GNB, however its ability to improve patient outcomes may be attenuated if initiation is delayed or it is reserved for salvage therapy. We sought to determine the impact of delayed C/T initiation on 30-day mortality in patients with MDR GNB infections.

Methods. This was a multicenter, retrospective cohort study including adult patients treated with C/T (\geq 72 hours) for suspected or confirmed MDR GNB (resist-ant to \geq 1 drug from \geq 3 classes) infections between January 2015 and February 2018. Classification and regression tree (CART) analysis was used to determine the time point of C/T initiation from index culture or diagnosis most predictive of 30-day mortality. Clinical characteristics and outcomes were compared between patients receiving early or delayed C/T, defined by the CART time point. Multivariable logistic regression was conducted to determine the independent association between early C/T initiation and 30-day mortality.

Results. A total of 144 patients were included. The median (IQR) age was 61 (49, 71) years with a male (65%) and African American (53%) predominance. The most common source of infection was respiratory (64%) and MDR *Pseudomonas aeruginosa* was isolated from 92% of cultures. A breakpoint in time was identified of 119 hours where 30-day mortality was significantly increased (11.8% vs. 26.2%; P = 0.032). Absence of prior infection or colonization with MDR GNB was the only variable independently associated with delayed C/T (*a*OR 3.28, 95% CI 1.53, 7.01). After adjustment for confounding variables, delayed C/T was associated with a > 3-fold increase in 30-day mortality (*a*OR 3.22, 95% CI 1.11, 9.40).

Conclusion. These data suggest that delaying C/T initiation by approximately 5 days substantially increases the risk of mortality in patients with MDR GNB infections, underscoring the importance of early appropriate therapy and the need for incorporation of C/T into automated susceptibility testing panels to support earlier initiation.

Disclosures. S. L. Davis, Achaogen: Scientific Advisor, Consulting fee. Allergan: Scientific Advisor, Consulting fee. Melinta: Scientific Advisor, Consulting fee. Nabriva: Scientific Advisor, Consulting fee. Zavante: Scientific Advisor, Consulting fee. M. J. Rybak, Allergan: Consultant, Grant Investigator and Speaker's Bureau, Research grant and Research support. Achaogen: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Bayer: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Melinta: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Merck: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Theravance: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Sunovian: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Zavante: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. NIAID: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support.

2385. Ceftazidime–Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant *Pseudomonas aeruginosa* Krisztina M. Papp-Wallace, PhD^{1,2}; Elise T. Zeiser, BS, MPH²; Scott A. Becka, BS²; Steven T. Park, MS³; Marisa L. Winkler, MD/PhD⁴; Kevin Nguyen, BS³; Indresh Singh, MS⁵; Granger Sutton, PhD⁵; Derrick E. Fouts, PhD⁵; Evelyn J. Ellis-Grosse, PhD⁶; George L. Drusano, MD⁷; David S. Perlin, PhD³ and <u>Robert</u> A. Bonomo, MD^{2,8}, ¹Medicine, Case Western Reserve University, Cleveland, Ohio, ³Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, ⁴Brigham and Women's Hospital, Boston, Massachusetts, ⁵J Craig Venter Institute, Rockville, Maryland, ⁶Zavante Therapeutics, Inc., San Diego, California, ⁷Institute for Therapeutic Innovation, Lake Nona, Florida, ⁸Case Western Reserve University, Cleveland, Ohio

Session: 250. Treatment of AMR Infections *Saturday, October 6, 2018: 12:30 PM*

Background. By targeting penicillin binding protein-3, the AmpC β -lactamase, and MurA, another enzyme involved in cell wall synthesis, with the ceftazidime-avibactam-fosfomycin combination, we previously overcame multidrug resistance (MDR) *in vitro* in an archived collection of *Pseudomonas aeruginosa* clinical isolates. Here, we further validate the ceftazidime-avibactam-fosfomycin combination using the MDR *P. aeruginosa* clinical isolate, CL232.

Methods. Whole genome and transcriptome sequencing, checkerboard analysis, and determination of mutation frequency as well as mutation prevention concentration were conducted. In addition, the ceftazidime-avibactam-fosfomycin combination was tested in a neutropenic thigh murine infection model with a high bacterial burden $(2 \times 10^7 \text{ colony forming units} (CFUs))$ of MDR *P. aeruginosa* clinical isolate CL232.

Results. Checkerboard analysis revealed slight synergy with fractional inhibitory concentration index of 0.53 for 25–6.25 µg/mL of ceftazidime–avibactam combined with 12.5 µg/mL of fosfomycin. Accordingly, the resistance elements in *P. aeruginosa* CL232 were analyzed via whole-genome sequencing (WGS) and transcriptome sequencing (RNAseq). WGS of CL232 revealed mutations in genes (e.g., *oprD, ampR*) that contribute to β -lactam resistance. Moreover, expression of the AmpC β -lactamase and the MexAB-OprM efflux pump were upregulated (~2–6-fold). The potential for the development of ceftazidime–avibactam-fosfomycin resistance was sessed in *vitro*. Fosfomycin alone was found to have a high mutation frequency 1.9×10^{-5} ; however, the addition of ceftazidime–avibactam reduced this frequency by 3-logs. In addition, the ceftazidime–avibactam-fosfomycin combination poseses the lowest mutation prevention concentration at 64 mg/L–64 mg/L. In a neutropenic thigh murine infection model, the ceftazidime–avibactam–fosfomycin combination

was found to reduce CFUs by 5-6 logs compared with vehicle-treated mice, while ceftazidime-avibactam and fosfomycin dosed separately decreased CFUs by ~1 log and 2–3 logs, respectively.

Conclusion. The combination of ceftazidime-avibactam-fosfomycin is highly likely to offer patients who suffer from infections with a high bacteria burdens (i.e., pneumonia) a therapeutic hope against MDR *P. aeruginosa*.

Disclosures. K. M. Papp-Wallace, F. Hoffmann-La Roche Ltd: Grant Investigator, Research grant. E. J. Ellis-Grosse, Zavante Therapeutics, Inc.,: Employee and Shareholder, Salary.

2386. Efficacy of Lefamulin (LEF) vs. Moxifloxacin (MOX) Against Common Pathogens in Adults With Community-Acquired Bacterial Pneumonia (CABP): Results From the Phase 3 Lefamulin Evaluation Against Pneumonia (LEAP 1) Study

Thomas File, MD¹; Lisa Goldberg, MS²; Susanne Paukner, PhD³; Anita Das, PhD⁴; Steven P. Gelone, PharmD²; John Saviski, MS²; Carolyn Sweeney, BS²; Elyse Seltzer, MD⁵; George H. Talbot, MD⁶ and Leanne B. Gasink, MD²; ¹Summa Health, Akron, Ohio, ²Nabriva Therapeutics US, King of Prussia, Pennsylvania, ³Nabriva Therapeutics GmbH, Vienna, Austria, ⁴Das Consulting, Guerneville, California, ⁵Urogen Pharma, New York, New York, ⁶Talbot Advisors LLC, Anna Maria, New York

Session: 250. Treatment of AMR Infections

Saturday, October 6, 2018: 12:30 PM

Background. New CABP treatments with targeted activity and improved tolerability are needed. LEF, a novel pleuromutilin antibiotic that binds to a conserved region of the bacterial ribosome, is in development for IV or oral CABP treatment. This Phase 3 clinical study evaluated the efficacy of LEF vs. MOX in adults with CABP.

Methods. In this multicenter, randomized, double-blind study, 551 adult patients with CABP (Patient Outcomes Research Team Risk Class \geq III) were randomized to LEF 150 mg IV Q12 hours (n = 276) or MOX 400 mg IV Q24 hours (n = 275). After 6 IV doses, qualifying patients could be switched to oral therapy. Adjunctive linezolid was given with MOX for suspected methicillin-resistant *S. aureus*.

Primary outcomes were early clinical response (ECR) in the intent-to-treat (ITT) population (FDA endpoint), and investigator assessment of clinical response (IACR) at test of cure in the modified ITT (mITT) and clinically evaluable (CE-TOC) populations (co-primary EMA endpoints). The microITT population included all patients with a baseline CABP pathogen detected by respiratory tract or blood culture, urinary antigen test, serology, and real-time PCR from sputum, oropharyngeal and nasopharyngeal swabs. The microITT2 population included patients with a CABP pathogen detected by methods excluding PCR. Confirmatory identification and susceptibility testing of isolates, serology, and PCR were performed by a central laboratory.

Results. LEF was noninferior to MOX for ECR and IACR (LEF 87.3% [ITT], 81.7% [mITT], 86.9% [CE-TOC]; MOX 90.2% [ITT], 84.2% [mITT], 89.4% [CE-TOC]). The most common pathogen identified was *S. pneumoniae*. In the microITT population (*n* = 159 per arm), LEF and MOX demonstrated similar ECR and IACR rates (figure). LEF was efficacious against *S. pneumoniae* (including resistant phenotypes), *H. influenzae, M. catarrhalis, S. aureus*, and atypical pathogens. In the microITT2 population, likely due to smaller sample sizes.

Conclusion. In this first Phase 3 clinical trial, LEF showed similar efficacy to MOX against the most commonly identified CABP pathogens. LEF demonstrates promise as a targeted monotherapy for the treatment of CABP in adults.

Efficiency of Lefamulin and Moxifloxacin Against Community-Acquired Bacterial Pneumonia Pat

Baseline pathogen, rate* (n/N)	ECR				IACR			
	Lefamulin		Moxifloxacin		Lefamulin		Moxifloxacin	
	microITT	microlTT2	microITT	microITT2	microITT	microlTT2	microITT	microITT
Streptococcus pneumoniae (SP)	88.2% (82/93)	85.7% (36/42)	93.8% (91/97)	88.6% (39/44)	84.9% (79/93)	81.0% (34/42)	87.6% (85/97)	86.4% (38/44)
Multidrug-Resistant SP (MDRSP)	(6/6)	(6/6)	(5/6)	(5/6)	(6/6)	(6/6)	(4/6)	(4/6)
Staphylococcus aureus (SA)	(10/10)	(7/7)	(4/4)	(3/3)	(8/10)	(6/7)	(4/4)	(3/3)
Methicillin-Susceptible SA (MSSA)	(7/7)	(7/7)	(3/3)	(3/3)	(6/7)	(6/7)	(3/3)	(3/3)
Haemophilus influenzae	92.2% (47/51)	(6/6)	94.7% (54/57)	(5/6)	84.3% (43/51)	(5/6)	84.2% (48/57)	(6/6)
Moraxella catarrhalis	92.0% (23/25)	(0/1)	100% (11/11)	(1/1)	80.0% (20/25)	(0/1)	100% (11/11)	(1/1)
Nycoplasma pneumoniae	84.2% (16/19)	92.3% (12/13)	90.0% (18/20)	91.7% (11/12)	84.2% (16/19)	84.6% (11/13)	95.0% (19/20)	91.7% (11/12)
Chlamydophila pneumoniae	90.9% (10/11)	(8/9)	94.7% (18/19)	93.3% (14/15)	72.7% (8/11)	(7/9)	68.4% (13/19)	73.3% (11/15)
Legionella pneumophila	88.9% (16/18)	88.2% (15/17)	85.7% (12/14)	85.7% (12/14)	77.8% (14/18)	82.4%	78.6%	78.6%

prestmerg group = 92 for Mamuni and 55 for monitoracen ± lineacid, mN = patients with a response of success / patients with a specific baseline pathogen ECR-early clinicar isopones (LCR-investigator assessment of clinicar lengence migricit1_splatents in ITP population with ≥1 baseline CABP pathogen; microITT2=patients in ITT population with ≥1 baseline CABP pathogen confirmed by methods excluding PCR

Disclosures. T. File, BioMerieux: Scientific Advisor, Consulting fee. Curetis: Scientific Advisor, Consulting fee. Melinta: Scientific Advisor, Consulting fee. Merck: Scientific Advisor, Consulting fee. MotifBio: Scientific Advisor, Consulting fee. Nabriva: Investigator and Scientific Advisor, Consulting fee and Research grant. Pfizer: Scientific Advisor, Consulting fee. Paratek: Scientific Advisor, Consulting fee. L. Goldberg, Nabriva: Employee, Employee Stock Options and Salary. S. Paukner, Nabriva: Employee and Shareholder, Salary. A. Das, Achaogen: Consultant, Consulting fee. Cempra: Consultant, Consulting fee. Tetraphase: Consultant, Consulting fee. Paratek: Consultant, Consulting fee. Theravance: Consultant, Consulting fee. Zavante: Consultant, Consulting fee. UTILITY: Consultant, Consulting fee. Salary. C. Sweeney, Nabriva: Employee, Equity, Shareholder and Salary. Achaogen: Salary. C. Sweeney, Nabriva: Employee, employee stock options and Salary. E.