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Abstract

Background

The majority of studies that link antibiotic usage and resistance focus on simple associations

between the resistance against a specific antibiotic and the use of that specific antibiotic.

However, the relationship between antibiotic use and resistance is more complex. Here we

evaluate selection and co-selection by assessing which antibiotics, including those mainly

prescribed for respiratory tract infections, are associated with increased resistance to vari-

ous antibiotics among Escherichia coli isolated from urinary samples.

Methods

Monthly primary care prescribing data were obtained from National Health Service (NHS)

Digital. Positive E. coli records from urine samples in English primary care (n = 888,207)

between April 2014 and January 2016 were obtained from the Second Generation Surveil-

lance System. Elastic net regularization was used to evaluate associations between pre-

scribing of different antibiotic groups and resistance against amoxicillin, cephalexin,

ciprofloxacin, co-amoxiclav and nitrofurantoin at the clinical commissioning group (CCG)

level. England is divided into 209 CCGs, with each NHS practice prolonging to one CCG.

Results

Amoxicillin prescribing (measured in DDD/ 1000 inhabitants / day) was positively associated

with amoxicillin (RR 1.03, 95% CI 1.01–1.04) and ciprofloxacin (RR 1.09, 95% CI 1.04–
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1.17) resistance. In contrast, nitrofurantoin prescribing was associated with lower levels of

resistance to amoxicillin (RR 0.92, 95% CI 0.84–0.97). CCGs with higher levels of trimetho-

prim prescribing also had higher levels of ciprofloxacin resistance (RR 1.34, 95% CI 1.10–

1.59).

Conclusion

Amoxicillin, which is mainly (and often unnecessarily) prescribed for respiratory tract infec-

tions is associated with increased resistance against various antibiotics among E. coli caus-

ing urinary tract infections. Our findings suggest that when predicting the potential impact of

interventions on antibiotic resistances it is important to account for use of other antibiotics,

including those typically used for other indications.

Introduction

In England, approximately three-quarters of antibiotics are dispensed in primary care [1]. A

substantial proportion of these antibiotics are unnecessary, being used for viral or self-limiting

respiratory tract infections [2,3]. When antibiotics are used for a viral infection an effect on

the pathogen causing the infection, both in terms of outcome of the infection as well as resis-

tance against antibiotics, is not expected. However, because antibiotics typically used for respi-

ratory tract infections, such as amoxicillin, have a systemic effect, they can select for antibiotic

resistances among bacteria that are carried by the host at the moment of treatment, i.e. bacteria

forming the microflora or microbiota [4]. If those bacteria are pathogenic or act as a reservoir

of resistance elements this may lead to an increased incidence of symptomatic infections

caused by bacteria that are resistant to clinically important antibiotics [5,6]. Moreover, antibi-

otic prescriptions are often longer than necessary, which could further increase antibiotic

resistance levels without clinical benefit [7].

However, the relationship between antibiotic use and antibiotic resistance is more complex.

A particular antibiotic may not only select for resistance against that same antibiotic i.e. ‘selec-

tion’, but also for resistance against other antibiotics i.e. ‘co-selection’. There may be cross-

resistance between antibiotics, such as observed for ampicillin and amoxicillin [8]. Resistance

genes may be linked on the same mobile genetic element, such as observed for amoxicillin and

trimethoprim resistance genes [8,9]. Therefore treatment with one antibiotic may select for

resistance against another antibiotic via cross-resistance and co-selection [8,9]. Treatment

with one antibiotic may also simply kill competing bacteria, thereby providing bacteria resis-

tant to another antibiotic more space and nutrients, such as anti-anaerobic antibiotics that

promote the overgrowth of vancomycin-resistant enterococci [10,11]. Moreover, mutations or

acquired genes conferring resistance to one antibiotic can not only increase but also decrease

resistance to another antibiotic [12]. Such collateral sensitivity, where resistance against one

antibiotic confers sensitivity against another has been mainly explored for spontaneous resis-

tance mutations [12,13].

The vast majority of studies that link antibiotic usage and resistance at the population level

focus on simple associations between the resistance against a specific antibiotic and the use of

that specific antibiotic or antibiotic group, or alternatively group all antibiotics together [14].

There is a lack of studies that simultaneously take into account use of different antibiotics and

potential co-selection.
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We therefore evaluated associations between prescribing levels of antibiotic groups in pri-

mary care across geographical areas in England and resistance against amoxicillin, cephalexin,

ciprofloxacin, co-amoxiclav and nitrofurantoin, among Escherichia coli isolated from urinary

samples across these same areas in England, thereby taking into account prescribing of other

antibiotics groups. Because we only had data on antibiotic prescribing in primary care, we

focused on E. coli sampled from the urinary tract by general practitioners. We used elastic net

regularization [15,16], because this method–which combines the advantages of both least abso-

lute shrinkage and selection operator (lasso) [17] and ridge regression [18]–works particularly

well in situations with high collinearity and relative large number of variables compared to the

amount of observations [15,16]. This is particularly relevant, because there are many different

antibiotic groups and there are likely strong correlations between prescribing patterns of anti-

biotics leading to sparsity and multicollinearity problems with standard regression techniques

[19].

The vast majority urinary tract infections are caused by E. coli infections and uropathogenic

E. coli strains are often part of the human intestinal microbiota. Given the systemic nature of

systemic antibiotics, this research may shed light on the question whether and to what extent

antibiotics typically being used to treat (viral) respiratory tract infections, such as amoxicillin

[1], may result in resistance problems against not only the same antibiotic, but also other anti-

biotics among bacteria for which the antibiotic courses were not initially intended.

The work presented in this paper provides evidence about which antibiotics are associated

with higher and lower levels of antibiotic resistance against common antibiotics among Escher-
ichia coli bacteria sampled from the urinary tract by comparing antibiotic prescribing and

resistance in different geographical areas in England. We evaluated variation in prescribing by

geographic area in lieu of linked data on antibiotic prescribing and antibiotic resistance at an

individual patient level. However, unmeasured confounding may actually be larger at the indi-

vidual patient level. While patient characteristics that are also prognostic factors of having a

resistant infection are influencing decisions to prescribe an antibiotic to an individual patient

[14,20], variation in prescribing between general practices or areas is to a large extent due to

the general tendency to prescribe antibiotics [21,22]. In addition, with geographical data it is

more likely that the outcome of one unit is unaffected by the particular assignment of exposure

to other units than when analysing individual patient level data, thereby increasing the chances

of meeting the Stable Unit Treatment Value Assumption (SUTVA).

Our models show that amoxicillin, the most commonly used antibiotic in England and

mainly used for respiratory tract infections, is associated with increased resistance against sev-

eral other antibiotics among bacteria causing urinary tract infections. The methods used in

this study, that overcome several of the limitations of previous studies, can be used to explore

the complex relationships between antibiotic use and antibiotic resistance in other settings.

Methods

Data

All data were collected as part of routine surveillance and were anonymized. Ethics Committee

approval was therefore not required. Antibiotic prescribing data were obtained from NHS Dig-

ital, who collate for all general practices in England the total number of items that are pre-

scribed and dispensed (http://digital.nhs.uk/). Antibiotic groups were created based on the

first five characters of the Anatomical Therapeutic Chemical (ATC) classification system (Fig

1). Antibiotic prescribing was expressed in daily defined doses (DDDs) per 1000 persons per

day for each calendar month at the clinical commissioning group (CCG) level. Antibiotics

were expressed in DDDs as this at least partly captures the dose and duration of treatment,
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while this would not be the case when expressing use in terms of items. This is important,

because dose and duration has been shown to be an important driver of antibiotic resistance

[23–25]. Moreover, using DDDs would facilitate incorporating of hospital prescribing when

this data becomes available, as antibiotics used in the hospital are typically expressed in terms

of DDDs. CCGs were set up by the Health and Social Care Act 2012 to organize the delivery of

NHS services in England. From April 2018, general practices in England belong to one of 209

CCGs.

Reports of E. coli isolated from urine samples from general practice patients between April

2014 and January 2016 in England were extracted from PHE’s Second Generation Surveillance

System (SGSS) (https://fingertips.phe.org.uk/profile/amr-local-indicators) (Data in S3 File).

Therefore, urine samples taken in the hospital were excluded from this study. SGSS is a

national voluntary laboratory surveillance system which captures antimicrobial susceptibility

data of all microorganisms tested. The database contains laboratory reports supplied electroni-

cally by approximately 98% of NHS hospital microbiology laboratories in England. Repeat

specimen reports received from the same patient with matching causative agents were

excluded if the specimen dates were within 30 days [8]. A 30 day cut-off is often used to distin-

guish between same and new urinary tract infection episodes. Both samples categorized as

intermediate (I) and resistant (R) were treated as being resistant. The following antibiotic sus-

ceptibility test results for E. coli urine samples were analyzed: amoxicillin, cephalexin,

Fig 1. The average DDD per 1000 inhabitants per day for the 14 most common antibiotic groups during the study period. Antibiotic groups–e.g. Tetracyclines

(J01AA) were created based on the first 5 characters of the Anatomical Therapeutic Chemical classification system.

https://doi.org/10.1371/journal.pone.0218134.g001
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ciprofloxacin, co-amoxiclav and nitrofurantoin. At least 75% of reported E. coli urine isolates

extracted from SGSS were tested for resistance against these antibiotics; levels of susceptibility

testing for other antibiotics were not reported frequently enough for a useful analysis. For each

calendar month the number of samples tested for resistance against each antibiotic and the

number of samples confirmed as resistant against each antibiotic were measured at the CCG

level. Measurements were only included when at least 10 samples and at least 75% of samples

were tested for resistance against the antibiotic of interest in the CCG.

Analyses

Elastic net regularization was used to evaluate the association between the different antibiotic

groups and the five resistances of interest [8,15,16]. Elastic net regularization combines the

advantages of least absolute shrinkage and selection operator (lasso) [17] and ridge regression

[18]. Elastic net regularization is especially useful when encountering situations with high col-

linearity, such as strong correlations in antibiotic usage, and a relatively large number of vari-

ables (antibiotic groups) compared to the amount of observations [16,18,19]. More

conventional regression techniques would likely result in multi-collinearity and sparsity bias

issues [18,19].

We fitted a separate Poisson model with elastic net regularization for each resistance. The

number of E. coli isolates from urinary samples reported to be resistant each month was

included as the dependent variable. The natural logarithm of the number of samples being

tested was included as an offset to account for the fact that there is variation in the number of

samples tested between CCGs, thereby effectively modelling resistance as a proportion.

Potential explanatory variables were all antibiotics groups (e.g. ATC codes J01AA and

J01CA) prescribed in the month before the monthly measured resistance prevalence

(expressed in DDDs per 1000 persons per day), month of the year, calendar year and the test

rate. The test rate was defined as the number of E. coli urinary samples tested for the resistance

of interest per 1000 persons-months. The test rate was included because we have previously

observed a relatively strong negative relationship between the test rate and the proportion of

samples that are resistant [8].Antibiotics and the test rate were standardized by mean-center-

ing and dividing by two standard deviations. To keep the antibiotic groups on the same scale,

all antibiotic groups were mean-centered and divided by two standard deviations of penicillins

with extended spectrum (ATC code J01CA) instead of using the standard deviations of indi-

vidual antibiotic groups. To keep all variables, including binary (dummy) variables, on the

same scale all variables were divided by two standard deviations [26]. After performing the

elastic net regularization variables were back transformed to the original ‘DDD per 1000 per-

sons per day’ scale.

All elastic net analyses were performed using the ‘glmnet’ package in R version 3.4.3 [16].

To reduce the false discovery rate often observed with standard application of regularization

methods, we estimated the optimal shrinkage parameter λ using the Akaike information crite-

rion (AIC) [8,27]. Confidence intervals (CIs) were obtained by taking 1000 clustered bootstrap

samples, resampling at the highest level (CCG) with replacement.

Secondary analysis

In a secondary analysis we varied the lag time between antibiotic prescribing and the resis-

tances of interest. First, instead of using antibiotic prescribing in the month before the resis-

tance measurement as a potential covariate, we evaluated the association between antibiotics

used in 1–3 months before the resistance measurements. Further, we assessed the association

between antibiotics used in the year (1–12 months) before the resistance measurements.

Antibiotic prescribing and resistance
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In addition, we performed a sensitivity analysis, restricting to months with at least 20 mea-

surements to assess the potential influence of potential random error and systematic error due

to low sampling rates.

Results

The antibiotic groups that were used most intensively with�1 daily defined doses (DDD) per

1000 inhabitants per day, were tetracyclines, penicillins with extended spectrum (mainly

amoxicillin) [1], macrolides, Beta-lactamase-resistant penicillins (mainly Flucloxacillin) [1],

and trimethoprim (Fig 1).

While we evaluated the association between resistances of interest and all antibiotic groups,

Fig 2 shows the variation in prescribing between the different clinical commissioning groups

(CCGs) for the 4 antibiotic groups that are prescribed the most. In addition, these maps show

the variation in nitrofurantoin and trimethoprim, which are the antibiotics typically used to

Fig 2. Maps of the average number of DDD per 1000 inhabitants per day for the 209 clinical commissioning groups during the study period. Not that different

scales are used for the different antibiotics. J01AA = tetracyclines; J01CA = penicillins with extended spectrum (mainly amoxicillin); J01CF = Beta-lactamase-resistant

penicillins (mainly flucloxacillin); J01FA = macrolides; J01EA = trimethoprim; J01XE = nitrofurantoin.

https://doi.org/10.1371/journal.pone.0218134.g002
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treat urinary tract infections. There was substantial variation in antibiotic prescribing between

the different CCGs (Fig 2), some CCGs had high antibiotic prescribing levels for all antibiotics,

especially in the North of England. There was generally more variation in antibiotic prescrib-

ing between CCGs than variation over time within CCGs. However, for some antibiotics there

were clear peaks or seasonality in the amount of dispensed antibiotics, in line with peaks in the

incidence of respiratory tract infections (winter) and skin infections (summer) (Figure A and

B in S1 File). Univariate correlations between prescribing of the different antibiotic groups are

shown in Fig 3. In general there were positive correlations between prescribing of different

antibiotic groups. However, prescribing of combinations of penicillins (mainly co-amoxiclav)

was negatively correlated with several other commonly prescribed antibiotics.

Between April 2014 and January 2016, nearly all (99%, n = 888,207) E. coli urinary samples

from general practice patients sent in for laboratory testing were tested for resistance against

nitrofurantoin. The percentages of samples tested for resistance against the other included

antibiotics varied between 78% for amoxicillin and 90% for co-amoxiclav.

There was substantial variation in the percentage of E. coli urinary isolates that were resis-

tant to the antibiotics tested (Table 1).

There was less variation in the percentage of isolates that were resistant to the antibiotics

test over time (Figures C-G in S1 File). The variation in testing rate, which may influence

apparent antibiotic resistance proportions, and variation in the measured antibiotic resistance

proportions are shown in Fig 4. As is apparent from the maps, part of the variation in the

apparent proportion of samples that are resistant to antibiotics can be explained by the test

rate. When few tests are determined, most of the samples are resistant. However, there are also

regions with a relatively high test rate and still relatively high resistance, such as in the North-

East, indicating that the resistance prevalence may indeed be relatively high.

Results from the elastic net regularization models showed amoxicillin resistance was posi-

tively associated with prescribing of penicillins with extended spectrum (mainly amoxicillin in

England) [1] in the month (RR 1.03, 95%CI 1.01 to 1.04), quarter (RR 1.03, 95%CI 1.01 to

1.04) and year (RR 1.04, 95%CI 1.01 to 1.06) (Table 2; the full results including the coefficients

for the test rate are provided in Table A in S2 File) before the specimen date.

A similar direct association was seen in that CCGs that used more nitrofurantoin had a

higher percentage of E. coli samples that tested resistant to nitrofurantoin (RR 1.52, 95%CI

1.00 to 2.24) (Table 3). The data did not confirm such a relationship between first-generation

cephalosporin use (mainly cephalexin in England) [1] and cephalexin resistance, between fluo-

roquinolone use (mainly ciprofloxacin in England) [1] and ciprofloxacin resistance, or

between combinations of penicillins, including β-lactamase inhibitors (mainly co-amoxiclav

in England) [1] and co-amoxiclav resistance (Tables 4–6).

However, it should be noted that a substantial proportion of these specific antibiotics are

used in the hospital settings, for which no data was available [28]. Besides the obvious associations

between prescribing of a particular antibiotic and resistance to that same antibiotic, we also

observed associations between prescribing of a particular antibiotic and resistance against an anti-

biotic from another group. Amoxicillin use was not only associated with higher levels of amoxicil-

lin resistance, but also with increased ciprofloxacin resistance (RR 1.09 95%CI 1.04 to 1.17)

(Table 5) and increased trimethoprim resistance (as we have previously shown [8]). CCGs with

high prescribing of trimethoprim also had higher levels of nitrofurantoin resistance (RR 1.52 95%

CI 1.15 to 2.08) and ciprofloxacin resistance (RR 1.34 95%CI 1.10 to 1.59) (Tables 3 and 5).

There were also some antibiotics that had negative associations with antibiotic resistances.

Nitrofurantoin use was associated with decreased amoxicillin resistance (RR 0.92 95%CI 0.84

to 0.97) (Table 2). Previously, we observed a similar negative association between nitrofuran-

toin use and trimethoprim resistance levels [8]. Tetracycline and macrolide use was associated

Antibiotic prescribing and resistance
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Fig 3. Univariate correlations between prescribing of the different antibiotic groups. Antibiotic groups–e.g. Tetracyclines (J01AA) were created based on the first 5

characters of the Anatomical Therapeutic Chemical classification system.

https://doi.org/10.1371/journal.pone.0218134.g003
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with decreased ciprofloxacin resistance (Table 5), while fluoroquinolone use was associated

with lower amoxicillin resistance levels (Table 2).

Results were very similar when restricting the analyses to months with at least 20 measure-

ments (Tables F-J in S2 File), suggesting that random error or remaining systematic error due

to low testing probability were not large after adjusting for the test rate.

Discussion

We found evidence of both selection and co-selection, as well as geographical patterns in anti-

biotic use and resistance. Amoxicillin use, an antibiotic that is mainly used for respiratory tract

infections (~83%) and rarely for urinary tract infections (~2%) [1], is associated with increased

resistance against amoxicillin and ciprofloxacin among urinary tract infections caused by E.

coli. Areas that used more trimethoprim had higher levels of ciprofloxacin and nitrofurantoin

resistance among E. coli urinary samples. These positive associations between prescribing of a

particular antibiotic and resistance against another antibiotic suggest that co-selection may

play a role.

We found that use of amoxicillin and trimethoprim were associated with resistance against

ciprofloxacin, which suggests that co-selection may be occurring. Isolates from the common E.

coli urinary pathogenic clonal group ST131 are often non-susceptible to both fluoroquinolones

and trimethoprim-sulfamethoxazole and/or β-lactam antibiotics [29,30], which may explain

why use of trimethoprim and amoxicillin would select for ciprofloxacin resistance as amoxicil-

lin use likely also selects for bacteria with trimethoprim resistance genes [8]. This link is fur-

ther supported by the ECO�SENS study that found that resistance to any agent was correlated

with increased resistance to all other agents tested, except for fosfomycin [9].

Nitrofurantoin had a negative association with amoxicillin resistance. This is in line with

our previous finding that areas with relatively high nitrofurantoin use have lower trimetho-

prim resistance levels.7 Nitrofurantoin resistance genes are, in contrast to trimethoprim and

amoxicillin resistance genes, not frequently found on mobile genetic elements with multiple

resistances or correlated with multiple resistances in other ways [8,11,31]. Therefore, nitrofur-

antoin use may select for E. coli that are susceptible to amoxicillin and trimethoprim. Collateral

sensitivity (and collateral resistance) has previously been observed for resistance against several

antibiotics among E. coli isolates in an experimental setting [13]. Selecting for resistance

against ampicillin was associated with increased sensitivity to nitrofurantoin compared to wild

type E. coli strains [13], suggesting that collateral sensitivity may partly explain the observed

negative association between amoxicillin and trimethoprim.

Given the high fitness cost of nitrofurantoin resistance [31], the positive association

between trimethoprim use and nitrofurantoin resistance is not likely due to co-selection, but

may be due to the possibility that CCGs with high trimethoprim usage have more patients on

long-term treatment or prophylaxis with trimethoprim and nitrofurantoin.

Table 1. Variation in antibiotic resistance among E. coli urinary samples, measured on a monthly basis at the clin-

ical commissioning group level.

Percentage of E. coli samples resistant to antibiotic, median (25th– 75th percentile)

Amoxicillin 53% (49% - 58%)

Nitrofurantoin 2% (1% - 4%)

Cephalexin 8% (6% - 11%)

Ciprofloxacin 11% (8% - 16%)

Co-amoxiclav 11% (7% - 23%)

https://doi.org/10.1371/journal.pone.0218134.t001
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The negative association between prescribing of tetracyclines or macrolides and ciprofloxa-

cin resistance is harder to explain. Macrolides are typically active against Gram-positive bacte-

ria, although they can be effective against Gram-negative bacteria when used in combination

with antibiotics that do have outer-membrane disruptive activity [32]. Given the lack of selec-

tive pressure, E coli are unlikely to frequently harbor resistance mechanisms against antibiotics

like macrolides, which could make such a synergistic combination therapy particularly effec-

tive against Gram-negative bacteria resistant to multiple antibiotics including ciprofloxacin

[32]. However, this is unlikely the cause of the negative association between macrolide use and

ciprofloxacin resistance, as such a combination therapy is not frequently being used or neces-

sary in England. Collateral sensitivity has been observed for resistance against azithromycin (a

macrolide) and sensitivity to nalidixic acid (a quinolone) among a pathogenic E. coli strain

[13]. This may partly explain why macrolides use had a negative association with ciprofloxacin

resistance. However, further studies are needed to evaluate whether these associations are

causal.

Amoxicillin is the most frequently used antibiotic for respiratory conditions which are

responsible for the largest share in inappropriate antibiotic prescribing in primary care [1–3].

Fig 4. Proportion of samples resistant to antibiotics and antibiotic resistance test rates. The left column shows the

proportion of E. coli urinary samples that are resistant to amoxicillin, co-amoxiclav, ciprofloxacin, cephalexin and

nitrofurantoin, respectively. The right column shows the number of samples tested for resistance against these

antibiotics per 1000 person-months.

https://doi.org/10.1371/journal.pone.0218134.g004

Table 2. Associations between amoxicillin resistance among E. coli urinary samples and antibiotic prescribing (DDD per 1000 persons per day).

Antibiotic prescribed Amoxicillin resistance, antibiotic

prescribing 1 month before. RR (2.5th–

97.5th percentile of bootstrap)

Amoxicillin resistance, antibiotic

prescribing 1–3 month before. RR (2.5th–

97.5th percentile of bootstrap)

Amoxicillin resistance, antibiotic

prescribing 1 year before. RR (2.5th–

97.5th percentile of bootstrap)

Tetracyclines (J01AA) 1.00 (0.98–1.01) 1.00 (0.98–1.02) 1.00 (0.98–1.04)

Penicillins with extended

spectrum (J01CA)

1.03 (1.01–1.04)a 1.03 (1.01–1.04) a 1.04 (1.01–1.06) a

Beta-lactamase-sensitive

penicillins (J01CE)

1.02 (0.97–1.12) 1.00 (1.00–1.19) -

Beta-lactamase-resistant

penicillins (J01CF)

1.03 (0.98–1.12) 1.03 (0.96–1.13) 1.04 (0.95–1.17)

Combinations of penicillins,

including β-lactamase inhibitors

(J01CR)

1.02 (0.95–1.08) - -

First-generation cephalosporins

(J01DB)

1.01 (0.91–1.07) - -

Second-generation

cephalosporins (J01DC)

1.00 (0.85–1.02) - -

Trimethoprim and derivatives

(J01EA)

1.01 (0.98–1.08) 1.01 (1.00–1.12) 1.00 (1.00–1.17)

Macrolides (J01FA) 0.99 (0.97–1.02) 1.00 (0.97–1.03) 1.00 (0.97–1.04)

Lincosamides (J01FF) 0.98 (0.71–1.00) - -

Fluoroquinolones (J01MA) 0.93 (0.78–0.99) a 0.87 (0.69–1.00) 0.88 (0.61–1.00)

Polymyxins (J01XB) 1.01 (0.93–1.35) - -

Nitrofuran derivatives (J01XE) 0.92 (0.84–0.97) a 0.91 (0.82–0.96) a 0.91 (0.83–0.98) a

Other antibacterials (J01XX) 0.98 (0.87–1.13) - -

aAssociations for which 2.5th and 97.5th percentile of the clustered bootstrap are both indicating an increased or decreased risk. Results are adjusted for differences in the

test rate, time and use of other antibiotics (full model results shown in Table A in S2 File).

https://doi.org/10.1371/journal.pone.0218134.t002
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Based on the current and a previous study, amoxicillin prescribing appears to be associated

with increased resistance to amoxicillin, ciprofloxacin and trimethoprim [8]. Together these

findings suggest that there is a substantial potential to reduce selective pressure via (co-)selec-

tion through reduction in the amount of unnecessary treatment with amoxicillin.

In many countries nitrofurantoin has been adopted as the first-line treatment for uncompli-

cated urinary tract infections [33,34]. Compared to other European countries, such as the

Netherlands, the proportion of urinary tract infections treated with nitrofurantoin is much

lower in England, though between June 2017 and June 2018 the ratio of trimethoprim pre-

scribing over trimethoprim plus nitrofurantoin prescribing substantially decreased from 0.53

to 0.38, subsequent to the national quality premium [1,34].

Recent recommendations are to prescribe nitrofurantoin as the first choice treatment for

uncomplicated urinary tract infections [8]. We found nitrofurantoin prescribing to be associ-

ated with lower levels of resistance to amoxicillin and it has a negative association with tri-

methoprim resistance [8]. Conversely, we previously showed trimethoprim prescribing to be

associated with increased resistance to trimethoprim [8], and, here, associated with high cipro-

floxacin resistance.

Our findings therefore suggest that a shift towards more nitrofurantoin instead of trimetho-

prim for uncomplicated urinary tract infections could potentially reduce antibiotic resistance

among E. coli.
Patterns of co-resistance and co-selection likely differ between various parts of the world as

there is substantial variation in selection pressure by antibiotics and infection prevention and

Table 3. Associations between nitrofurantoin resistance among E. coli urinary samples and antibiotic prescribing (DDD per 1000 persons per day).

Antibiotic prescribed Nitrofurantoin resistance, antibiotic

prescribing 1 month before. RR (2.5th–

97.5th percentile of bootstrap)

Nitrofurantoin resistance, antibiotic

prescribing 1–3 month before. RR (2.5th–

97.5th percentile of bootstrap)

Nitrofurantoin resistance, antibiotic

prescribing 1 year before. RR (2.5th–

97.5th percentile of bootstrap)

Tetracyclines (J01AA) 1.01 (0.89–1.14) 1.02 (0.91–1.19) 1.01 (0.83–1.23)

Penicillins with extended

spectrum (J01CA)

1.02 (0.96–1.15) 1.03 (0.96–1.21) 1.05 (0.91–1.28)

Beta-lactamase-sensitive

penicillins (J01CE)

1.50 (0.73–2.02) 1.46 (0.61–2.09) 1.47 (0.47–2.31)

Beta-lactamase-resistant

penicillins (J01CF)

1.01 (0.75–1.72) - -

Combinations of penicillins,

including β-lactamase inhibitors

(J01CR)

- - 1.01 (0.21–3.04)

First-generation cephalosporins

(J01DB)

1.76 (0.56–3.18) 1.78 (0.41–3.27) 1.85 (0.27–7.39)

Trimethoprim and derivatives

(J01EA)

1.52 (1.15–2.08)a 1.50 (1.10–2.24) a 1.55 (1.00–2.56)

Combinations of sulfonamides

and trimethoprim, including

derivatives (J01EE)

- - 1.02 (0.09–56.66)

Macrolides (J01FA) 0.93 (0.80–1.06) 0.92 (0.78–1.09) 0.90 (0.72–1.06)

Other aminoglycosides (J01GB) 45.87 (1.00–2.12x103) 59.16 (1.00–2.34�104) 21.05 (1.00–2.77�104)

Polymyxins (J01XB) - - 1.02 (0.10–12.39)

Nitrofuran derivatives (J01XE) 1.52 (1.00–2.24) a 1.60 (1.05–2.58) a 1.68 (1.01–3.04) a

Other antibacterials (J01XX) 0.84 (0.47–1.89) 0.85 (0.48–2.14) 0.76 (0.40–2.59)

a Associations for which 2.5th and 97.5th percentile of the clustered bootstrap are both indicating an increased or decreased risk. Results are adjusted for differences in

the test rate, time and use of other antibiotics (full model results shown in Table B in S2 File).

https://doi.org/10.1371/journal.pone.0218134.t003
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control between countries [35,36]. However, we would even caution against direct comparison

of results from another recent study from a region in England [37], as that study did not take

into account prescribing of other antibiotics or the potential differences in the propensity to

send in samples from patients. Our results show that areas with low testing rates have artificial

high resistance proportions. This finding emphasizes the importance of accounting for differ-

ences in testing practices when comparing resistance prevalences between different countries

Table 4. Associations between cephalexin resistance among E. coli urinary samples and antibiotic prescribing (DDD per 1000 persons per day).

Antibiotic prescribed Cephalexin resistance, antibiotic

prescribing 1 month before. RR (2.5th–

97.5th percentile of bootstrap)

Cephalexin resistance, antibiotic

prescribing 1–3 month before. RR (2.5th–

97.5th percentile of bootstrap)

Cephalexin resistance, antibiotic

prescribing 1 year before. RR (2.5th–

97.5th percentile of bootstrap)

Tetracyclines (J01AA) 0.97 (0.89–1.02) 0.97 (0.86–1.02) 0.96 (0.85–1.05)

Penicillins with extended

spectrum (J01CA)

0.99 (0.94–1.06) 0.98 (0.90–1.06) 0.96 (0.87–1.08)

Beta-lactamase-sensitive

penicillins (J01CE)

0.98 (0.63–1.00) 0.97 (0.56–1.00) 0.95 (0.42–1.00)

Beta-lactamase-resistant

penicillins (J01CF)

0.98 (0.70–1.35) 0.98 (0.73–1.45) 1.00 (0.69–1.65)

Combinations of penicillins,

including β-lactamase inhibitors

(J01CR)

0.98 (0.69–1.10) 0.97 (0.67–1.13) 0.95 (0.59–1.15)

First-generation cephalosporins

(J01DB)

1.01 (0.94–1.41) 1.01 (0.95–1.50) 1.04 (0.92–1.78)

Trimethoprim and derivatives

(J01EA)

1.03 (0.98–1.75) 1.04 (0.98–1.87) 1.08 (0.97–2.04)

Macrolides (J01FA) 0.95 (0.75–1.00) 0.94 (0.73–1.00) 0.92 (0.70–1.00)a

Fluoroquinolones (J01MA) 1.00 (0.81–1.30) 1.00 (0.77–1.34) 1.01 (0.63–1.44)

Nitrofuran derivatives (J01XE) 1.01 (0.94–1.44) 1.01 (0.94–1.51) 1.04 (0.93–1.72)

Other antibacterials (J01XX) - 1.00 (0.91–1.52) -

a Associations for which 2.5th and 97.5th percentile of the clustered bootstrap are both indicating an increased or decreased risk. Results are adjusted for differences in

the test rate, time and use of other antibiotics (full model results shown in Table C in S2 File).

https://doi.org/10.1371/journal.pone.0218134.t004

Table 5. Associations between ciprofloxacin resistance among E. coli urinary samples and antibiotic prescribing (DDD per 1000 persons per day).

Antibiotic prescribed Ciprofloxacin resistance, antibiotic

prescribing 1 month before. RR (2.5th–

97.5th percentile of bootstrap)

Ciprofloxacin resistance, antibiotic

prescribing 1–3 month before. RR (2.5th–

97.5th percentile of bootstrap)

Ciprofloxacin resistance, antibiotic

prescribing 1 year before. RR (2.5th–

97.5th percentile of bootstrap)

Tetracyclines (J01AA) 0.92 (0.88–0.98)a 0.92 (0.87–0.98) a 0.93 (0.85–1.01)

Penicillins with extended

spectrum (J01CA)

1.09 (1.04–1.17) a 1.10 (1.03–1.19) a 1.13 (1.02–1.25)

Beta-lactamase-resistant

penicillins (J01CF)

- - 0.96 (0.65–1.24)

Trimethoprim and

derivatives (J01EA)

1.34 (1.10–1.59) a 1.35 (1.13–1.72) a 1.35 (1.11–1.78) a

Macrolides (J01FA) 0.85 (0.76–0.94) a 0.84 (0.75–0.94) a 0.84 (0.73–0.95) a

Fluoroquinolones

(J01MA)

1.24 (1.00–2.81) 1.29 (1.00–3.55) 1.38 (1.00–4.40)

Nitrofurantoin - - 1.00 (0.65–1.14)

a Associations for which 2.5th and 97.5th percentile of the clustered bootstrap are both indicating an increased or decreased risk. Results are adjusted for differences in

the test rate, time and use of other antibiotics (full model results shown in Table D in S2 File).

https://doi.org/10.1371/journal.pone.0218134.t005
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or more granular areas. Ideally sentinel surveillance systems with systematic and standardized

testing would be set up to facilitate less biased between-area comparisons and local pre-test

resistance probabilities, thereby potentially improving future association studies and clinical

practice.

The most obvious limitation of this work is that the associations we found are not necessar-

ily causal. As with any observational study we could not take into account confounding by

unmeasured factors, such as antibiotic use in hospitals and other potential selective pressures.

Although we only included samples taken from patients presenting in primary care, the

unavailability of hospital prescribing data may have especially affected the analyses focusing

on co-amoxiclav and cephalexin as less than half of co-amoxiclav prescribing and approxi-

mately half of cephalosporin prescribing occurs in the general practice setting [28]. In addition

roughly 40% of fluoroquinolones are prescribed in the hospital setting in England [28]. Such

misclassification of exposure/confounders makes the estimated impact of antibiotics that are

commonly used in the hospital less reliable. This may partly explain why amoxicillin use–only

13% of penicillins are used in the hospital [28]–is associated with ciprofloxacin resistance,

while fluoroquinolone use was not associated with increased amoxicillin prescribing.

Besides the influence of unmeasured confounding, we cannot exclude the possibility that

prescribing differs as a consequence of resistance rather than the other way around, i.e. reverse

causation. We tried to reduce such reverse causation by looking at antibiotic prescribing hap-

pening before the resistance measurement. Nonetheless, reverse causation may reduce the

strength of a positive association or even reverse the association. In addition, some of our

results may be partly due to other types of model misspecification.

If we were only interested in the influence of one particular antibiotic, a regularization

approach that penalizes all coefficients except the antibiotic of interest might provide better

estimates [38]. However, because different antibiotics may influence resistance levels in vari-

ous ways, we decide to penalise all coefficients in the same way, potentially leading to an

underestimation of the effect of antibiotics that increase the prevalence of resistance. There-

fore, our estimates should be regarded as conservative.

Given the limitations described above and the relatively small effect sizes observed, one

should be cautious in making policy recommendations based on our observations alone. Nev-

ertheless, our results add to the increasing body of evidence that suggest that co-selection may

play a relevant role in driving antibiotic resistance rates.

Table 6. Associations between co-amoxiclav resistance among E. coli urinary samples and antibiotic prescribing (DDD per 1000 persons per day).

Antibiotic prescribed Co-amoxiclav resistance, antibiotic

prescribing 1 month before. RR (2.5th–

97.5th percentile of bootstrap)

Co-amoxiclav resistance, antibiotic

prescribing 1–3 month before. RR (2.5th–

97.5th percentile of bootstrap)

Co-amoxiclav resistance, antibiotic

prescribing 1 year before. RR (2.5th–

97.5th percentile of bootstrap)

Tetracyclines (J01AA) 1.03 (0.89–1.31) 1.04 (0.87–1.33) 1.04 (0.87–1.35)

Penicillins with extended

spectrum (J01CA)

0.99 (0.74–1.00) 0.98 (0.70–1.00) 0.97 (0.68–1.02)

Beta-lactamase-sensitive

penicillins (J01CE)

- - 1.00 (1.00–8.86)

Combinations of penicillins,

including β-lactamase

inhibitors (J01CR)

- - 1.00 (0.51–2.62)

Trimethoprim and derivatives

(J01EA)

- - 1.00 (0.54–2.30)

a Associations for which 2.5th and 97.5th percentile of the clustered bootstrap are both indicating an increased or decreased risk. Results are adjusted for differences in

the test rate, time and use of other antibiotics (full model results shown in table E in S2 File).

https://doi.org/10.1371/journal.pone.0218134.t006
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Conclusions

Amoxicillin prescribing is associated with increased resistance to amoxicillin, ciprofloxacin

and trimethoprim. Amoxicillin is the most frequently used antibiotic for respiratory condi-

tions, which are responsible for the largest share in inappropriate antibiotic prescribing in pri-

mary care. These findings suggest that there is a potential to reduce selective pressure via (co-)

selection with unnecessary use of amoxicillin for viral and self-limiting respiratory tract

infection.

Nitrofurantoin prescribing is associated with lower levels of resistance to amoxicillin and

trimethoprim, while trimethoprim prescribing is associated with increased levels of amoxicil-

lin, ciprofloxacin and trimethoprim resistance. This suggests that replacing trimethoprim pre-

scribing with nitrofurantoin prescribing where possible for uncomplicated urinary tract

infections may also be associated with a reduction in trimethoprim, amoxicillin and ciproflox-

acin resistance among E. coli. The methodology used in this study, that can cope with corre-

lated antibiotic use, can be used in other settings to further explore the complex relationships

between antibiotic use and levels of antibiotic resistance.
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