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ABSTRACT

Objective: This study investigated the application of a deep learning-based object detection 
model for accurate localization and orientation estimation of spinal fixation surgical 
instruments during surgery.
Methods: We employed the You Only Look Once (YOLO) object detection framework with 
oriented bounding boxes (OBBs) to address the challenge of non-axis-aligned instruments 
in surgical scenes. The initial dataset of 100 images was created using brochure and website 
images from 11 manufacturers of commercially available pedicle screws used in spinal fusion 
surgeries, and data augmentation was used to expand 300 images. The model was trained, 
validated, and tested using 70%, 20%, and 10% of the images of lumbar pedicle screws, with 
the training process running for 100 epochs.
Results: The model testing results showed that it could detect the locations of the pedicle 
screws in the surgical scene as well as their direction angles through the OBBs. The F1 score 
of the model was 0.86 (precision: 1.00, recall: 0.80) at each confidence level and mAP50. 
The high precision suggests that the model effectively identifies true positive instrument 
detections, although the recall indicates a slight limitation in capturing all instruments 
present. This approach offers advantages over traditional object detection in bounding 
boxes for tasks where object orientation is crucial, and our findings suggest the potential 
of YOLOv8 OBB models in real-world surgical applications such as instrument tracking and 
surgical navigation.
Conclusion: Future work will explore incorporating additional data and the potential of 
hyperparameter optimization to improve overall model performance.
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INTRODUCTION

Pedicle screws are the most fundamental and commonly used implants in spine fusion 
surgery.3,7,21) The precise insertion of pedicle screws is crucial for the success of the 
fusion, and intraoperative C-arm X-rays are universally used for accurate pedicle screw 
placement due to their simplicity and relatively low cost.12,31) However, the malposition rate 
is approximately 10%–40% and the use of intraoperative C-arm X-rays has also increased 
radiation exposure.13,20) Several different modalities, such as navigation systems, have 
been developed for accurate insertion of the pedicle screw and reduction of radiation 
exposure.12,25,33) Unlike C-arm X-rays, the computed tomography (CT)-based navigation 
system provides 3-dimensional images, demonstrating high accuracy in pedicle screw 
placement and is used in some advanced hospitals.29,30) However, it has a steep learning 
curve, requires significant preoperative preparation time, and faces issues such as positional 
discrepancies between the navigation images and the actual patient.20,29) To address these 
limitations, the intraoperative O-arm navigation system has been introduced, which does not 
require preoperative image preparation or repetitive intraoperative registration. This system 
has been reported to significantly increase the accuracy of pedicle screw placement.8,9,30) 
Although the intraoperative O-arm navigation system greatly improves accuracy, its high cost 
limits its general use, so it is only used in a few hospitals.

There is increasing interest in the use of augmented reality systems in spine surgery as part 
of a practical free hand technique and as an alternative to current approaches such as C-arm 
X-ray and navigation systems.6,11,32) The augmented reality system can project the patient’s 

91

Localization of Spinal Instruments Using AI

https://doi.org/10.13004/kjnt.2024.20.e17https://kjnt.org

GRAPHICAL ABSTRACT



anatomical structure directly onto the surgical field using images taken before surgery. 
However, to integrate external spine instruments into the augmented reality system, an 
additional recognition device is required. Combined with computer-assisted image guidance 
technology, deep learning technology is widely used in the spine field.2,4,5,19,26) In particular, the 
use of deep learning in pedicle screw insertion has also been reported. Esfandiari et al. provide 
a framework for automatic segmentation and posture estimation of pedicle screws using deep 
learning technology based on C-arm X-ray and, the calculated pose estimation accuracy was 
1.93°±0.64° and 1.92±0.55 mm on clinically realistic X-rays.10) Therefore, in order to enhance 
the patient’s surgical prognosis and compensate for the shortcomings of screw fixation, it is 
believed that technology that can be combined with imaging applications such as computer 
vision in the operating room is necessary. Meanwhile, the You Only Look Once (YOLO) model 
utilizes a fully convolutional neural network (CNN) to process the entire image at once.14,15) 
This network analyzes the image, divides it into a grid, and predicts bounding boxes and class 
probabilities for objects within each grid cell.14) YOLO has been successfully applied in the 
medical domain.1) It can be trained to detect and localize lesions in medical images, aiding in 
the diagnosis of diseases like pressure ulcers. It can also perform general object detection in 
medical images. Furthermore, an oriented bounding boxes (OBBs)-based YOLO model was 
used to recognize multiple surgical instrument tips.28) This model considers the center, angle, 
and other key information related to surgical instruments. Therefore, the purpose of this study 
is to develop a deep learning-based object detection model specialized for spine instruments 
to accurately recognize screws and localize and estimate their direction in augmented reality 
systems, and to investigate the feasibility of this model.

MATERIALS AND METHODS

Dataset
We collected 100 pedicle screw dataset images from brochures and website images provided 
by manufacturers (SUPPLEMENTARY TABLE 1) that provide pedicle screw systems used in 
spinal fusion (TABLE 1).

Annotation and data augmentation
Following the initial data collection, the images underwent directional labeling and 
annotation using Roboflow annotation tool.16) Annotation processes ground truth 
information with class 0 as the pedicle screw and outputs predictions in the x, y, w, h, and r 
(xywhr) format. Here, this format represents the object’s center point (x, y), width (w), height 
(h), and rotation angle (r). Subsequently, data augmentation techniques were employed 
to generate additional images, including variations in blur, brightness, and rotation. This 
process yielded a final dataset of 300 images, which was then segregated into training, 
validation, and test sets at the ratio of 70%:20%:10%, respectively.
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TABLE 1. Characteristics of the original pedicle screw image sets used for modeling
Character Original images (n) % Augmented images* (n) %
Screw alone 43 43.00 121 40.33
Screw with assemble system 15 15.00 46 15.33
Screw with hand gloves 15 15.00 47 15.67
Screw with spine bone 11 11.00 38 12.67
Multiple screws 16 16.00 48 16.00
Total 100 100.00 300 100.00
*Note: Blur, brightness, and rotation techniques are applied to original images.



Model architecture
For real-time detection of pedicle screws, YOLOv8 was used.14,16) The model consists of 
modules: head, bottle neck, and backbone. Backbone is a network main body that extracts 
features of images and improves object detection performance, and bottle neck module (C2f, 
faster implementation of the cross stage partial bottleneck with 2 convolutions module) is a 
key component that reduces feature channel dimensions while preserving spatial information 
and maintains model efficiency while extracting informative features. The head has an anchor-
free structure that considers accuracy and efficiency, and is the part that generates the final 
output. The output from each detection head goes through a decoding process to generate 
detections with oriented bounding boxes and its classification using a sigmoid activation 
function, with binary cross entropy (BCE) loss measuring the difference between predicted 
and ground-truth class labels.22) And BCE measures the difference between the predicted class 
probabilities and the ground-truth labels (one-hot encoded) in equation 1.

 BCE=−Σ[t(c)×log{p(c)}+{1−t(c)}×log{1−p(c)}]  (1)

where the predicted class probabilities p(c) and the ground-truth one-hot encoded labels t(c), 
c iterates over all class categories. The input images were resized to 640×640 pixels to match 
the model’s expectations. And normalization was applied to improve training stability. In 
YOLOv8’s backbone for the feature extraction, the five feature maps named p1, p2, p3, p4, 
and p5 represent the outputs at different stages of the convolutional layers (FIGURE 1). These 
stages progressively extract features of increasing complexity and abstraction. P1 and P2 (early 
layers) capture basic, low-level features like edges, corners, and simple shapes. They provide 
crucial foundational information for higher-level feature extraction. They capture global 
context, relationships between objects, and features that are essential for detecting larger or 
distant objects in the image. Meanwhile, by utilizing multiple feature maps from different 
stages (P3, P4, P5) in the detection head, YOLOv8 can predict bounding boxes for objects at 
different scales. The higher-resolution features (P3) are better suited for small or close objects, 
while the higher-level features (P4, P5) excel at detecting larger or distant objects.
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Note
- P: feature maps for prediction (P1, P2, P3, P4, and P5)
- Conv: convolution
- Conc: concatenation, the operation of combining feature maps

along the channel dimension
- C2f: a faster implementation of the cross stage partial (CSP)

bottleneck with 2 convolutions module (C2)
- Up: upsampling, increasing the spatial resolution of a feature map
- Detect: detection, the model decodes the processed features to

generate oriented bounding boxes and class probabilities.
- x, y: the coordinate of the bounding box for the square point
- cx, cy: center point of the x and y
- θ: the angle between the screw axis and horizontal line
- OBB: oriented bounding box
- HBB: horizontal bounding box

Screw object

OBB

HBB

(x4, y4)

(x1, y1)

(x2, y2)

(x3, y3)

(cx, cy)

θ

FIGURE 1. The model architecture of the YOLOv8-OBB for this study. 
YOLO: You Only Look Once, OBB: oriented bounding box.



YOLOv8-OBB utilizes the corner points (obtained from handling the ground truth 
information for object detection or directly provided in the dataset) for internal training 
purposes.23) The model treats these points as the ground truth representation of the object 
during loss calculations and network optimization. While the model trains using corner 
points internally, it leverages the xywhr format for predicted outputs. The predicted x, y, w, 
h, and r values likely correspond to the estimated center point, width, height, and rotation of 
the detected object.

External validation
To simulate a potential real-world application in an operating room equipped with a 
computer vision system, we employed a web camera for a preliminary test. In addition to 
internal testing of model training, external validation was conducted on three pedicle screws 
test images. And the model has detected the confidence score, which reflects its confidence 
in the prediction, along with the rotation angle for the images. A computer vision system 
employing the Logitech HD Webcam C270 (Logitech Inc., San Jose, CA, USA) was utilized to 
assess the potential for instrument localization within the operating room environment. The 
system detected and determined the direction of spine surgery instruments through image 
analysis from a web camera.

Performance metrics
Loss in model training epochs, mAP50, and mAP50-95 in YOLO were evaluated to measure 
the performance of an object detection model. The mean average precision (mAP) was 
calculated for mAP50 and mAP50-95. The metric summarizes the overall precision (accuracy) 
of the model across all classes in your dataset. Meanwhile, intersection over union (IoU) is 
a metric used to measure the overlap between the predicted bounding box and the actual 
bounding box for the object, with a higher IoU indicating a better match between the 
prediction and the actual object. Again, the mAP50 is calculated at an IoU threshold of 0.5. 
It essentially measures how well the model performs in detecting objects with a 50% overlap 
between the predicted and ground truth bounding boxes. For the mAP50-95, this refers to 
the average mAP calculated across a range of IoU thresholds from 0.5 to 0.95. the mAP50-
95 provides a more comprehensive picture of the model’s performance by considering its 
ability to detect objects with varying degrees of overlap. And both the precision (how many 
detections were correct) and recall (how many actual objects were detected) of the model for 
that class were calculated for a particular class consideration.

Programming environment
Python 3.10.12, PyTorch 2.2.1, i7, Intel® i9 processor, and NVIDIA® GeForce RTX™ 4060 were 
used to develop the YOLOv8-OBB model.

RESULTS

Pedicle screw orientation detection
As a result of performing training for 100 epochs using Adam optimizer through YOLOv8 
OBB modeling, the prediction result for the test image is shown in FIGURE 2. The images of 
OBB prediction results corresponding to FIGURE 2A-D are FIGURE 2E-H. The model detects 
objects for screws in all test images, and recognizes objects in the direction of screw insertion 
or progress by outputting a bounding box in the direction of the screw rather than outputting 
a bounding box parallel to the image. The result was shown in FIGURE 2E-H.
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Prediction for the pedicle screw assembly
FIGURE 3 shows the results predicted through the model developed through this study 
on screw assembly images. Real-world estimation result of pedicle screw for a maximum 
confidence score of 0.90 in the scene was detected in FIGURE 3A. Furthermore, the direction 
of the screw was detected and displayed as a bounding box, and the image position of the 
center coordinates (93, 522) and the orientation angle of 147.57 degrees were detected in 
FIGURE 3B. Localization information about the corner positions of the detected boxes was 
also calculated in the image or scene. The model achieved an average confidence score of 
0.66±0.28 across the 3 test images for the predicted bounding boxes. The predicted rotation 
angles exhibited a mean of 141.10°±22.95°.
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BA

FIGURE 3. Prediction outcomes through the model developed through this study on screw assembly images. (A) 
Real-world estimation result of pedicle screw in the scene detection and prediction using web-camera (Logitech 
HD Webcam C270; Logitech Inc.). (B) Specific localization and detection results of the direction for the screw as a 
bounding box, and location of the center coordinates (93, 522) in the image or scene and the orientation angle of 
147.57 degrees. Note: Confidence score of the detection: 0.82, Coordinates of the top-left (x1, y1) and bottom-
right corners (x2, y2) of the OBB: (58.1528, 492.9121, 128.3769, 551.9011), Center coordinates (x, y), width (w), 
height (h) of the OBB: (93.2648, 522.4066, 65.0638, 28.5457), and Rotation angle (θ): 147.57 degrees. 
OBB: oriented bounding box.

B E FA

D G HC

FIGURE 2. Test image sets and the prediction output images for the model of OBB. The images of OBB prediction results corresponding to A to D are E to H in 
FIGURE 2. The model not only detected objects for screws in all test images, but recognized objects for screw insertion and direction by outputting a bounding 
box for the direction of the screw. 
OBB: oriented bounding box.



Model performance metrics
For pedicle screw detection of the model, classification and distribution focal loss through 
detection of bounding box, screw and non-screw parts were calculated from 1 epoch to 100 
epochs (FIGURE 4A). Where the distribution focal loss is a variant of the focal loss function 
designed for imbalanced datasets, common in object detection. Damping exists, but 
stabilized after 90 epochs. FIGURE 4B is the result of calculating mAP50 and mAP50-95. The 
precision of mAP50 showed a maximum of 0.83 at 93 epochs. And, the precision of mAP50-
95 converged at over 0.5 (FIGURE 4B). Performance indicators for the model’s F1 score, 
precision, and recall were calculated in TABLE 2. The F1-score was 0.86, precision 1.00, recall 
0.80, mAP50max 0.83, and mAP50-95max 0.56.
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FIGURE 4. The box, classification, and distribution focal loss in training by 100 epochs (A) and the mAP 
calculated at an IoU threshold of 0.5 and 0.5 to 0.95 (B). 
mAP: mean average precision.



DISCUSSION

Oriented bounding boxes for pedicle screws
We detected the surgical tool along the direction of the screw object, rather than through 
a simple bounding box horizontal to the image (FIGURE 2). In the image collection 
process for the pedicle screw, we tried to collect images considering the complex screw 
characteristics as shown in TABLE 1. However, in an actual operating room environment, 
when the screw retraction process is not well recognized through computer vision while 
the operator is handling the assembly, a challenge arises in which the region of interest 
detection area is reduced (FIGURE 2A-C). In this case, there is a need for an algorithm that 
subdivides detection features into an enlarged area, or the need to add trajectory necessary 
for direction detection. In order to accurately localize the pedicle screw in this study, we 
calculated detailed information about the center point coordinates, and direction angle of 
the detection area for prediction outcome of the surgical instrument (FIGURE 3). Localization 
of surgical instruments in computer vision is crucial for several reasons. Firstly, it allows 
for a more complete understanding of the surgical scene, similar to how object detection 
helps understand a general image. By knowing the exact location of each instrument, the 
computer can build a more comprehensive picture of the operative field. Secondly, precise 
localization is vital for tasks like instrument tracking and surgical navigation. This empowers 
computer-assisted or robotic surgery systems to precisely track instrument movement, 
ensuring smooth and safe manipulation within the delicate surgical environment. Finally, 
accurate localization can be used for tasks like anomaly detection. If a specific instrument is 
unexpectedly missing from its expected location, the system can raise an alarm, potentially 
preventing errors or delays during surgery. Overall, localization underpins various 
functionalities in computer vision for surgical applications, leading to a safer, more efficient, 
and potentially less invasive surgical experience.18,19,27)

Clinical application of the pedicle screw detection
A deep learning model trained on a dataset of CT scans of patients with spinal diseases can 
analyze the patient’s spinal anatomy.10) The model can identify key features such as vertebrae, 
pedicles, and potential nerve pathways. Models generated through methods such as those in 
this study can predict the optimal entry point, trajectory, and depth of each pedicle screw.10) 
This prediction may consider factors such as bone density, screw size, and potential risk 
of nerve impingement. Meanwhile, deep learning can analyze complex anatomical details, 
potentially making screw placement more accurate and reducing the risk of complications. 
Fluoroscopy (real-time X-rays) is currently used to guide screw placement, but both surgeon 
and patient are exposed to radiation. Computer vision technology using deep learning is 
still in development as a follow-up study, but research is ongoing to improve deep learning 
models and optimize surgical computer system integration.2,28) Deep learning models can be 
further personalized by considering the anatomy and medical history of individual patients. 
Additional imaging techniques, such as fluoroscopy or CT scans, can be used to analyze 
screw placement during surgery in real time, and an image-guided computer vision system 
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TABLE 2. The performance metrics for F1-score, precision, recall, mAP50, and mAP50-95 of the model
Metrics F1-score Precision Recall mAP50 mAP50-95
Value 0.86 1.00 0.80 0.83 0.56
Condition Confidence level* 0.40 Confidence level* 0.43 mAP50 Max Max
mAP: mean average precision.
*Note: Confidence level is the classification probability for the pedicle screw detection.



can provide surgeons with feedback to avoid critical structures during surgical approaches.4,5) 
Although there are challenges to overcome, the combination of deep learning and augmented 
reality has the potential to significantly improve the safety, accuracy, and efficiency of 
spine surgery, especially pedicle screw placement. And detecting and recognizing surgical 
instruments is crucial for efficient surgery. Researchers have explored deep learning 
techniques for surgical tool detection, including CNNs.24) These methods can enhance 
robotic surgery, instrument tracking, and training.

Accuracy and speed for modeling of YOLOv8
In object detection deep learning models, anchor boxes are essentially a set of predefined 
boxes in various sizes and shapes that are placed on a grid system over the input image.15) 
The model then refines these anchor boxes to predict the actual bounding boxes of objects 
in the image. First, instead of predicting bounding boxes from scratch for every single 
location in the image, anchor boxes provide a good starting point, making the process more 
efficient.17) Second, by using a variety of anchor box sizes, the model can handle objects of 
different scales within the image. YOLOv8 which is employed in this study, has maintained 
that the anchor-free design offers a good balance between accuracy and speed. The model 
utilizes an anchor-free object detection method.14) YOLOv8 directly predicts the bounding 
box coordinates (center point, width, and height) relative to a grid cell in the image. This 
approach offers more flexibility in detecting objects of varying sizes and aspect ratios 
without needing a predefined set of anchors. However, conventional Models (YOLOv1-v7) 
on predefined anchor boxes of various sizes and aspect ratios. The model predicts offsets 
and adjustments to these anchor boxes to get the final bounding boxes for objects. Another 
discussion thread explores the possibility of a hybrid approach where YOLOv8 might utilize a 
small set of learned anchor boxes along with its current architecture.14) This could potentially 
improve detection accuracy for certain object classes or specific aspect ratios. The anchor-
free design simplifies the model architecture and potentially reduces training complexity. 
However, some researchers are exploring if there might be trade-offs in terms of inference 
speed compared to anchor-based models.28)

Considering the complex operating room environment
We produced efficient modeling results using 100 image sets (TABLE 1, FIGURE 1). In this 
study, 300 expanded images with blurring, rotation, and brightness adjusted considering 
data augmentation were used. In future studies, image collection in a complex operating 
room environment is necessary. By training the model using images, directional detection 
can be performed in more complex environments. Additionally, by employing screw image 
data from a wider variety of manufacturers, it is possible to detect the directionality of 
surgical instruments for computer-based spine surgery. To complement our internal model 
training evaluation, we performed external validation using three test images containing 
pedicle screws (FIGURE 3). Future work should involve expanding the external validation 
process by analyzing detection results on a significantly larger dataset of test images. 
While this study focused on the detection and orientation of surgical instruments within 
the operating scene, future investigations could explore the potential of segmentation 
models. These models might be capable of simultaneously recognizing not only surgical 
instruments but also the surgeon’s hands and the patient's spinal vertebrae, offering a more 
comprehensive analysis of the surgical scene.
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CONCLUSION

In this study, we investigated the application of a deep learning-based object detection 
model for accurate localization and orientation estimation of intraoperative spinal fixation 
instruments for computer-based spine surgery. Although the model was not trained through 
image collection in a complex operating room environment and the number of screw image 
data was limited, the possibility of detecting the directionality of surgical instruments for 
computer-based spine surgery was confirmed.

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY TABLE 1
List of manufacturers and corresponding product names for the pedicle screw image sets 
used in the study
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