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Background: With the large-scale introduction of volumetric modulated arc therapy
(VMAT), selection of optimal beam angles for coplanar static-beam IMRT has increasingly
become obsolete. Due to unavailability of VMAT in current MR-linacs, the problem has re-
gained importance. An application for automated IMRT treatment planning with
integrated, patient-specific computer-optimization of beam angles (BAO) was used to
systematically investigate computer-aided generation of beam angle class solutions (CS)
for replacement of computationally expensive patient-specific BAO. Rectal cancer was
used as a model case.

Materials and Methods: 23 patients treated at a Unity MR-linac were included. BAOx

plans (x=7-12 beams) were generated for all patients. Analyses of BAO12 plans resulted in
CSx class solutions. BAOx plans, CSx plans, and plans with equi-angular setups (EQUIx,
x=9-56) were mutually compared.

Results: For x>7, plan quality for CSx and BAOx was highly similar, while both were
superior to EQUIx. E.g. with CS9, bowel/bladder Dmean reduced by 22% [11%, 38%]
compared to EQUI9 (p<0.001). For equal plan quality, the number of EQUI beams had to
be doubled compared to BAO and CS.

Conclusions: Computer-generated beam angle CS could replace individualized BAO
without loss in plan quality, while reducing planning complexity and calculation times, and
resulting in a simpler clinical workflow. CS and BAO largely outperformed equi-angular
treatment. With the developed CS, time consuming beam angle re-optimization in daily
adaptive MR-linac treatment could be avoided. Further systematic research on computerized
development of beam angle class solutions for MR-linac treatment planning is warranted.

Keywords: MR-linac, beam angle optimization (BAO), beam angle class solution, automated planning, rectal cancer
INTRODUCTION

With the large-scale introduction of volumetric modulated arc therapy (VMAT), the problem of
selecting a set of optimal beam directions in treatment planning for coplanar IMRT with static beam
configurations has increasingly become obsolete. Current MR-linac (MRL) systems (1–4) do not
offer VMAT and only allow coplanar treatment, meaning that the beam angle selection problem for
coplanar treatments has re-gained importance. This could also have an impact on daily adaptive re-
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planning at MRLs in case daily re-optimization of beam angles
would result in enhanced daily dose distributions.

Selection of optimal IMRT beam directions with conventional
trial-and-error (‘manual’) planning can be extremely challenging
and time-consuming. In recent years, many studies have
investigated the use of computer optimization of beam angles
in non-coplanar IMRT, as often applied in stereotactic (body)
radiation therapy (S(B)RT) (5–7). For many treatment sites [e.g.,
liver (5), lung (6), head-and-neck (8) and prostate (9)], computer
optimized beam setups resulted in high-quality plans.
Computerized beam angle selection has also been investigated
for coplanar IMRT treatments (10–12). Probably related to the
introduction of VMAT, there hardly seem to be recent studies.
Several treatment planning studies for MRL systems showed
adequate and clinically acceptable IMRT plan quality (13–19).
All these studies were based on manual beam angle selection, as
the treatment planning systems for the available MRLs do not
feature computerized beam angle selection.

In a previous study, we developed a workflow for fully-
automated, multi-criterial generation of IMRT plans for a high-
field MRL (17). For rectal cancer patients, retrospectively generated
IMRT plans for clinical beam angles were superior to the clinical
IMRT plans, generated with manual planning. The applied
optimization workflow also allows integrated optimization of
beam angles (BAO) and IMRT profiles. In this study, this BAO
feature was explored for rectal cancer, aiming at development of
beam angle class solutions to replace time-consuming
individualized beam angle selection with minimal plan quality
loss. Apart from generation of high-quality initial treatment plans,
adequate beam angle class solutions would also be useful for fast
daily adaptive re-planning, as this could be limited to re-
optimization of intensity profiles. Validation of the plans
generated with beam angle class solutions was done by
comparison to plans with patient specifically optimized beam
angles and plans with equi-angular setups. Often applied equi-
angular setups were chosen as a reference to avoid dependence on
subjective beam selection by human planners. To provide a strong
validation of CS plans (with a maximum of 12 beams), comparative
plans with equi-angular setups contained up to 56 beams.
MATERIALS AND METHODS

Patients and Clinical Treatment Planning
Planning CT-scans of 23 rectal cancer patients, previously
treated at the NKI (The Netherlands Cancer Institute,
Amsterdam) at a Unity MRL; (Elekta AB, Stockholm, Sweden),
were included in this study. The CTV was defined as the
combination of GTV, expanded with a 10 mm margin for
subclinical disease, and regional lymph node areas (mesorectal,
internal iliac, and depending on GTV location and N-stage,
obturator and/or presacral). The CTV was expanded with a 10
mm margin in all directions, except for an expansion of up to 15
mm anterior to mesorectal region (20). Around the internal iliac,
obturator lymph node areas a margin of 5 mm was taken.
All delineated areas were adapted to non-involved structures
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such as bone structures. The bladder and bowel bag (‘bowel’ in
the remainder of this paper) were separately delineated and then
joined with exclusion of the overlap with the PTV, to construct a
composite OAR (‘OAR’ in the remainder of this paper) that was
used for planning. An artificial helper structure in the dorsal part
of the patient was used to avoid unacceptable high dose posterior
to the PTV, caused by the high magnetic field (17). All patients
were clinically treated with the same beam setup, consisting of 9
beams not passing through the three MRL-specific beam
avoidance areas (BAAs): the cryostat pipe (gantry angles 8°-
18°) and two high attenuation regions of the MRL treatment
couch (100°-140° and 220°-260°) (17) (See also pink areas in
Figure 1). Treatment plans were generated to deliver 50 Gy in 25
fractions, which were considered clinically acceptable in case
PTV V95% exceeded 99%, while V107%<1-1.5%. Additional
planning goals were a maximum reduction of OAR DMean

(first priority), and a PTV DMean close to the prescribed dose,
as well as controlling delivered high and low patient
doses (ALARA).

Automated Plan Generation
All plans in this study were fully automatically generated with the
in-house developed Erasmus-iCycle multi-criterial optimizer
(Details can be found in (7, 21), and a brief summary is given
below), coupled to the same Monte Carlo dose engine as used in
the clinical MRL TPS, in order to account for the dosimetric
impact of the applied high magnetic field. The system was tuned
for generation of high-quality MRL plans for rectal cancer
patients, in line with the clinical planning protocol at NKI
(17), above). With the dorsal artificial helper structure
(Patients and Clinical Treatment Planning), potential negative
impact of the electron return effect (ERE) on the dose in the
patient’s skin was mitigated (17).

Erasmus-iCycle has been developed for fully automated
multi-criterial IMRT planning for pre-selected beam angles, or
with integrated beam angle optimization. Treatment site specific
configurations (‘wish-lists’), consisting of hard constraints and
prioritized objectives, are created to ensure that the generated
Pareto-optimal plans are also clinically favorable (7, 22, 23). In
the plan generation for a patient, the objective functions are
minimized sequentially following the order of assigned priorities,
while avoiding violations of imposed constraints. After the
minimization of a cost function, an extra constraint is added to
the optimization problem to ensure that minimization of lower
priority cost functions will not result in reduced quality for the
higher priorities. In case of integrated beam angle optimization,
favorable directions are sequentially added to the plan (7).
This approach may for smaller numbers of beams (~7 and
lower) in some cases result in a plan quality that is somewhat
lower than maximally achievable.

Construction of Beam Angle Class
Solutions (CS) and Validation
In total six CSx with x=7 up to 12 beams were constructed.
Construction of each CSx was based on the beam directions
found in the BAO12 plans of the N patients that were used for its
creation (in total M = N ∙ 12 input directions), i.e. also for
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creation of CSx<12, beam directions in BAO12 plans were used.
The basis for selection of the x directions in CSx was a frequency
histogram with the M input directions. In a pre-processing step,
prior to final CSx beam selection, lower frequencies were added
to neighbouring (within 5 degrees) bins with higher frequencies.
If pre-processing ended up with more than x beams, a selection
was performed among the beams with lowest frequencies, such
that remaining beams had a maximum distance to already
selected beams with higher frequencies.

For assessing whether the method for CSx construction would
generalize to an independent data set, we used the leave-one-out-
method, i.e. building 23 models (one per patient), each one
constructed with the BAO12 plan of N = 22 patients (M = 22 ∙ 12
input directions), and then compare for the patient that was not
Frontiers in Oncology | www.frontiersin.org 3
involved in CSx construction, the CSx plan with his/her
BAOx plan.

After validation of the methodology, final CSx were
established using all 23 study patients as input.

Generated Treatment Plans
For all patients in this study, the following plans were generated
and mutually compared. A graphical summary, for x=12 beams,
is provided in Figure 1.

BAOx: plans generated with individualized beam profile and
beam angle optimization (BAO) for x = 7-12 beams. The
candidate beam set consisted of 56 beams distributed over
360°, starting at gantry angle 0°, separated by 5° and excluding
the BAAs (Figure 1).
FIGURE 1 | Upper row: individualized beam angles of the 12-beam plans for three example patients, generated with integrated beam profile and angle optimization
(BAO). Lower row: beams for CS12, the 12-beam class solution, and for EQUI12, the 12-beam equi-angular setup. Black, red and green lines represent treatment
beams. Beam avoidance areas (BAAs) for the Unity MRL are depicted in pink.
October 2021 | Volume 11 | Article 717681
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CSx: plans generated with beam profile optimization only,
using x = 7-12 fixed beam directions defined by the CSx class
solutions (above).

EQUIx: plans generated with beam profile optimization only,
using equi-angular beam setups with x = 9, 12, 15, 19, 24, 29, or
56 beams, while excluding the BAAs.

With the defined BAOx, CSx and EQUIx, 19 plans were
generated for each of the 23 patients (6 BAOx, 6 CSx and 7
EQUIx plans), resulting in a total of 437 plans used for
plan comparisons.

BAO, CS and EQUI Plan Evaluations
and Comparisons
To avoid bias in OAR plan parameter comparisons, generated
plans were rescaled such that 99% of the PTV received 95% of the
prescribed dose (conform clinical protocol). Like in clinical
practice, the mean dose in the composite OAR was then the
most important parameter for comparisons of BAOx with CSx
and EQUIx, but involved bladder and bowel doses were also
evaluated separately using DMean and V45Gy (24, 25).
Furthermore, PTV V107%, PTV DMean, conformity index (CI,
defined as V95%/VPTV) and the dose bath (V10Gy, V20Gy, V30Gy,

V40Gy in the patient) were considered in plan evaluations and
comparisons. Two-sided Wilcoxon signed-rank tests were used
for statistical analyses, with p-values <0.05 indicating statistical
significance of plan parameter differences.
RESULTS

Validation of CSx Construction and the
Final CSx
Several generated CS7 plans had PTV coverages as low as 90%,
requiring major re-scaling to arrive at the desired 99% coverage
(see Materials and Methods section), which then sometimes
resulted in too large hot spots in the PTV (See Discussion).
When excluding all 23 CS7 plans, the mean PTV coverage for
the remaining 414 CSx≥8, BAOx≥7 and EQUIx≥7 plans, prior to
rescaling, was 99.4%, range [98.6%-99.8%], i.e. the applied
rescaling was minor. Mean dosimetric parameters of rescaled
plans are compared in Figure 2, showing for CSx plans mean
values for left-out patients. P-values are presented in Figures A1-
A12 in Electronic Supplement A. Figure 2 clearly illustrates the
above-mentioned problems with CS7, and led to the conclusion
that the proposed CSx construction method did not properly work
for x=7. For x≥8, high similarity between CSx and BAOx plans was
observed in Figure 3 and the population based DVHs in Figure 4
confirm the high quality of the CSx plans for all individual patients.
Figure 4 also shows the DVHs of patient 14, the patient with
largest differences between CSx and BAOx. Even for this patient
the differences were limited. The data presented in Figures 2–4
demonstrate generalizability for ≥8 beams. The final CSx,
generated based on all 23 patients are presented in Table 1.
Figure 5 compares for the 23 study patients, patient-specific
beam angle configurations in BAO12 plans with CS12. The final
CSx were used to generate data for Figures 6 and 7 below.
Frontiers in Oncology | www.frontiersin.org 4
Evaluation and Comparison of BAO, CS
and EQUI Plans
Some interesting observations were made:

• For the higher priority healthy tissues (OAR, bladder and
bowel), dose reductions in BAOx, CSx and EQUIx plans with
increasing x were steep. E.g. when moving from CS8 to CS12,
only 4 beams more, the OAR DMean reduced from 16.2 Gy to
12.6 Gy, a 22% reduction (upper panels Figure 2).

• For fixed x, reductions in OAR doses in BAOx and CSx plans
compared to EQUIx where potentially meaningful, while dose
delivery to the PTV (middle panels Figure 2) and patient
(lower panels Figure 2) were similar. E.g. when using CS12
instead of EQUI12, OAR DMean reduced on average from 12.6
Gy to 14.1 Gy (11% reduction). These observations are
confirmed by the population mean DVHs presented in
Figure 6 left and the patient-specific plan comparisons for
x=9 and x=12 in Figure 7.

• Increased dose delivery to the composite OAR, bowel and
bladder in equi-angular plans could be compensated for by
using more beams (upper panels Figure 2). This observation
is supported by the population mean DVHs presented in
Figure 6 right, showing that 24 equi-angular beams were
needed to approach the quality of 12-beam class solution
plans and 12-beam plans generated with BAO.

When using beam angle class solutions for plan generation
instead of patient-specific beam angle optimization, calculation
times were largely reduced. E.g. for CS12 plans, calculation times
were 1-2 hours, which was a factor of 10 to 15 higher for BAO12

plans. Main time reduction is attributed to the fact that beam
angle selection is no longer needed for the CS12 plans.

Irradiation Through BAAs
The plans presented in this study were generated with full
avoidance of the BAAs (Figure 1). Although not clinically
applied at NKI, using beams going through the left- and right-
inferior avoidance areas (Figure 1) is technically possible. The
question rises to what extent allowing beams to pass through
those BAAs might further improve quality of MRL plans. In
Electronic Supplement B, computer-optimized patient-specific
BAO was used to investigate the impact of allowing also beams
pass through the left- and right-inferior avoidance areas,
showing only minor plan quality improvements.
DISCUSSION

Current MRL systems require for each patient a selection of discrete
angles of incidence for applied coplanar IMRT beams. The main
aim of this paper was to explore the use of an advanced algorithm
for integrated patient-specific beam angle and profile optimization
to investigate computer-aided development of beam angle class
solutions (CS) for avoiding the need of computationally intensive,
patient-specific beam angle optimization (BAO), while maintaining
the same high plan quality. Rectal cancer at a Unity systemwas used
as a model case. Basically, constructed CSx (x = number of included
October 2021 | Volume 11 | Article 717681
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beam directions) contained most frequently occurring beam angles
in BAO12 plans of a group of patients used for model construction.
A leave-one-out validation approach demonstrated that the
proposed construction methodology worked well for CSx>7 (i.e.
resulting in a plan quality highly similar to BAOx), but not for x=7
(see below). CSx and BAOx plans for x=8-12 were compared to
plans with equi-angular setups (EQUI) with up to 56 beams. All
plans were fully automatically generated, allowing analyses based on
a large number of treatment plans (437), and comparison of
treatment approaches without well-known limitations of manual
planning (26, 27).

While for x>7, quality of CSx plans was highly comparable to
BAOx, computation times dramatically reduced (for x=12: from 10-
30 hours to 1-2 hours, depending on the patient). This renders
Frontiers in Oncology | www.frontiersin.org 5
planning with a CS favorable for generation of initial treatment
plans in the treatment preparation phase, but it can also have
consequences for daily adaptive re-planning at an MRL; when using
a CS, daily re-optimization of beam angles (which would anyway be
infeasible because of calculation times), is not needed as it will not
result in plan improvements (as the CS work for all patients, they
also work for different anatomies of the same patient). In this study,
we did not investigate whether also beam arrangements established
with individualized BAO prior to treatment would be robust for
day-to-day anatomical variations during the fractionated
treatments. This could be studied by comparing adaptive
planning with and without BAO on repeat images.

The simpler and more consistent workflow with a CS may also
be favorable for QA, both pre-treatment and after plan adaptation.
FIGURE 2 | Mean dose parameters for the 23 study patients. The top left shows the results for the composite OAR, the clinically most important healthy tissue
structure. Note the non-continuity of the x-axes. P-values for all mutual comparisons of beam angle approaches can be found in Figures A3-A14 in Electronic
Supplement A. Leave-one-out data was used for CSx.
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For all x>7, BAOx and CSx plans clearly outperformed EQUIx
plans regarding quality, especially for doses delivered to the bladder
and bowel. Equal quality of BAO/CS and EQUI plans could be
obtained by enhancing the number of beams in the EQUI plans. E.g.
Frontiers in Oncology | www.frontiersin.org 6
the quality of EQUI plans with 24 beams was similar to BAO and CS
plans with 12 beams. However, the use of substantially enhanced
numbers of beams would increase plan optimization times, which is
unfavorable, especially in a setting of daily adaptive re-planning. It
FIGURE 3 | For all patients separately, plan parameter differences between CSx and BAOx for x=8-12 (upper panel) and CS9 (lower panel). The last columns show
population mean differences. Leave-one-out data was used for CSx.
October 2021 | Volume 11 | Article 717681
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would also result in more complex QA. There may also be clinical
reasons for avoiding multi-beam treatments, e.g. for children and
lung tumors. Overall, EQUI plans with many beams (up to 56) had
the highest quality. This observation could possibly hint at a superior
plan quality if VMAT would be implemented for the investigated
MRLs, although performance of VMAT could possibly be lower than
IMRT with many-beam EQUI setups due to delivery limitations with
VMAT. The Unity MRL has a fast rotating gantry (6 rpm). This
could possibly yield fast delivery of multi-beam equi-angular setups
FIGURE 4 | OAR and PTV DVHs for the patient with largest difference (i.e., patient 14 from Figure 4) (left column) and population average DVH (right column) for
x=8-12. Leave-one-out data was used for CSx.
TABLE 1 | Beam angle configurations of the different CSx based on all 23 patients

Beam Angles

CS8 64 84 100 140 192 220 260 292
CS9 64 84 100 140 160 192 220 260 292
CS10 64 84 100 140 160 192 220 260 292 300
CS11 64 84 100 140 160 192 220 260 272 292 300
CS12 64 84 100 140 160 192 220 260 272 280 292 300
October 2021 | Volume 11 | Article 717681
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feasible, which would amongst other parameters depend on gantry
deceleration and acceleration times. To our knowledge, no peer-
reviewed publications on the topic have appeared so far.

For CS7 we observed too high PTV V107%. This is a direct
effect of the large amount of rescaling required to obtain the
requested PTV coverage. This showed that the proposed CSx
construction methodology is less suited for low x. Most likely,
beam angle selection is more sensitive if few beams are involved.

In this study, also the generation of CSx<12 was based on BAO12

plans. From experience we know that the sequential BAO in the
applied optimizer (7) will not always be fully optimal for lower beam
numbers. As obtaining the highest possible plan quality with the
CSs was the aim in this study, we avoided using BAOx plans with
small x for CS generation, and always used BAO12 plans instead.

The analyses presented in Electronic Supplement B
demonstrate that the impact of respecting left-and right-
inferior BAAs on plan quality is small: addition of one extra
Frontiers in Oncology | www.frontiersin.org 8
beam has a much larger impact on plan quality than keeping the
beam number fixed, but allowing beams to pass through BAAs.
This could of course be different for other tumor sites.

Although this work was done for the Unity MRL, we believe it is
also relevant for the MRIdian® system (Viewray, Oakwood Village,
Ohio, USA). Also for the MRIdian®, dose is delivered with step-
and-shoot IMRT, requiring selection of discrete beam angles. The
system has a gantry rotation speed of 0.5 rpm, and also for this
system, gantry deceleration and acceleration times will contribute to
delivery times of multi-beam treatments compared to treatment
with fewer (well-selected) beams. As for any system, large increases
in beam numbers would result in enhanced computation times for
daily adaptive re-planning, and there would be an impact on QA.

Advanced options for beam angle optimization are currently
lacking in commercial TPSs. Many studies have demonstrated
the benefit of such algorithms for non-coplanar treatment (5–11,
28). This study demonstrates that such algorithms could also
enhance treatment plan quality for coplanar MRL treatments.
Although treatment planning based on beam angle CSs could
avoid patient-specific BAO, the CSs proposed in this study were
developed and validated with BAO plans. In the absence of
advanced BAO functionality, many centers work with beam
angle CSs derived with manual trial-and-error planning. The
NKI decided to replace their original 9-beam CS, obtained from
manual planning, with the CS9 developed in this study. Lack of
advanced BAO in the commercial TPSs for MRL could
complicate demonstration of added value of these systems in
clinical studies. Till implementation of BAO tools in these
systems, institutes with advanced in-house tools could develop
CSs, which could then be used in (multi-center) clinical studies.

The CSs in this study were developed for one specific treatment
planning protocol for rectal cancer patients. The validity for other
protocols was not investigated and will be subject of further
research. More studies for other tumor sites are also warranted to
explore what beam numbers and beam angle configurations are
needed for high-quality plans, and to investigate required numbers
of model patients.

The RATING guidelines for treatment planning studies (29) assisted
in preparing the manuscript. Two investigators (RB, LR) independently
filled out the Rating score list, arriving at scores of 80% and 83%.
FIGURE 5 | Patient-specific BAO12 beam angles. As a reference, CS12 beam
angles were added with red markers in the last column, see also Table 1.
BAAs are depicted in pink.
FIGURE 6 | Left: Population mean DVHs for equal numbers of beams, showing higher bowel and bladder doses for equi-angular plans, while BAO and CS almost
overlap. Right: Population mean DVHs for similar plan quality, using more beams for equi-angular set-ups (24 instead of 12).
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CONCLUSION

For rectal cancer patients treated at a Unity MRL, computer-
generated beam angle CS could replace individualized BAO
without loss in plan quality, while reducing planning complexity
and calculation times, and resulting in a simpler clinical workflow.
Both CS and BAO treatments largely outperformed multi-beam
equi-angular treatment. With the developed high-quality CS, time
consuming beam angle re-optimization in daily adaptive MRL
treatment could be avoided, as it would not enhance plan quality.
Further research on computerized development of beam angle class
solutions for MRL treatment planning is warranted. There is a need
for implementation of advanced beam angle optimization tools in
TPSs of MRL systems.
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