKN2B (encoding

p15INK4B, p16INK4A, and p14ARF) lie close to the association

spot (,100 kb from the associated SNPs). CDKN2A/B are known

to be repressed by Polycomb proteins during cell growth and then

activated during senescence [43]. There is strong evidence to

support the role of ANRIL in the regulation of the CDKN2A/B

locus through histone modification [44,45]. ANRIL has been

proposed to regulate senescence at the CDKN2A locus, and it

showed a senescence-dependant role in proliferation [44]. These

findings emphasize the importance of ANRIL in cell proliferation

and regulation of the locus CDKN2A/B in a cell line directly

involved in the pathogenesis of atherosclerosis.

In summary, this study provides the most comprehensive

evidence that 9p21 is a susceptibility locus in ischemic stroke,

particularly in East Asian and Caucasian populations. More

important, these variants may have different degrees of influence

on various subtypes of ischemic stroke. Larger studies of different

ethnic populations, especially strict selection of patients, well-matched

Figure 3. Forest plot for the association between rs10757278 and ischemic stroke risk by stroke subtype status.
doi:10.1371/journal.pone.0090255.g003
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controls, are needed to confirm our findings. An improved under-

standing of the pathogenesis of IS will be beneficial in the diagnosis

of prodromal symptoms and in establishing appropriate therapeutic

intervention to prevent the onset and the progression of IS.
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