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Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised
structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the
myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and
to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission
have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in
cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical
load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at
the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in
mechanical force.
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Mechanical cues in the heart

Mechanical stimuli play a key role in both heart morphogen-
esis and in the mature heart. During heart development, me-
chanical forces orchestrate the molecular and cellular changes
that transform the linear tubular heart into a multichambered
machine with four valves (Lindsey et al. 2014). In the chick
embryo, primordial heart contraction and the resulting pulsa-
tile blood flow occurs before active oxygen transport is re-
quired (Burggren 2004), suggesting that contractile force is
required not only for blood pumping but also for morphogen-
esis. Internal forces from cardiac contraction exert strain on
the cell-cell junctions, whereas blood flow exerts both perpen-
dicular (cyclic strain) and parallel forces (shear stress) to the
vessel wall (Granados-Riveron and Brook 2012). In the de-
veloping heart, these mechanical forces are essential for shap-
ing the chambered structure as well as for myofibrillogenesis

(Geach et al. 2015), whereas in the fully formed heart, these
cues are important in maintaining the structural and functional
integrity of the myocardium. In cardiomyopathies, increased
mechanical load triggers compensatory molecular and cellular
changes temporarily allowing the myocardium to sustain
pump function, but with time, these adaptive responses fail
to meet the increased demand, resulting in cardiac dysfunction
and heart failure (reviewed in Harvey and Leinwand 2011;
McNally et al. 2013).

Cardiomyocyte cytoarchitecture

Cells that make up the contractile tissue of the heart, the
cardiomyocytes, are characterised by a highly regular architec-
ture of cytoskeletal elements to ensure force generation and trans-
duction with each heartbeat (reviewed in Ehler 2016).
Cytoskeletal elements are organised into two major multiprotein
complexes: the myofibrils and the intercalated disc (Fig. 1).
Myofibrils, consisting of thin, thick and elastic filaments, contain
the contractile machinery responsible for force generation. The
basic unit of a myofibril is the sarcomere, defined as the region
between two Z-discs (Fig. 1a). Thin filaments, composed of
actin, tropomyosin and the troponin complex (troponin I, T, C),
are anchored at the Z-disc predominantly via α-actinin (de
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Almeida Ribeiro et al. 2014). Thick filaments consist of myosin
units, each containing two myosin heavy chains and two pairs of
two myosin light chains (reviewed in Craig and Woodhead
2006).Myosin heads (or crossbridges) interact with actin, driving
sarcomere contraction (Rayment et al. 1993). Myosin-binding
protein C (MyBP-C) can associate with a subset of the myosin
heads and regulate contraction (Kampourakis et al. 2014). Elastic
filaments are made up of the giant protein titin, which stretches
from the Z-disc to the M band (Fürst et al. 1988), a structure in
the middle of the sarcomere defined molecularly by the presence
of myomesin (reviewed in Lange et al. 2020). The myofibrils are
anchored to the lateral plasma membrane at the Z-disc level
through costameres (Samarel 2005) and at their ends by adherens
junctions, a major component of the intercalated disc (reviewed
in Bennett 2018). The intercalated disc (ID) is a highly
specialised structure maintaining cell-cell adhesion and
supporting transmission of contractile force and electrical signals
from one cell to the next. It has been initially proposed that three
distinct types of cell-cell contacts (Fig. 1b) can be distinguished
at the intercalated disc: adherens junctions (fasciae adhaerentes)
linking to actin filaments (i.e. myofibrils), desmosomes (maculae
adhaerentes) anchoring intermediate filaments and gap junctions,
ensuring electrical coupling (Forbes and Sperelakis 1985). More
recently, a novel type of cell-cell contact, the area composita,
which combines elements of both adherens junctions and des-
mosomes, has been defined for the adult mammalian heart
(Franke et al. 2006). Several studies have contributed to a better
understanding of how these elements intermingle. Plakoglobin
(Pg) is a component of both adherens junctions and desmosomes

(Witcher et al. 1996), while plakophilin2 (Pkp2) can interact with
αT-catenin, an isoform expressed in the heart, brain and testis
(Goossens et al. 2007; Li et al. 2012), suggesting a possible
association between desmosomes and actin filaments. In addi-
tion, Pkp2 (Li et al. 2009; Oxford et al. 2007), desmocollin2
(Dsc2) (Gehmlich et al. 2011) and desmoglein2 (Dsg2)
(Schinner et al. 2019) have been found to interact with
the gap junction protein connexin43 (Cx43), creating a
link between elements of the area composita and the
electrical system.

Mechanosensing and transduction at the ID

Cytoskeletal elements are not only responsible for generating
and transmitting contractile force, but several can also sense
mechanical changes and transduce them into a biochemical
signal, allowing the heart to regulate its output in response to
internal or external mechanical stimuli (reviewed in Lyon
et al. 2015)). In cardiomyocytes, established mechanosensors
are found at the sarcomere and costamere (Lyon et al. 2015;
Sit et al. 2019), but little is known about mechanosensing at
the intercalated disc. Much of the understanding of intercalat-
ed disc force sensing and transduction (Fig. 2) has been inter-
polated from studies on the adherens junctions of epithelial
cells (Ladoux et al. 2015; Merkel et al. 2019). Early embry-
onic cardiomyocytes, with cell-cell contacts around the entire
surface and myofibrils parallel to the plasma membrane
(Hirschy et al. 2006), resemble epithelial cells where

Fig. 1 Simplified schematic representation of the two main cytoskeletal
multiprotein complexes in cardiomyocytes a sarcomeres and b the
intercalated disc. The sarcomere or the region between two Z-discs is
the basic contractile unit of myofibrils, consisting of thin (actin and
associated proteins, horizontal blue lines), thick (myosin and associated
proteins, horizontal yellow block) and elastic (titin, horizontal pink line)

filaments. Intercalated disc was originally described to consist of
adherens junctions (blue and yellow symbols), desmosomes (pink
symbols) and gap junctions (green symbols). The adherens junctions
and desmosomes ensure transmission of force between neighbouring
cardiomyocytes, allowing the heart to function in synchrony
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actomyosin filaments form a circumferential belt in close vi-
cinity to the cadherin-catenin complex (Ladoux et al. 2015).
Similar to epithelial cell-cell contacts, mechanosensing and
transduction at the intercalated disc can occur mostly through
conformational changes in proteins of the adherens junctions
complex: a change in the cytoplasmic domain of classical
cadherins (Chopra et al. 2011) and exposure of the vinculin-
binding domain (VBD) in α-catenin (Merkel et al. 2019).
Whether these changes are independent or part of a signalling
chain remains to be elucidated. Several components of
integrin-based systems (Belkin et al. 1996, 1986; Dowling
et al. 2008; Manso et al. 2013; Yi et al. 2003) are also located
at the intercalated disc, but their precise role in
mechanosensing at cell-cell contacts needs to be carefully in-
vestigated. More recently, changes in desmosomal proteins
have also been described in response to increased mechanical
force (Baddam et al. 2018; Price et al. 2018).

Adherens junction components

N-cadherin

Classical cadherins (E-cadherin, N-cadherin) are large, mod-
ular, membrane spanning proteins of adherens junctions,
located at ideal sites to sense and transduce changes in tension:

on the extracellular side, they mediate cell-cell adhesion with
another cadherin molecule on a neighbouring cell, whereas on
the intracellular side, they are anchored to actin filaments via a
complex of catenins (β, γ and α-catenin) (Maitre and
Heisenberg 2013). Several groups showed that classical
cadherins sense tension and can work as mechanoreceptors
at cell-cell contacts (Borghi et al. 2012; Chopra et al. 2011).
Borghi et al. constructed a hybrid FRET sensor, bearing a
mechanosensitive domain flanked by Teal and Venus fluores-
cent proteins in the cytoplasmic domain of E-cadherin.
Expressed in MDCK cells, the FRET efficiency of the sensor
was significantly affected by actin polymerisation, actomyo-
sin contractility or externally applied uniaxial stretch, thus
providing direct evidence that tension from the cytoskeleton
or external mechanical stimuli is sensed and transduced via
the cytoplasmic domain of E-cadherin (Borghi et al. 2012). In
cardiomyocytes, the only isoform expressed is N-cadherin
(Volk and Geiger 1984). Conditional cardiac deletion of N-
cadherin results in intercalated disc dissolution and myofibril-
lar disarray, associated with a loss of tension and impaired
mechanical function (Kostetskii et al. 2005). To study the
effect of cadherin-mediated stiffness sensing, a 2D system
was employed where N-cadherin-Fc chimeras were cross-
linked to polyacrylamide gels of varying stiffness onto which
neonatal rat cardiomyocytes were cultured and several param-
eters such as spread area, myofibrillar alignment and cortical
stiffness were measured (Chopra et al. 2011). Interestingly, by
comparing cell-cell contact and cell-extracellular matrix
(ECM) stiffness sensing, it was shown that cells grown on
the N-cadherin substrate are more sensitive to lower forces
(300 Pa) than those grown on ECM components, with a higher
degree of cell spreading and myofibrillar alignment.
Nevertheless, when substrate stiffness was increased to 5–
10 kPa in cells grown on cadherin-coated substrate, myofibrils
were randomly oriented and fragmented into distinct domains,
in sharp contrast to cells grown on ECM-coated substrate
where myofibrils were uniformly aligned across the myocyte.
At even higher stresses (30 kPa), cells on both types of sub-
strate were characterised by a more radial shape, myofibrillar
disarray and increased cortical stiffness. Therefore, while both
cell-cell and cell-ECM molecular machineries can sense me-
chanical force and induce changes in the morphology and
internal organisation of cardiomyocytes, each may unique-
ly contribute to how cells adapt in various forms of cardiac
myopathies (axial cell lengthening in dilated cardiomyop-
athy versus transverse cell lengthening in hypertrophic
myocytes) (Chopra et al. 2011). It is important to mention
that the role of classical cadherins as mechanoreceptors has
been recently debated (Charras and Yap 2018). The trans-
membrane proteins are considered to only passively trans-
mit contractile force between cells, yet more evidence is
needed to clearly confirm the role of cadherins in
mechanosensing and transduction.

Fig. 2 Simplified schematic representation of the protein complexes
involved in force sensing and transduction at the intercalated disc.
Molecules suggested to act as molecular switches in response to
mechanical force are shown in yellow. Vinculin, in pink, is a key
protein binding several factors involved in actin filament regulation.
Vinculin phosphorylation on Tyr822 at adherens junctions was shown
to be increased in epithelial MCF10a cells, but whether a similar
modification is found in the heart remains to be elucidated. The TRPV2
channel is responsive to force and ensures the integrity of the intercalated
disc. Proteins marked with * are affected in cardiomyopathies
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α-Catenin

Cadherins bind through their cytoplasmic domain to β-
catenin which links the cadherin molecules to the actin cyto-
skeleton viaα-catenin (Buckley et al. 2014; Desai et al. 2013).
α-Catenin has a modular structure, consisting of three main
domains: an N-terminal domain-binding β-catenin, a modu-
latory domain (divided into MI, MII and MIII regions) bind-
ing vinculin via the vinculin-binding domain (VBD) in the MI
region, but that also other interacts with other actin regulatory
proteins, and a C-terminal domain-binding F-actin (Ishiyama
et al. 2013; Kobielak and Fuchs 2004). α-Catenin has widely
been accepted as a bona fide mechanoreceptor of adherens
junctions, sensing and transducing force into a biochemical
response via a conformational change in protein structure
(Ishiyama et al. 2013; le Duc et al. 2010; Merkel et al. 2019;
Rangarajan and Izard 2012; Seddiki et al. 2018; Thomas et al.
2013; Yao et al. 2014; Yonemura et al. 2010). A first insight
into the role of α-catenin as a mechanosensor was provided in
α-catenin-deficient R2/7 cells, which, despite expressing E-
cadherin, lack various epithelial cell characteristics, including
cell-cell junctions (Yonemura et al. 2010). Interestingly, ex-
pression of α-catenin not only completely restored cell-cell
contacts but also recruited vinculin to the plasma membrane.
Decreasing force by inhibiting actomyosin contractility result-
ed in the disappearance of the vinculin, but not the α-catenin
signal from the junctions. To characterise the force-dependent
mechanism behind this interaction, several α-catenin trunca-
tions were created and expressed in R2/7 cells. Expression of
an α-catenin mutant lacking the F-actin binding C-terminal
domain failed to recruit vinculin at the plasma membrane.
Nevertheless, if α-catenin was further truncated to consist of
only the N-terminal domain and the MI region and expressed
in cells, vinculin did accumulate at the plasma membrane
irrespective of a decrease in force. These experiments led to
two key assumptions: (1) the MII and MIII regions keep α-
catenin in a closed, autoinhibited state unable to bind vinculin,
and (2) the C-terminal domain is a key part of the molecule
involved in force sensing, inducing conformational changes in
the molecule that release the autoinhibition, rendering α-
catenin in an open state and able to bind vinculin. These as-
sumptions were validated by the use of an antibody (α18)
against a region of α-catenin located between the VBD and
the inhibitory regions. In several endogenously expressing α-
catenin epithelial cells, the α18 antibody stained adherens
junctions, colocalised with vinculin and was in close proxim-
ity to myosin II. Decreasing mechanical force by inhibiting
actomyosin contractility, disrupting actin filaments or
disrupting cadherin-mediated adhesion resulted in the disap-
pearance of both α18 and vinculin staining, suggesting that
mechanical force is required to unmask the VBD and
the α18 epitope (Yonemura et al. 2010). An increased
recruitment of α-catenin, vinculin and F-actin at cell-

cell contacts and an increased signal of the α18 anti-
body were also observed when MDCK cells were plated
on stiff substrates (35 kPa) (Seddiki et al. 2018).

How tension changes the conformation of the protein has
been later described by solving the crystal structure of
autoinhibited α-catenin at 6.5-Å resolution, together with the
determination of the crystal structure of the VBD bound to the
corresponding domain of vinculin at 2.7-Å resolution
(Ishiyama et al. 2013; Rangarajan and Izard 2012). In the
autoinhibited state, the helical bundles of MI, MII and MIII
are organised into a λ-shaped conformation, with the MIII
region preventing access to the VBD in MI (Ishiyama et al.
2013). Upon tension sensing by the C-terminal domain bind-
ing to F-actin, the MI region ‘unfurls’, allowing vinculin to
bind the VBD (Rangarajan and Izard 2012). In the heart, con-
ditional deletion of αE-catenin, the major isoform, resulted in
large, highly convoluted intercalated discs, disorganised myo-
fibrils and a propensity to ventricular rupture after myocardial
infarction (Sheikh et al. 2006). Interestingly, in these mice, the
expression levels of vinculin were reduced with a complete
loss of vinculin at the intercalated disc, but not at the
costameres, suggesting the importance of the α-catenin-
vinculin interaction at adherens junctions in maintaining struc-
tural and functional integrity of the heart. In the muscle LIM
protein (MLP, also called Csrp3)-knockout mouse, a model
for dilated cardiomyopathy, the levels of α-catenin, vinculin
and F-actin were increased at the intercalated disc, which
could well be an adaptive response in supporting the increased
mechanical load of the failing heart (Ehler et al. 2001).

Vinculin

Vinculin is an actin binding and regulatory protein, being
recruited to both cell-cell and cell-matrix multiprotein com-
plexes involved in mechanotransduction (Bays and DeMali
2017; Carisey and Ballestrem 2011; Huveneers and de Rooij
2013). In cardiomyocytes, vinculin and its cardiac and smooth
muscle-specific isoform, metavinculin, localise at both the
intercalated disc and costameres (Belkin et al. 1988).
Cardiac-specific vinculin knockout mice developed left ven-
tricular dysfunction that evolved into dilated cardiomyopathy
(Zemljic-Harpf et al. 2007). At the ultrastructural level, the
intercalated discs of these vinculin-deficient hearts appeared
highly serrated, with a low electron density and a significant
separation from myofibrils (Zemljic-Harpf et al. 2007).
Several mutations in metavinculin had been associated with
dilated cardiomyopathy, with the Arg975Trp mutation
resulting in large aggregates of actin filaments together with
irregular and fragmented intercalated discs, supporting the
notion that disrupted impaired contractile force transmission
can lead to dilated cardiomyopathy (Olson et al. 2002). In
isolated neonatal mouse cardiomyocytes, inhibition of acto-
myosin contractility resulted in a significant reduction of the
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vinculin signal at the intercalated disc, confirming the model
previously described in epithelial cells where force is required
to induce a conformational change in α-catenin to allow re-
cruitment of vinculin at the junctions (Merkel et al. 2019).

However, which other factors trigger vinculin-specific
localisation at the cell-cell contacts and what is the role of
vinculin once recruited to the adherens junctions complex?
Phosphorylation of vinculin on Tyr822 in cell-cell, but not
cell-matrix adhesions, was elevated when force was applied
to epithelial MCF10a cells, suggesting that post-translational
modification plays a role in how vinculin differentially sup-
ports mechanotransduction at cell-cell and cell-matrix adhe-
sions (Bays et al. 2014). Once recruited to the adherens junc-
tions, it has been proposed that vinculin can stiffen the
cadherin-catenin complex (le Duc et al. 2010; Seddiki et al.
2018; Yonemura et al. 2010). Indeed, fluorescence recovery
after photobleaching (FRAP) experiments in R2/7 cells ex-
pressing an orange fluorescent protein (OFP)–tagged α-
catenin which induced the formation of cell-cell contacts and
recruited vinculin to the junctions revealed that the mobility of
α-catenin is increased by actomyosin contractility inhibition
(Yonemura et al. 2010). Importantly, the dynamics of the pro-
tein were restricted by expression of an OFP-tagged α-catenin
construct constitutively binding vinculin, suggesting that
tension-dependent vinculin recruitment stabilises α-catenin
at the cell-cell contacts and may contribute to the reinforce-
ment in F-actin binding. Closer examination of vinculin re-
cruited at cell-cell contacts reveals that it does not uniformly
colocalise with E-cadherin all over the junctions but is restrict-
ed to discrete sites in which the cadherin-catenin complexes
contact F-actin bundles (le Duc et al. 2010). Interestingly,
knockdown of vinculin reduced the levels of phosphorylated
myosin light chain (pMLC) (le Duc et al. 2010), as well as
steady-state F-actin and barbed-end content from sites of cell-
cell contact (Leerberg et al. 2014) supporting the notion that
vinculin is important for cytoskeleton remodelling at the junc-
tions (le Duc et al. 2010). In neonatal mouse cardiomyocytes
lacking endogenous N-cadherin, several green fluorescent
protein (GFP)–tagged N-cadherin hybrids linked to various
domains of α-catenin that differed in F-actin binding and vin-
culin recruitment were expressed to rescue the lack of N-
cadherin, and the structure of myofibrils and intercalated discs
was analysed by thin section transmission electron microsco-
py (Merkel et al. 2019). Importantly, the intercalated disc and
myofibrillar arrangement were rescued in cells in which an N-
cadherin hybrid was connected to the MI domain of α-catenin
(thus allowing constitutive vinculin binding), together with
either the MII region or the F-actin binding domain of α-
catenin, but not in cells expressing the F-actin domain and
the MII region of α-catenin (in which the molecule is unable
to recruit vinculin to cell-cell contacts), suggesting that vincu-
lin presence at the intercalated disc is required for connecting
adherens junctions to contractile actin (Merkel et al. 2019).

An intriguing interplay is established where myosin II (and
thus tension generation) is required for vinculin recruitment at
cell-cell junctions, and once recruited, vinculin can stabilise
the actomyosin contractile machinery. A paradox of this feed-
back system is the ability of myosin II to sever F-actin fila-
ments, thus restricting actin assembly (Medeiros et al. 2006;
Wu et al. 2014). One possible way to regulate this effect is to
consider the ability of vinculin to act as a scaffold to recruit
actin regulatory proteins such as Mena andWASP to promote
actin assembly at the cell-cell contacts (Leerberg et al. 2014).
Mena and WASP are suggested to regulate the actin cytoskel-
eton by acting as anti-capping proteins, allowing actin fila-
ment elongation (Bear and Gertler 2009). In cardiomyocytes,
Mena is not only found at the intercalated disc (Aguilar et al.
2011), but its expression is unregulated in heart failure
(Blaxall et al. 2003), suggesting that it may play a similar role
in the heart. Nevertheless, despite being located at the cell-cell
contacts, no significant change in Mena recruitment to the
intercalated disc was found when the hybrid N-cadherin-
GFP-MI-MII, which constitutively binds vinculin, was
expressed in neonatal mouse cardiomyocytes lacking endog-
enous N-cadherin, compared with constructs unable to bind
vinculin, suggesting that while Mena may play a role in actin
assembly, its recruitment is limited and does not correlate with
vinculin levels (Merkel et al. 2019). However, VASP, which
is also found at the intercalated disc, might compensate the
function of Mena in cardiomyocytes (Eigenthaler et al. 2003).
Cardiac-specific overexpression of a dominant negative
VASP which displaced endogenous VASP and Mena from
the cell-cell contacts resulted in mice with disorganised inter-
calated discs and disrupted adherens junctions, accompanied
by dilated cardiomyopathy, supporting a role for VASP in
maintaining structural and functional integrity of the cell-cell
contacts (Eigenthaler et al. 2003).

A proteomic screen in non-contracting and contracting rat
cardiomyocytes identified the slingshot protein phosphatase
(SSH1) as a vinculin-binding partner in contracting cells
(Fukuda et al. 2019). Indeed, the vinculin-SSH1 interaction
was increased by cyclical stretch and abolished when cardiac
contractility was inhibited, suggesting that the interaction is
force-dependent (Fukuda et al. 2019). SSH1 can dephosphor-
ylate and activate the actin regulator cofilin (CFL), which
severs F-actin filaments to supply monomeric G-actin and
promote filament reassembly (Ohashi 2015). Importantly, cy-
clic stretch decreased CFL phosphorylation, whereas inhibi-
tion of cardiac contractility, vinculin depletion or expression
of a dominant negative form of SSH1 results in increased
phosphorylation and inactivation of CFL, suggesting that the
vinculin-SSH1 axis can trigger CFL activation in
cardiomyocytes exposed to increased mechanical forces.
Interestingly, in idiopathic DCM, fibrillar plaques have been
found in almost three-quarters of patients (Gianni et al. 2010).
The precursors of these plaques, termed pre-amyloid
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oligomers (PAO), were shown to contain CFL2, myosin light
chain II and α-cardiac actin (Subramanian et al. 2015). The
levels and phosphorylation of CFL2 in idiopathic DCM pa-
tients were increased, indicating that in these patients, CFL
activity is reduced both by phosphorylation and sequestration
within the PAO (Subramanian et al. 2015). Interestingly, neo-
natal rat cardiomyocytes infected with a phosphomimetic
CFL2 adenovirus displayed ‘stress-like’ fibre structures and
reduced contractility compared with cells infected with wild-
type adenovirus, suggesting that excess actin filament forma-
tion is detrimental for contraction (Subramanian et al. 2015). It
may be that CFL recruitment to the vinculin-SSH1 complex is
a protective mechanism in response to increased mechanical
load since decreased CFL activity is associated with DCM
(Fukuda et al. 2019). It will be interesting to study the precise
localisation of CFL in cardiomyocytes, but immunofluores-
cence microscopy of human hearts revealed that CFL2 is pres-
ent predominantly at the intercalated disc (Subramanian et al.
2015), further supporting its role in mechanotransduction at
this specialised site.

The plasma membrane at cell-cell contacts can itself act as
a force-sensing element (Charras and Yap 2018; Dorland and
Huveneers 2017; Huveneers and de Rooij 2013). In endothe-
lial cells, several agonists can induce the formation of
vinculin-enriched focal adhesions junctions (FAJs), which
are transversally oriented to the cell-cell plane, and are distinct
from linear adherens junctions (Huveneers and de Rooij
2013). The formation of FAJs is prevented when actomyosin
contractility is inhibited, suggesting that hormone-induced
membrane remodelling is dependent on cytoskeletal forces
(Huveneers and de Rooij 2013). Since FAJs appear as finger-
like projections with increased curvature of the membrane,
this could allow BAR domain proteins to be recruited to the
cell-cell junctions (Charras and Yap 2018). In endothelial
cells, the BAR domain containing protein pacsin2 was found
at the trail of FAJs where it was shown to prevent VE-cadherin
internalisation (Dorland and Huveneers 2017). Whether zig-
zag adhesions can form in cardiomyocytes in response to me-
chanical force remains to be investigated, but it is well known
that the plasma membrane at the intercalated disc appears
more convoluted in the hearts of old monkeys (Forbes and
Sperelakis 1985) and mouse models of dilated cardiomyopa-
thy (Ehler et al. 2001), indicating that a similar mechanism
might be involved (Perriard et al. 2003).

N-RAP

Another protein with a possible role in mechanosensing and
transduction at the intercalated disc is nebulin-related-
anchoring protein (N-RAP), a striated muscle-specific protein
which was proposed to be part of the mechanical link between
the intercalated discs and myofibrils (Lyon et al. 2015; Zhang
et al. 2001). Via its N-terminal LIM domain, N-RAP can bind

talin and α-actinin, while via its C-terminal domain, it was
shown to bind vinculin and actin (Luo et al. 1999), as well
as MLP (Ehler et al. 2001). Ultrastructural analysis of adult
mouse hearts reveals that whereas vinculin is present at the
membrane of adherens junctions, N-RAP is found near the
membrane, close to terminal actin filaments that link the myo-
fibrils to the plasma membrane (Zhang et al. 2001).
Fractionation of mouse hearts revealed that N-RAP co-puri-
fied with key constituents of the intercalated disc (N-cadherin,
β1D-integrin, vinculin, talin) and myofibrillar proteins (α-
actinin and myosin heavy chain). Importantly, detergent ex-
traction and sucrose gradient separation which removed resid-
ual myosin and actin, but also vinculin and β1D-integrin, left
a fraction enriched in N-RAP together with N-cadherin, talin
and α-actinin, suggesting that N-RAP is connected to the
junctions predominantly via the cadherin system.
Nevertheless, since talin can also bind β1D-integrin (see be-
low), N-RAP might play a role in cross-linking the integrin
and cadherin systems at the intercalated disc (Zhang et al.
2001). In the hearts of MLP knockout mice, an early upregu-
lation of N-RAP expression was found, suggesting that in-
creased N-RAP levels could be one of the earliest hallmarks
of dilated cardiomyopathy (Ehler et al. 2001). Overexpression
of NRAP in the murine heart results in right ventricular car-
diomyopathy, with little effect on the left ventricle and inter-
calated disc structure, questioning the role of N-RAP in the
disease (Lu et al. 2011). A rare truncating mutation in N-RAP
(Arg1502*) which severely reduces protein levels was found
in a patient who developed dilated cardiomyopathy in re-
sponse to a viral illness (Truszkowska et al. 2017). The same
homozygous mutation was carried by his healthy sibling, sug-
gesting that the Arg1502* N-RAP mutation has low pene-
trance and might require other factors to cause disease
(Truszkowska et al. 2017).

Desmosome components

The desmosome is a multiprotein complex composed of a
membrane spanning desmosomal cadherin (desmoglein or
desmocollin) whose extracellular domain interacts with anoth-
er desmosomal cadherin molecule on a neighbouring cell,
while the intracellular domain links to intermediate filaments
via the cytosolic armadillo proteins Pg (γ-catenin) and Pkp
and the plaque protein desmoplakin (DP) (Fig. 1b, reviewed in
Green et al. 2019). Desmosomes provide mechanical strength
in organs exposed to increased shear stress, such as the skin
and the heart (Bolling and Jonkman 2009). While in the skin,
multiple desmosomal cadherins and plakophilins are
expressed, in the heart, isoforms are restricted to Dsg2, Dsc2
and Pkp2, along with Pg and DP (Patel and Green 2014).
Mutations in desmosomal proteins are found in nearly half
of patients with arrhythmogenic cardiomyopathy (AC)
(Asimaki et al. 2007; Basso et al. 2012; Gerull et al. 2004;
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Klauke et al. 2010; Pilichou et al. 2006; Rampazzo et al. 2002;
Syrris et al. 2006), a disease characterised by progressive re-
placement of the ventricular myocardium with adipose and
fibrous tissue, resulting in ventricular arrhythmias and sudden
cardiac death (Vimalanathan et al. 2018). Interestingly, muta-
tions in the area composita protein αT-catenin are also asso-
ciated with AC (van Hengel et al. 2013). At the ultrastructural
level, the intercalated disc of patients with the disease showed
shorter desmosome-like structures, which are present at ab-
normal locations and display a much wider desmosomal gap
(Basso et al. 2006).

Recent studies have shown that desmosomes are not rigid
but can act asmechanosensory structures (Baddam et al. 2018;
Price et al. 2018). Expression of Dsg2 bearing a C-terminal
tension–sensitive FRET sensor in human-induced pluripotent
stem cell (hiPSC)–derived cardiomyocytes revealed a signifi-
cant change in the FRET signal during cellular contraction
(Baddam et al. 2018), suggesting that Dsg2 can sense the
internal contractile forces generated with each heartbeat. By
contrast, expression of a DP FRET-based tension sensor in
epithelial cells experienced significant mechanical load only
when cells were exposed to external forces and little or no load
from contractile forces generated by individual cells (Price
et al. 2018). A possible explanation for these contrasting ob-
servations is an alternative connection between desmosomal
cadherins and the actin cytoskeleton, possibly mediated by
Pkp2/αT-catenin in the heart (Goossens et al. 2007). It will
be interesting to determine whether DP and other desmosomal
components can sense mechanical load during cardiomyocyte
contraction and, in particular, whether αT-catenin can func-
tion as a mechanosensor while interacting with Pkp2.

Integrin components at the ID

Integrins are large, heterodimeric transmembrane proteins in-
volved in mechanotransduction at the ECM-cell contacts. In
cardiomyocytes, they are mostly found at the costameres
(Ross and Borg 2001). Interestingly, in the adult mouse car-
diac muscle, β1D-integrin, the major isoform expressed, was
found to be localised not only at the costameres but also at the
intercalated disc, with α7B integrin being the major binding
partner (Belkin et al. 1996). Phenylephrine stimulation of neo-
natal rat ventricular myocytes results in a significant increase
in β1D-integrin expression, accompanied by an increase in
atrial natriuretic peptide (ANP), a marker of cardiac hypertro-
phy (Pham et al. 2000). A change in subcellular localisation of
β1D-integrin was also observed, from diffuse cytosolic
punctae to an increase signal at the Z-disc. One flaw of this
study is that plated cells were too scarce to allow formation of
cell-cell contacts, thus not allowing the study of the protein at
the intercalated disc in response to α1-adrenergic stimulation.
Nevertheless, the authors observed an increased phosphoryla-
tion of focal adhesion kinase (FAK), a non-receptor tyrosine

kinase, in response to phenylephrine treatment, and
coimmunoprecipitated β1D-integrin and FAK from cardiac
myocyte protein extracts, suggesting that FAK could be a
downstream effector of integrin signalling (Pham et al.
2000). Indeed, in spontaneously hypertensive heart failure
(SHHF) rats, FAK was found to translocate to the intercalated
disc where its autophosphorylation on Tyr397 was increased
(Yi et al. 2003). In mice, mechanical stress triggered by pres-
sure overload resulted in cardiac hypertrophy and increased
levels of FAK phosphorylation, together with increased levels
of β1D-integrin and its binding partner, α7B integrin, partic-
ularly at the intercalated disc, reflecting the adaptation of the
heart to increased mechanical load (Babbitt et al. 2002).
Nevertheless, studies with human samples have revealed that
the protein levels of β1D-integrin, FAK and its phosphoryla-
tion are not affected in patients with dilated cardiomyopathy
(DCM) but are severely reduced in patients with ischaemic
cardiomyopathy (ICM), suggesting distinct mechanisms in
cardiac remodelling (Pfister et al. 2007). The reduction in
β1D-integrin expression in ICM suggests an insufficient ad-
aptation of the failing heart to the ischemic mechanical de-
mand, with the damage being more focal compared with the
diffuse disturbance in DCM (Pfister et al. 2007).

Integrin activation is highly regulated by interactions with
other cytosolic proteins, particularly talin and kindlins which
bind β-integrin tails and can increase integrin affinity for li-
gands (Calderwood et al. 2013; Rognoni et al. 2016; Zemljic-
Harpf et al. 2009). Talin is a bona fide mechanoreceptor, sens-
ing force and converting it into a biochemical response, in a
similar way to α-catenin (Han and de Rooij 2016). Both mol-
ecules have a C-terminal F-actin binding domain, which can
sense force and initiate a conformational change in the mole-
cule, revealing vinculin-binding sites and allowing vinculin
recruitment to adhesions (del Rio et al. 2009; Grashoff et al.
2010; Pasapera et al. 2010). During embryogenesis, both talin
isoforms, talin1 and talin2, are expressed in cardiomyocytes,
but talin2 becomes the main isoform in the adult myocardium,
localising at both costameres and intercalated discs (Belkin
et al. 1986; Manso et al. 2013; Senetar et al. 2007).
Interestingly, cardiac-specific deletion of talin2 in mice results
in no significant change in cardiac structure and function,
despite a significant reduction in the protein levels of β1D-
integrin (Manso et al. 2017). Nevertheless, there is an upreg-
ulation of talin1 at the costameres, suggesting that when talin2
is ablated, talin1 can compensate its loss, allowing the heart to
maintain its integrity (Manso et al. 2017). An increase in the
levels of talin1, but not talin2, was also observed in neonatal
rat cardiomyocytes under phenylephrine stimulation, in the
hearts of mice after pressure overload and also of human pa-
tients with DCM (Manso et al. 2013). These results suggest
that while talin2 is the main isoform in the adult myocardium,
talin1 can play a role in cardiac mechanotransduction when
the heart is under increased mechanical load (Manso et al.
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2013; Manso et al. 2017). This role of talin1 appears to be
maladaptive since conditional deletion of talin1 in the mouse
heart maintained cardiac function and blunted the hypertro-
phic response after pressure overload (Manso et al. 2013).
Specific deletion of both talin isoforms in the mouse myocar-
dium resulted in DCM with a reduction in protein levels of
β1D-integrin (Manso et al. 2017). Interestingly, there was a
decrease in the vinculin signal at the costameres, but not at the
intercalated disc (Manso et al. 2017), supporting the notion
that vinculin is anchored to the costameres via talins, but also
suggesting that while talin2 is localised at the intercalated disc,
vinculin is predominantly recruited there via α-catenin. It will
be interesting to see whether talin2 can directly bind vinculin
at the intercalated disc and, if so, what are the functional dif-
ferences compared with the α-catenin-vinculin interaction.

Another protein which can bind the cytoplasmic tail of β-
integrin and modulate its activity is the adaptor protein kindlin
(Harburger et al. 2009; Rognoni et al. 2016). Kindlin2, the
only isoform expressed in the myocardium, was also found
to be localised at the intercalated disc and costameres in
mouse hearts (Dowling et al. 2008; Hatcher and Basson
2008). Cardiac-specific deletion of kindlin2 in mice results
in heart failure, with a significant reduction in the protein
levels of β1D-integrin receptors (Zhang et al. 2016).
Interestingly, in the hearts of wild-type mice, kindlin2
localisation was found to be exclusive to the costameres, but
in kindlin2 knockout mice, there was a decrease in the expres-
sion levels of the intercalated disc proteins β-catenin and
connexin43 (Zhang et al. 2016). It remains to be established
whether kindlin2 is indeed localised at the intercalated disc
and, if so, what are its binding partners at this site. One pos-
sible candidate is the LIM domain-containing protein migfilin,
which was also found to be present at the intercalated disc
(Moik et al. 2011) and upregulated in the hearts of mice after
pressure overload (Haubner et al. 2015). Similar to talin1, this
upregulation appears to be maladaptive, since cardiac function
is maintained and hypertrophy is reduced in cardiac-specific
migfilin knockout mice after pressure overload (Haubner et al.
2015). Migfilin can bind filamins, thus providing a link be-
tween the integrin system and the actin cytoskeleton (Tu et al.
2003). Filamins are large, F-actin cross-linking proteins and
also act as scaffolds for a variety of signalling and adaptor
proteins, including migfilin (reviewed in Razinia et al.
2012). Since filamins can sense altered mechanical forces
and undergo a conformational change, they are believed to
act as mechanosensory structures themselves, converting a
mechanical signal into a biochemical response (Ehrlicher
et al. 2011; Furuike et al. 2001; Razinia et al. 2012). In the
adult rat heart, filamin C (filC), a muscle-specific isoform, was
found at sites that have to sustain increased mechanical stress
including intercalated discs, Z-discs and the sarcolemma (van
der Ven et al. 2000). Mutations in filC (reviewed in
Verdonschot et al. 2020) were found in patients with

hypertrophic cardiomyopathy (Valdes-Mas et al. 2014), re-
strictive cardiomyopathy (Tucker et al. 2017), DCM (Begay
et al. 2016) or forms of DCMwith severe arrhythmias (Begay
et al. 2018; Hall et al. 2020), suggesting that filC plays a major
role in maintaining the structural integrity of cardiomyocytes
and ensuring efficient force generation and transmission in the
heart muscle. Strong evidence for this hypothesis was provid-
ed by a very recent publication, which showed that an induc-
ible cardiac-specific knockout of filC leads to death within a
couple of weeks with the hearts displaying a classical DCM
phenotype (Zhou et al. 2020).

Melusin, a striated muscle-specific chaperone protein, was
also found to bind to the cytosolic domain of β1D-integrin
(Brancaccio et al. 2003). Melusin was suggested to act as a
mechanosensor, showing an early upregulated expression in
the hearts of mice after pressure overload (De Acetis et al.
2005). Mice with cardiac-specific overexpression of melusin
maintained adaptive concentric hypertrophy and contractile
function in response to pressure overload, preventing left ven-
tricular dilation and the onset of heart failure (De Acetis et al.
2005). By contrast, melusin-null mice fail to retain the con-
centric compensatory hypertrophic response to pressure over-
load, rapidly developing left ventricular dilation that evolved
into dilated cardiomyopathy (Brancaccio et al. 2003). These
results suggest that melusin plays a protective role in the early
stages of heart failure (Sorge and Brancaccio 2016). Whether
melusin is important for intercalated disc mechanosensing and
transduction remains to be elucidated since the protein is
mostly found at the costameres (Brancaccio et al. 2003).

Overall, it appears that several components of the integrin-
based system (β1D-integrin, FAK, talin2, kindlin2, migfilin,
filC) are found at both the intercalated disc and costameres,
yet their function in mechanosensing at the intercalated disc
remains unclear. It will be important to study these proteins at
the cellular level, in confluent cardiomyocytes, which allow
cell-cell adhesions to be formed, to carefully dissect their pre-
cise localisation, their binding partners and their dynamics at
the intercalated disc in response to mechanical force.

Mechanically gated channels

The large family of transient receptor potential (TRP) chan-
nels responds to numerous physical and chemical stimuli via a
conformational change to allow cation influx into the cell
(Falcon et al. 2019). The TRP vanilloid 2 (TRPV2) channel
is a stretch-sensitive, weakly Ca2+-selective channel found at
the intercalated disc in the murine heart (Iwata et al. 2003).
Cardiac-specific deletion of TRPV2 resulted in disrupted in-
tercalated discs, an increased signal of adherens junction pro-
teins (N-cadherin, β-catenin) and cardiac dysfunction
(Katanosaka et al. 2014). TRPV2 deletion did not affect
excitation-contraction coupling (ECC) which is generated at
dyads between the T tubules and the junctional sarcoplasmic
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reticulum, suggesting that TRPV2-mediated signalling and
ECC are spatially and temporally distinct (Katanosaka et al.
2014). A model was proposed where TRPV2 senses force
generated from contraction and triggers a biochemical re-
sponse essential for maintaining intercalated disc structure
and thus force transmission between neighbouring
cardiomyocytes (Katanosaka et al. 2014). In the hearts of an-
imal models of dilated cardiomyopathy and of human patients
with the disease, the levels of TRPV2 are upregulated but
relocate to the peripheral membrane (Iwata et al. 2013). The
accumulation of TRPV2 at the peripheral sarcolemma was
associated with abnormal calcium influx, while the reduced
TRPV2 levels at the intercalated disc might be responsible for
the changes in cell-cell contact morphology observed in the
disease (Iwata et al. 2013; Katanosaka et al. 2014).

Signalling at the ID

The intercalated disc represents a localised subcellular com-
partment for several signalling pathways which mediate mo-
lecular and cellular responses to changes in mechanical force
(Fig. 3). The β1-adrenergic receptor is localised at the inter-
calated disc in the mouse heart (Schlipp et al. 2014). In HL1
cardiomyocytes exposed to β-adrenergic stimulation, protein
kinase A (PKA) was found to phosphorylate Pg on Ser665,
resulting in recruitment of other desmosomal proteins to cell-
cell contacts to increase the intercellular cohesion between
neighbouring cells (Schinner et al. 2017). An increase in Pg
phosphorylation on Ser665 was also detected in mouse hearts
after elevation of cyclic AMP signalling (Yeruva et al. 2020).
This mechanism may be an adaptive response to support the

increased mechanical load induced by increased adrenergic
signalling, which is known to play a role in heart failure (El-
Armouche and Eschenhagen 2009). Another signalling com-
ponent present at the intercalated disc in the failing heart is
protein kinase Cα (PKCα) Lange et al. 2016). In a healthy
heart, PKCα is inhibited by MLP, but in the hearts of MLP
knockout mouse (Ehler et al. 2001) and of human patients
with dilated cardiomyopathy where MLP expression is re-
duced (Zolk et al. 2000), the inhibition is released and
PKCα translocates to the intercalated disc, becoming part of
a multiprotein complex consisting of cardiac-specific ankyrin
repeat protein1 (CARP1), CARP2 and phospholipase C β1
(PLCβ1) (Lange et al. 2016). As elevated PKC signalling
plays a critical role in heart failure (Palaniyandi et al. 2009),
this provides a molecular mechanism through which the ab-
sence or reduced expression of MLP can result in dilated
cardiomyopathy.

FAK, bound to the cytosolic tail of β1D-integrin (Pham
et al. 2000), acts as a scaffold to recruit several proteins to
integrin complexes, including the non-receptor tyrosine ki-
nase Src (Schaller et al. 1994), the p85 catalytic subunit of
phosphoinositide 3-kinase (PI3K) (Bachelot et al. 1996) and
the adaptor Grb2 (Schlaepfer et al. 1994) (Fig. 3). In the rat
myocardium, increased mechanical stress imposed by pres-
sure overload resulted in a rapid phosphorylation of FAK on
Tyr397 and assembly of the FAK signalling complex,
consisting of Src, PI3K and Grb2 (Franchini et al. 2000).
Elevated mechanical demand also activated Akt, an effector
of PI3K signalling, and the mitogen activated protein kinase
Erk1/2, downstream of Grb2 (Franchini et al. 2000). Since
both Akt and Erk1/2 are mediators of hypertrophy (Proud
2004), FAK-mediated signal transduction provides a possible

Fig. 3 Simplified schematic representation of the signalling molecules
modulating the response to mechanical force at the intercalated disc. In
the early stages of heart disease, these signalling pathways promote
adaptive cell growth and contribute to stronger cell-cell contacts.
Aberrant signalling can result in weaker contacts (e.g. in the hearts of

TRPV2 knockout mice) and a failure to trigger adaptive hypertrophy (for
instance, in the hearts of mice lacking either FAK, melusin or IQGAP1),
leading to impaired contractile function. In some cases, impaired cell-cell
contacts can result in a complete change in cardiomyocyte identity
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link between increased mechanical load and cardiomyocyte
growth (Franchini et al. 2000; Torsoni et al. 2003a).
Cardiac-specific deletion of FAK in the adult mouse blunted
Erk1/2 phosphorylation levels and the compensatory hyper-
trophic response to pressure overload, resulting in decreased
cardiac function (DiMichele et al. 2006).

In murine hearts, FAK was found to be part of a
multiprotein signalling complex consisting of melusin, Raf,
MEK1/2, Erk1/2 and the scaffold protein IQ motif containing
GTPase activating protein 1 (IQGAP1) (Sbroggio et al.
2011a). Mice with cardiac-specific deletion of IQGAP1 failed
to induce adaptive hypertrophy and survival signals in re-
sponse to pressure overload, accelerating left ventricular dila-
tation and cardiac dysfunction (Sbroggio et al. 2011b). Since
IQGAP1 was also found bound to Akt (Sbroggio et al. 2011b)
and melusin to the p85 catalytic subunit of PI3Kα
(Waardenberg et al. 2011), the FAK-melusin-IQGAP1 com-
plex appears to play an important role in bringing together and
regulating the Akt and Erk signalling pathways in response to
increased mechanical demand (Franchini et al. 2000; Sorge
and Brancaccio 2016). In mouse L fibroblasts expressing E-
cadherins (EL cells), IQGAP1 was found at cell-cell contacts
bound to E-cadherin and β-catenin, causing the dissociation
of α-catenin from the cadherin-catenin complex and a weak-
ening of cell-cell adhesion (Kuroda et al. 1998). Whether a
similar mechanism is present at the intercalated disc remains
to be established.

Cardiomyocytes have the ability of secreting the autocrine/
paracrine insulin-like growth factor 1 (IGF1) which binds to
the IGF1 receptor (IGF1R) to activate the PI3Kα pathway
(McMullen 2008; Ren et al. 1999). Neonatal rat cardiomyocytes
exposed to IGF1 became enlarged and showed an upregulation
of muscle-specific gene transcripts (Ito et al. 1993). Mechanical
load imposed by pressure overload resulted in increased IGF1
expression levels in the rat ventricular myocardium (Donohue
et al. 1994), and elevated levels of IGF1 were also found in
hypertrophied human left ventricles (Pauliks et al. 1999). IGF1
secretion was significantly reduced in cardiomyocytes from
TRPV2-deficient mice with impaired cell-cell contacts, in paral-
lel with a significant reduction in IGF1R/PI3K/Akt signalling
(Katanosaka et al. 2014). Addition of IGF1 to those
cardiomyocytes restored the connection between neighbouring
cells, suggesting that the IGF signalling pathway might be in-
volved not only in growth but also in maintaining intercalated
disc structure (Katanosaka et al. 2014).

RhoA and its associated kinase (ROCK) signalling are essen-
tial in actomyosin machinery assembly, with ROCK phosphor-
ylating and activating myosin regulatory chains but also formins
which ensure unbranched F-actin nucleation, elongation and/or
bundling (Arnold et al. 2017). In the rat heart, RhoA and ROCK
were rapidly elevated in response to pressure overload, clustering
to specific subcellular compartments, including the intercalated
disc (Torsoni et al. 2003b). RhoA/ROCK signalling appears to

be important in FAK-mediated Erk1/2 activation in response to
increased mechanical load since RhoA or ROCK inhibition
abolished FAK phosphorylation on Tyr397 and Erk1/2 activa-
tion (Torsoni et al. 2005). In endothelial cells, ROCKwas found
to phosphorylate and activate the formin FHOD1, resulting in
increased stress fibre formation (Takeya et al. 2008). In
cardiomyocytes, FHOD1 was found at the intercalated disc and
costameres (Al Haj et al. 2015; Dwyer et al. 2014) with expres-
sion levels being elevated in the hearts of mouse models of
dilated cardiomyopathy and patients with the disease (Dwyer
et al. 2014). Whether the elevated levels of FHOD1 at the inter-
calated disc are responsible for the increased levels of F-actin
observed at this specialised site in dilated cardiomyopathy
(Ehler et al. 2001) remains to be established. The non-receptor
tyrosine kinase Src, downstream of PKC, was also found to
phosphorylate FHOD1, prior to ROCK phosphorylation, sug-
gesting at least a two-step mechanism in FHOD1 activation
(Iskratsch et al. 2013; Pandey et al. 2018). Src phosphorylation
was shown to be important for formin targeting to costameres
(Pandey et al. 2018), but whether a similar mechanism is in-
volved in FHOD1 localisation at the intercalated disc remains
to be investigated.

RhoA/ROCK signalling at the intercalated disc appears to
play a role in AC (Vimalanathan et al. 2018). A frameshift
mutation in the desmosomal protein Pkp2 impaired RhoA/
ROCK signalling, triggering transcriptional and morphologi-
cal changes which govern myocyte to adipocyte transition
(Dorn et al. 2018). In human-induced pluripotent stem cells
(hiPSC)–derived cardiomyocytes expressing the mutated
Pkp2, RhoA recruitment to cell-cell contacts was reduced,
resulting in increased levels of cytosolic G-actin (Dorn et al.
2018). In turn, the increased G-actin levels were correlated
with cytoplasmic sequestration of transcription factors such
as MRTF that are involved in myocyte identity, preventing
their entry into nucleus (Dorn et al. 2018; Olson and
Nordheim 2010). In the presence of pro-adipogenic cocktails,
cardiomyocytes with defective cell-cell contacts failed to sus-
tain myocyte identity and were poised to convert to adipocytes
(Dorn et al. 2018), providing a possible molecular mechanism
behind the cellular and tissue changes observed in arrhythmo-
genic cardiomyopathy.

Conclusion

The intercalated disc contains a complex machinery of structural
and signalling molecules which work together to sense, transmit
and transduce changes in force to ensure the heart maintains its
function in response to increased mechanical stress. It is a fine-
tuned machinery and maintained stoichiometry of its composi-
tion appears to be crucial for its integrity and heart function.
Work carried out in recent years has shown that mechanosensors
established by investigating cell-cell contacts in epithelial cells
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also play a role in mechanotransduction at the intercalated disc,
but much still remains to be unveiled. Several questions, such as
the precise role of integrin complexes in mechanosensing at the
intercalated disc, how desmosomes sense various mechanical
loads and whether there are other actin regulatory factors affect-
ing actin structures at this specialised site, will hopefully be an-
swered in the next decade. A clearer understanding of intercalat-
ed disc mechanosensing and signalling will allow the developing
of pharmaceutical agents that help the failing heart to cope better
with the increased mechanical load experienced in disease.
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