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Introduction 
 
Petrochemical production is categorized as a 
high-risk industry. One of the important risks is 
the existence of high levels of gasoline vapors 
including benzene that during work shifts em-
ployees are exposed to. Employees in functional 
units are more vulnerable population because of 
their continuous contact with harmful substances 
such as benzene. Based on USEPA (United State 
Environmental Protection Agency) and IARC 
(International Agency for Research Cancer) re-

ports, benzene has been classified to be a group 
A and Class 1 human (1). 
Adverse health effects of benzene appear in two 
different type; short-term and long-term. Short-
term effects are associated with high concentra-
tion and may involve headaches, dizziness, dis-
traction and defects temporary memory and tre-
mors. Whereas, exposure to benzene in a long-
term is connected to intricate adverse health ef-
fects such as immunological, hemato-toxicity, 
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Background: Reliable methods  are crucial to cope with uncertainties  in the risk analysis process. The aim of this 
study is to develop an integrated approach to assessing risks of benzene in the petrochemical plant that produces ben-
zene. We offer an integrated system to contribute imprecise variables into the health risk calculation. 
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Results: High correlation between the measured and predicted benzene concentration was achieved (R2= 0.941). As 
for variable distribution, the best estimation of risk in a population implied 33% of workers exposed less than 1×10-5 
and 67% inserted between 1.0×10-5 to 9.8×10-5 risk levels. The average estimated risk of exposure to benzene for en-
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Geno-toxicity, adverse effects on reproductive 
organs, and as well as various cancers (1, 2). 
Therefore, a powerful method is required to pre-
dict existent exposure to harmful substances be-
sides to evaluate probable adverse effects (3). 
Although several mathematical models have been 
carried out so far, there is high complexity related 
to chemical exposure in terms of human health. 
Due to the lack of information about chemical 
impacts on human particularly in long-term im-
pacts, some unpredictable factors that called un-
certainties can affect health risk assessment (4, 5). 
Health risk assessment through inhalation con-
cerning benzene emission from equipment at the 
unit of benzene production was accomplished. 
This project is an example of using a hybrid ap-
proach that can incorporate uncertainties to as-
sessment‟s process. Major variables affecting the 
absorption of chemicals moreover key parame-
ters in the dispersion of chemicals can be reflect-
ed in a hybrid system which combining fuzzy log-
ic and neural networks (5, 6). 
In this research” average inhalation and absorp-
tion rates were used for assessment. However, 
breathing rates are affected by many individual 
characteristics, including age, sex, weight, health, 
and level of physical activity (running, jogging, 
etc.)” (5, 9). 
Perhaps the first and distinguished use of fuzzy 
sets in health risk assessment was on the applica-
tion of fuzzy logic in the environmental risk as-
sessment (10). One more example which con-
nected to human health risk assessment is the 
application of fuzzy sets in human health risk 
assessment. Fuzzy sets were employed to esti-
mate carcinogenic risk caused by air pollution in 
Ten Russian cities (11). 
 

Methods 
 
Study area 
The project was carried out since 2013 to 2014. 
The study area was in the northern part of the 
Persian Gulf with a distance of 10 miles from the 
coast. It was categorized as an intermediate pe-
trochemical throughout the country. The plant 

mainly produced about one million tons annually 
of benzene, paraxylene, orto-xylene used to pro-
duce ethylbenzene, styrene, cyclohexane, and ni-
trobenzene. Benzene from refinery streams was 
typically produced from catalytic reformats pyro-
lysis, gasoline, and toluene de-alkylation. This 
study focused on tasks and activities those are 
exposed to potential contact with benzene during 
refinery. 
Main workplaces related to workers exposed to 
benzene such as loading of tankers were listed in 
Table 1. Each workplace maybe had a different 
group of job and activities. In order to increase 
the information about jobs, activities, tasks, and 
places a questionnaire was prepared then accom-
plished through an interview with employees. 
 

Table 1: Main work places for workers 
 

Work areas Situation Number of 
workers 

Sex 

Loading 
terminal 

Out door 18 M 

Process site Out door 42 M 
Tank units Out door 17 M 
Control room In door 8 M 
Laboratory In door 6 M 

 
Sample collection 
The sampling procedure was based on absorption 
of benzene in an active charcoal tube (active 
sampling) (12). SKC model 222 pumps have been 
utilized for gas sampling. The Glass Tubes with a 
6mm external diameter, 4 mm internal diameter 
and 70 mm height, containing activated charcoal 
holder with a restrictive orifice (separated by a 2-
mm part of urethane foam) were installed. The 
pump was adjusted to work for 30 min at a flow 
rate of 100 ml/min (12). 
Active sampling was accomplished in workdays. 
For 8 h the measurements were recorded on a 
daily source (08:00-16:00 Local Time). Four mea-
suring procedures were performed lasting one 
week in the middle of each season (12, 13). Con-
sequently, by the end of the week 70 samples 
were taken and during 15/2/2012 to 21/09/2013 
totally 280 samples were collected. for detailed 
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information stickers attached on each tube to tag 
sampling number, the time of end duration of 
sampling, the pump number, the humidity, the 
wet and dry temperature, and the date of sam-
pling (13). 
 
The human health risk Model 
The human Lifetime Average Daily Dose 
(LADD) equation for a single chemical exposure 
proposed by U.S.EPA (2011) that related to can-
cer risk model (presuming that the inhalation is 
the only route of intake) is, as shown in Eq. [1] 
(14): 
 
LADD = CA.IR.EF.ED/BW.AT    [1] 
The Cancer Risk (CR) is calculated for exposure 
to benzene using Eq. [2] (15): 
Cancer Risk = LADD (μg/kg/day) × SF 
(μg/kg/day)-1     [2] 
For equation 1, CA is the concentration of a 
chemical in an exposure medium (μg/m3), IR 
represents the inhalation rate (m3/h), EF is the 
exposure frequency (number of working days per 
year), ED is the exposure duration (working 
years), BW is the body weight (kg), AT is averag-
ing time (AT=70 yr 365 d/year for carcinogens), 
LADD shows lifetime average daily dose 
(μg/kg/day) [14] and SF in equation 2, is the 
cancer slope factor of benzene (linear low-dose 
cancer potency factor) (15). 
The quality of data in equation 1 is uncertain 
even if definite exposure-related measurements 
are available for variables (16). To explain more, 
some unpredictable parameters can change the 
results. As an illustration, movement of contami-
nants among environmental media changes re-
markably the quality of data, therefore, uncertain-
ty plays a crucial role involved in each variable as 
well as affected by physical and chemical factors 
(11, 16). The concentration of the air pollutant is 
derived as a function background concentration. 
These variables; wind speed, ambient tempera-
ture, humidity and rainfall cause fluctuation in 
concentration of air pollutants (17). Furthermore, 

the inhalation rate is also influenced by multiple 
individual aspects including age, body weight, and 
amounts of physical activity (5, 11). 
Owing to these numerous variables, the 
trustworthy approach is required to make a better 
risk evaluation. Therefore, to overcome the prob-
lems of uncertainties the hybrid method was pre-
pared (5, 18). The construction of the system is 
displayed in Fig. 1 (5). In this figure, each tablet 
represents a sub-system combined; they deter-
mine the chemical absorption rate through inha-
lation. The receptor description (Inhalation rate) 
and dose estimation sections use a set of fuzzy 
rules and obtain the average daily inhalation dose, 
based on fuzzy inference. The exposure predic-
tion section consists of a designed neural net-
work using a new back-propagation algorithm. 
This section created in order to calculate of real 
ambient concentration. In the following sections, 
details about the subdivisions will be explained 
(5,18). 
 
Using fuzzy logic for estimation of inhalation 
rate 
Standard quantities technique in health issues has 
been often vague and unclear adjectives such as a 
little, too much…; so at the start it is necessary to 
quantify these adjectives and change them into 
fuzzy sets (19, 20). In this section, 36 fuzzy rules 
were used to determine the inhalation rate of 
adults. Age, body weight, and activity tend to be 
the significant reasons of daily energy expendi-
ture in healthy people for as long as is also in 
energy balance (20, 21). 
The triangular membership function is selected 
for age. Variables must be delineated with linguis-
tic values rather than numerical values (5, 21). 
Fig. 2 shows one of the prepared fuzzy sets 
(fuzzy numbers) that related to age with three 
linguistic values. The horizontal vector indicates 
the size of the parameter and the vertical vector 
represents the degree of membership (degree of 
dependence) of each value (5). 

. 
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Fig. 1: Integrated system of risk assessment (5) 
a. Artificial Neural Network 

b. Life Lifetime Average Daily Inhalation Dose 

 
 

 
 

Fig. 2: Membership functions of the variable „„Age‟‟ 
(5) 

 

The membership function for age was set to 
range from 18 to 80 yr (22). Using census and 
demographic details, age (in years) was divided 
into three fuzzy linguistic sets: low, ranging from 
18 to 30; medium, ranging from 25 to 64; and 
high, ranging from 59 to 80 (5, 22). 
According to Brainard and Burmaster (23), body 
weight (45–110 kg) follows a normal distribution. 
It has been divided into three linguistic sets: low 
(from 45 to 68 kg), medium (from 56 to102 kg), 
and high (from 90 to110 kg). Fuzzy set was made 
for physical activity by means of four linguistic 
values and follows skewed (normal) distribution 
(5). 
As for long-term physical activity levels (PALs), it 
is ranging from 1.2 to 2.5 times the BMR (Basal 

Metabolic Rate), where 1.2 represents the minim-
al intensity of activity and 2.5 shows a very physi-
cally active lifestyle. Aging is a parameter that can 
remarkably decline high-intensity activity (21). 
Moreover, seven linguistic values ranging from 5-
25 m3/day with normal distribution have been 
provided to show inhalation rate, which is com-
patible with the human capability (14).  
 
Artificial neural network for estimation of ex-
posure to benzene 
ANNs are working based on specified transfer 
function and made by artificial neurons (17). 
There are neuron networks so-called weight fac-
tors or simply weights. These networks are com-
posed of neurons that interact with each other. 
Networks or connections transmit signals from 
other neurons. Signals contain either positive or 
negative weights. Using particular function 
ANNs can adjust the value of different weights 
properly.  
In order to neural network learning, the data 
should be split into two subsets; training and test-
ing sets. There is no specified rule to define the 
size of each subset. Hence, the data set for this 
project were randomly divided into a ratio of 3:1 
between training and testing sets, respectively (7, 
10, 17). As a result, available data (280 samples) 
arbitrarily fragmented into two subsets. One of 
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those was training groups and included 75% of 
data. By developing the model this group pre-
dicted the concentration of benzene for the 
second group that contained the 25% of data (10, 
17). 
Parameters; wind speed, temperature, relative 
humidity, rainfall and measured concentration 
was chosen as model input data. The predicted 
benzene concentration was the output parameter. 
Details of measurement devices for each meteo-
rological parameter are shown in Table 2. 
Proposed ANN designed in three layers. Input 
parameters located in the first layer in the form 
of five neurons. To gain best results experimen-
tally founded to put 10 neurons in the second 
layer. The third layer involved just one neuron 

which is output parameter and shows actual ben-
zene concentration. A typical three-layer neural 
network is shown in Fig. 3 (17).  

 
 

Table 2: Details of the meteorological monitoring 
devices 

 

Parameter Reaction 
time 

Procedure 

Wind speed 1s 3-cup anemometer 
Temperature 10 s Temperature sensor 
Humidity 15 s Sensing element 
Rainfall 3 s Tipping bucket rain 

gauge 

 

 

 
 

Fig. 3: Selected three layer neural network (17) 

 
Before conducting the network preparation pro-
cedure, a training group (75% of the data) con-
sisting of 210 cases had to be prepared from the 
environmental data done by the back propagation 
paradigm. Training group itself became divided 
into training set and testing set that this process 
conducted randomly. First one is the training set 
consisted of 90% of the data or 189 cases used to 
train the model. The second or final 10% con-

tains 21 cases were left out as a test set (7, 17, 
24). 
 
Fuzzy inference calculation for LADD esti-
mation 
Output variables from the artificial neural net-
work stage and fuzzy logic section contributed to 
the last part of the hybrid model and produced a 
chronic daily intake dose (18). The predicted 
benzene concentrations lie between 0 and 67 
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(μg/m3) considered very high. Although the 
global average is 0 to 15μg/m3 (25), the peak 
concentrations in the study area are high and the 
membership function for output and some fuzzy 
rules must be adjusted to range 0 and 67 (μg/m3). 
The process of adjustment was easily done that 
indicates a powerful feature of the dose assess-
ment modeling system as well as the adaptability 
to different scenarios. In different circumstances, 
the user can change fuzzy rules according to the 
different situations (6, 9). 
The outputs from the benzene prediction divided 
into six linguistic variables based on the frequen-
cy distribution of the data. The membership 
function of variable concentration is shown in 
Fig. 4 (18). The output from the receptor block 
was divided by the body weight to derive 
m3/d/kg then contributed as input to the dose 
estimation section (5, 18). The daily intake rate 
for the dose estimation is expressed by four lin-
guistic fuzzy sets and is expressed in m3/d/kg 
(18). Finally, the life average daily intake dose de-
fined as seven fuzzy linguistic values and ranging 
from 0 to 6 μg/kg/d. 
A sample fuzzy inference calculation for the dose 
estimation block is shown in Fig. 5. Where IR 
denotes inhalation rate normalized for body 
weight (m3/day/kg); CC indicates chemical con-
centration (μg/m3); LADID = Lifetime Average 

Daily Inhalation Dose (μg/kg/d). As an illustra-
tion, if the inhalation rate were considered 0.35 
m3/kg/d, the ambient benzene concentration is 
15 μg/m3, lifetime average daily inhalation dose 
would be 1.63 μg/kg/day. 
 

 
 

Fig. 4: Input variable “predicted concentration 
(μg/m3)” 

The output from this last module gives the over-
all dose through inhalation for each individual 
around the site, taking into account both the ex-
posure factors and the receptor factors in a quan-
titative way, based on neural network and fuzzy 
inference. When the exposure is quantified, com-
bined with Integrated Risk Information System 
(IRIS) toxicity factors, then as a final point the 
related risk can be estimated.  

 

 
 

Fig. 5: Fuzzy inference for estimation of LADID (Matlab software; fuzzy toolbox)  
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Results 
 
Artificial network validation and results 
In this section, Leave-One-Out Cross-Validation 
(LOOCV) was followed with the aim of training 
and testing the ANN model. Frequently, one 
sample is kept for testing while the rest is used 

for training up to all samples are finally tested 
(26). Before the proposed model is applied to the 
particular application, it must be trained using all 
available samples (27). The difference between 
the observed and the predicted values are shown 
in Fig.6. 

  

 
Fig. 6: Comparison of observed and predicted concentration (Source: Author's calculations) 

 
The training of network continued until maxi-
mum correlation within the measured and pre-
dicted output was achieved (Table 3). Correlation 
expressed by R-squared that R2 is coefficient of 
multiple determinations and relative root mean 
square error (RMSE) (26). Correlation results are 

perfect when an R-squared value of 1, a very 
good fit is next to 1 and a very poor fit less than 
0. On the other side, how much the value of 
RRMSE is smaller; the performance of the model 
is better. 

 
Table 3: ANN evaluation parameters (Source: author's calculations) 

 

Pollutant Structure of 
ANN 

Evaluation parameters Results 

Benzene 5-10-1 Mean Absolute Error 5.9 

 5-10-1 Minimum Absolute Error 0 

 5-10-1 Maximum Absolute Error 13.1 

 5-10-1 RMSE (g/m3) 4.8 

 5-10-1 R2 0.941 

 
Predicted concentration results 
In Fig. 7, the annually averaged results of passive 
sampling are presented. Exposure values in ter-

minals were generally higher than another area. 
There is seasonal variation, especially in outdoor 
units. Ambient air temperature affects significant-
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ly the exposure levels, as a result, the high tem-
peratures in the summer and spring explains the 
increased benzene concentrations in exposure 
values. When temperatures are very low (winter-
time), the exposure levels are less than usual for 
an equivalent quantity of close benzene level (Fig. 
8). The presence of wind reduces exposure levels, 
especially to employees who are performing out-
door activities. No strong correlation found be-
tween wind speed and exposure levels of em-
ployees working in laboratory and control room. 
 

 
 

Fig. 7: Annually average concentration (Source: 
Author's calculation) 

 

 
 

Fig. 8: Seasonal comparison of ambient concen-
tration of benzene (Source: Author's calculations) 
 
 

Health risk assessment results 
The measured benzene concentrations and the 
related exposure levels are not considered as an 
acute health risk; meanwhile, this is the possibility 
of leukemia existence after chronic occupational 
contact with benzene due to measured concen-
tration. Long-term individual risk will be calcu-
lated by combining USEPA integrated risk in-
formation system (IRIS) toxicity features with 
results from exposure assessment section (18). 
The individual excess CR was calculated for ex-
posure to benzene through inhalation is pre-
sented in Table 4. The best estimate for the vari-
able distribution of risk in a population implied 
33% of people exposed less than 1×10-6. Based 
on EPA Clean Air Act Risk Range, 1×10-6 risk 
range is considered as the most health protective 
end of the range (27, 28). Whereas 1×10-5 is the 
midpoint of risk range and 67% of the popula-
tion is ranging from 1×10-5 to 9.8×10-5 cancer 
risk probability (27, 28).  
The average estimated risk for all work areas con-
sidering exposure to benzene is equal to 2.4×10-5, 
ranging from 1.5×10-6 to 6.9×10-5. The results 
counsel potential cancer risk for period exposure 
to benzene within the numerous areas but at dif-
ferent levels (Fig. 9). These differences result 
from differences in the employee's type of activi-
ty, age, weight, and breathing rate that in com-
mon methods of risk assessment they did not pay 
attention to them. 

Fig. 9: Potential cancer risk 
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Table 4: Individual health risk assessment (based on average exposure obtained by passive sampling) 
 

Average Life 
Time Cancer 
Risk Value 

Frequency 
(Number 

of workers) 

% Average Life 
Time Cancer 
Risk Value 

Frequency 
(Number of 

workers) 

% 

1.4×10-6 3 3.3 2.7×10-5 3 3.3 

3.0×10-6 3 3.3 2.8×10-5 4 4.4 

4.3×10-6 2 2.2 2.9×10-5 3 3.3 

5.2×10-6 3 3.3 3×10-5 3 3.3 

6.1×10-6 3 3.3 3.2×10-5 3 3.3 

6.5×10-6 2 2.2 3.4×10-5 3 3.3 

6.8×10-6 4 4.4 3.5×10-5 5 5.5 

7.5×10-6 2 2.2 3.6×10-5 7 7.7 

8.1×10-6 3 3.3 4.2×10-5 3 3.3 

8.4×10-6 2 2.2 6×10-5 3 3.3 

9.1×10-6 3 3.3 7×10-5 2 2.2 

1.6×10-5 3 3.3 8.2×10-5 2 2.2 

2.1×10-5 3 3.3 9.5×10-5 1 1.1 

2.2×10-5 5 5.5 9.8×10-5 4 4.4 

2.4×10-5 4 4.4 Total 91 100 % 

 

Discussion 
 
The complete conception in establishing an inte-
grated product is a dynamic model for risk esti-
mation, able to evaluate probable interactions 
among the levels of benzene exposure through 
different task designs, those lead to different le-
vels of benzene metabolic rate and subsequently 
to discount risk estimations (29, 30). In this mod-
el, risk factors that can influence inhalation rate 
were age, body weight, and physical activity of 
persons. These parameters considered as the 
input variable of fuzzy logic in order to estimate 
exposure level for the various situation of em-
ployees. The hybrid system also used Artificial 
Neural Network approach to predict actual at-
mospheric benzene concentration. ANN can ef-
fectively forecast the changes in measured at-
mospheric benzene concentration. Major va-
riables affecting pollutant concentration were 
wind speed, ambient temperature, humidity, and 
rainfall. 
The model is highly flexible so can easily ac-
commodate any situation. Expert viewpoint is 
used as fuzzy rules and the rules can be changed 

according to the needs of the user. The produced 
composite model shows promise as a new tool 
for chemical exposure and health risk assessment, 
which it allows multiple uncertainties incorporate 
into health risk assessment. 
 

Conclusion 
 
In this project, the new hybrid dose model has 
been able to replicate a measured exposure pros-
pering believed to be more representative of ac-
tual intake dose than data from previously ac-
cepted methods. 
Overall, according to aforementioned reasons 
this system can produce risk assessment data that 
appear realistic. It may also be extended to other 
risk management applications where multiple un-
certainties exist. 
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