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Abstract
Insulin is an important hormone that affects various metabolic processes,
including kidney function. Impairment in insulin’s action leads to insulin
resistance in the target tissue. Besides defects in post-receptor insulin signaling,
impairment at the receptor level could significantly affect insulin sensitivity of
the target tissue. The kidney is a known target of insulin; however, whether the
kidney develops “insulin resistance” is debatable. Regulation of the insulin
receptor (IR) expression and its function is very well studied in major metabolic
tissues like liver, skeletal muscles, and adipose tissue. The physiological
relevance of IRs in the kidney has recently begun to be clarified. The credit goes
to studies that showed a wide distribution of IR throughout the nephron
segments and their reduced expression in the insulin resistance state. Moreover,
altered renal and systemic metabolism observed in mice with targeted deletion of
the IR from various epithelial cells of the kidney has strengthened this
proposition. In this review, we recapitulate the crucial findings from literature
that have expanded our knowledge regarding the significance of the renal IR in
normal- and insulin-resistance states.
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Core tip: Dysregulation of the renal insulin receptor (IR) not only affects local renal
metabolism, but also disturbs the systemic glucose homeostasis and blood pressure,
leading to metabolic abnormalities. The objective of this review is to highlight the
pathophysiological stature of renal IRs in the kidney function, as well as, overall
metabolism.
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INTRODUCTION
The incidence of insulin resistance is increasing worldwide in parallel with the rate of
obesity. Insulin resistance, per se, is often subclinical, and defined by inefficient insulin
receptor  (IR)  signaling  in  major  metabolic  tissues,  including  liver,  muscle,  and
adipose,  resulting in  impaired cellular  glucose uptake.  The function and role  of
reduced IR signaling has been extensively studied in these metabolic  tissues.  In
addition  to  downstream  signaling,  alterations  in  the  expression,  binding,  and
phosphorylation of the IR itself may affect target cell sensitivity to insulin[1-3]. The
kidney expresses IRs[4,5]; however, it is still debatable whether kidney develops classic
“resistance” in the same manner as the liver, muscle, and adipose tissues. Reduced
expression of IR and its phosphorylated form, the first step in IR signaling, have been
demonstrated in renal epithelial cells of diabetic and insulin-resistant rat models[6,7].
Nevertheless, presence of these receptors throughout the nephron segments suggests
an important role in renal metabolism. Insulin could undoubtedly regulate several
vital kidney functions through its receptors. However, it has been a mere decade since
the  role  of  renal  epithelial  IR  in  kidney  physiology  and  pathology  began  to  be
illuminated. In this review, we bring together the findings from published literatures
that have contributed to our understanding in the area. For easy reading we will use
the phrase “renal IR” in place of “IR in renal epithelial cells”.

INSULIN RECEPTORS AND INSULIN SIGNALING
Insulin, secreted by pancreatic β-cells, is a peptide hormone with pleiotropic actions
and plays an indispensable role in human metabolism. Biological effects of insulin are
exerted by binding to IRs. IRs belong to the receptor tyrosine kinases and the IR
subfamily,  which  consists  of  the  IR,  the  insulin-like  growth  factor  (IGF-I/-II)
receptors, and the IR-related receptor[8]. The IR is a transmembrane protein that is
composed of two α- and two β-subunits forming a heterotetramer α2β2 (Figure 1),
with disulfide bonds between the α-subunits and between the α- and β-subunits[9].
The  human  IR  cDNA  was  isolated  and  cloned  in  the  1980s[10,11].  These  studies
demonstrated that the α- and β-subunits are derived from proteolytic cleavage of a
common precursor. Later, Seino et al[12] reported that the IR gene (INSR) is encoded by
22 exons and 21 introns. Alternative splicing of exon 11 results in two isoforms, A and
B with differential insulin affinity, with isoform B having higher affinity.

Insulin binding to extracellular α-subunits confers conformational changes within
the  molecule,  leading  to  autophosphorylation  of  specific  tyrosine  residues  in
intracellular domains[13]. Upon activation, various adaptors and signaling proteins
(IRS, SHC, GRB, etc.) are recruited to the receptor to initiate the intracellular signaling
cascade and regulate different biological functions[8,13] (Figure 2).

LOCALIZATION OF THE IR IN THE KIDNEY
The attempts to examine the expression pattern of IRs in the kidney had started about
four decades ago; however, their physiological role in the kidney has recently come to
light[4,14-16]. Renal localization of IRs was first studied by 125I-labeled insulin binding in
microdissected rat glomeruli and tubules in 1988. The results showed high affinity
binding sites in the proximal and distal convoluted tubules (PCT and DCT), and to a
lesser  extent  in  the  cortical  and outer  medullary  collecting  duct  (CD)  and thick
ascending limb (TAL)[15].  Later,  Sechi et al[4]  exploited an in situ  autoradiographic
technique to observe insulin binding in glomeruli, renal cortex, outer and inner renal
medulla. Findings from their studies revealed the highest IR density in the inner
portion of the medulla, which also exhibits the maximal insulin activity in the renal
tubule. The localization of IR in the proximal tubule (PT), TAL, DCT, and CD have
also been shown by immunofluorescence using polyclonal antibodies against the α-
and β-subunits of IR[16]. This approach illustrated an exclusive localization pattern of
IR as these antibodies did not overlap with IGF-1 receptor and the IR-related receptor
in kidney[17,18]. The significance of IR expression in different segments of the nephron
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Figure 1

Figure 1  Architecture of insulin and insulin-like growth factor-1 receptors. Insulin and IGF-1 receptors consist of two extracellular α-chains and two
transmembrane β-chains. The α-subunits have binding sites for insulin and IGF-1, whereas the cytoplasmic kinase domain comprises major sites for tyrosine
autophosphorylation that are crucial for receptor activation. The α- and β-subunits are connected together via disulfide linkages (Figure is adapted from reference[9]).
IGF: Insulin-like growth factor.

was later confirmed by targeted deletion of IR from these segments[19,20].

RENAL IR IN CARDIOVASCULAR PHYSIOLOGY
Renal regulation of sodium reabsorption is crucial for maintaining homeostasis, fluid
balance, and systemic blood pressure. Excessive intake of dietary sodium and/or
impaired  salt  excretion  augments  the  incidences  of  hypertension[21].  There  is
substantial  evidence  suggesting  restriction  of  dietary  sodium  could  decrease
cardiovascular risk and reduce blood pressure in normotensive and hypertensive
individuals[22,23].  In  kidney,  sodium reabsorption  occurs  throughout  the  tubular
segments of nephron including the PT, TAL, DT, and CD[24-26].

Insulin  is  reported  to  have  antinatriuretic  properties  and  has  been  shown  to
increase sodium absorption by regulating the activities of different renal sodium
channels  including  the  Na+/H+  exchanger  type  3,  the  sodium-bicarbonate
cotransporter,  and  the  Na-K-ATPase  in  PT,  the  sodium-potassium-chloride
cotransporter  type  2  and  the  Na-K-ATPase  in  TAL,  and  the  sodium-chloride
cotransporter and the epithelial sodium channel in DCT and CD[27].

To elucidate the sodium-insulin interaction in the kidney, Sechi et al[28], examined
renal IR binding and mRNA levels of IRs in rats fed on different salt concentration.
They reported an inverse relationship between dietary salt (NaCl) intake and renal IR
density. In concordance with this study, Catena et al[29] also reported a decrement in IR
number  and  mRNA  levels  in  control  rats  fed  on  a  high-salt  diet.  However,  IR
densities were reported comparable in fructose-fed rats maintained on high- or low-
salt diet. Further, a reduced antinatriuretic effect of insulin in high-salt-fed control rats
was not observed in fructose-fed rats, implying that the fructose-fed animals lacked
the feedback mechanism that limits insulin-induced sodium retention during high salt
intake, which may contribute to fructose-induced hypertension[29].

Nevertheless,  the expression pattern of IR in the PT, TAL, and CD implies the
involvement  of  IRs  in  insulin-mediated renal  sodium retention[15,30-32].  Therefore,
investigating the correlation between IRs and renal sodium reabsorption has been a
major focus of researchers to understand the connection between insulin resistance
and  hypertension.  Hypertension  is  one  of  the  most  common  cardiovascular
complications worldwide. High blood pressure and associated complications lay a
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Figure 2

Figure 2  Schematics of the insulin receptor signaling. Binding of insulin to its receptor causes autophosphorylation of specific tyrosine residues. Upon activation
IR recruits different adaptor proteins and initiates a cascade of phosphorylation events. These signaling events ultimately lead to activation or repression of an array of
proteins, which regulate various biological functions (Figure is adapted from reference[8]).

grave burden on patients.  Among various determinants of  hypertension,  insulin
resistance is  considered to be a  major  determinant.  Although the precise  role  of
insulin resistance is debatable in the development of hypertension, activation of the
sympathetic nervous system, insulin-regulated sodium retention, and activation of the
renin-angiotensin system (RAS) are considered as plausible mechanisms[33-35].  The
interrelation between insulin resistance and hypertension could either be a non-causal
association (two independent processes) or a cause-and-effect relationship, where
insulin resistance acts as a cause of hypertension[36].

Interestingly, we observed that specific knockout of renal epithelial cell IR caused
elevated systolic blood pressure in mice. Our study has shown that targeted deletion
of IRs from renal epithelial cells significantly increased systolic blood pressure and
impaired sodium excretion in response to saline load as compared to wild-type (WT).
Moreover, intraperitoneal administration of insulin caused a significant drop in blood
pressure in WT, but not in IR-knockout (KO) mice. Urinary excretion of nitrates and
nitrites (UNOx) was also reduced in KO mice relative to WT mice (Figure 3). These
observations suggested that renal IRs could play a key part in the maintenance of
normal blood pressure and volume-expansion-associated natriuresis[19]. A study from
Bhalla’s lab also has shown that renal tubule-specific knockout of IR decreased NCC-
mediated sodium reabsorption in high fat-fed mice[37]. However, further investigation
is required to comprehensively understand the IR-dependent regulation of sodium
retention and associated hypertension during insulin resistance.

Insulin has a complex role in the maintenance of blood pressure. On one hand,
insulin-induced sodium retention and increased sympathetic activity is a root cause of
hypertension,  at  the  same time,  insulin  itself  has  a  vasodilatory effect,  which is
associated with nitric oxide (NO) production[38]. In kidney, hyperinsulinemia affects
renal blood flow in a NO-dependent manner[39] and insulin resistance impedes this
effect[40,41]. Moreover, experimental diabetes in rats has resulted in reduced renal NO
production[42]. Local renal production of NO production has also been implicated in
impaired  renal  blood  flow  during  congestive  heart  failure[43].  Apart  from  its
vasodilatory effects,  NO is also reported to reduce sodium reabsorption in renal
tubules[44,45]. Specific deletion of IR from renal epithelial cells has been reported to
impair  sodium  and  NO  excretion  and  elevate  systemic  blood  pressure  in  mice,
suggesting  a  possible  role  of  impaired  renal  NO  production  in  blood  pressure
regulation[19]. Moreover, reduced renal expression of the IR in TAL has been linked to
salt sensitivity of blood pressure via blunted production of NO[46]. These IR-knockout
mice also exhibited low protein levels of nitric oxide synthase isoform, NOS1, which is
expressed in macula densa cells, TAL, and in CD[46]. Together, these studies support a
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Figure 3

Figure 3  Altered natriuresis and impaired nitric oxide metabolism in insulin receptor-knockout mice. A: Urinary sodium excretion after oral administration of
saline with and without dextrose in 4 h; B: Mean arterial blood pressure (ΔMAP) after NaCl and dextrose administration in mice; C: Urinary nitrate and nitrite excretion
in wild-type and insulin receptor-knockout mice after 24 h. (Figure is a modification of figures published in reference[19] and taken with permission).

crucial role of renal NO in blood pressure regulation by its autocrine and paracrine
actions, particularly in the medullary TAL and CD[47-49].

A fairly recent report from our group showed for the first time that insulin induces
eNOS activation and NO generation in the renal inner medullary collecting duct
(IMCD) cells[50].  We observed a time- and dose-dependent increase in NO and its
metabolite NOx in insulin-stimulated mouse IMCD cells. Moreover, chronic insulin
infusion in C57BL/6J mice led to increased expression of endothelial NOS (eNOS) and
elevated  NO  levels  in  the  inner  medulla.  However,  treatment  of  cells  with
wortmannin (PI3K inhibitor) and IR-knockdown abolished these effects of insulin in
vitro, implying the involvement of the IR/PI3K pathway in insulin-stimulated NO
generation. Further, targeted deletion of IR from renal tubule epithelial cells resulted
in significant downregulation of eNOS in inner medulla with concomitant rise in
blood pressure in KO mice. These observations implied that IR signaling in the IMCD
could contribute to hypertension in the insulin-resistant state.

The  renal  RAS  is  another  imperative  pathway  that  regulates  systemic  blood
pressure and maintains water and electrolyte homeostasis. Typically, angiotensin II
(Ang II) produced in the RAS pathway interacts with angiotensin type 1 receptors
(AT1R) to exert its biological effects in various tissues including the kidney, the heart,
adipocytes,  adrenal  tissues[51],  etc.  The  classical  RAS  pathway  induces  sodium
reabsorption,  vasoconstriction,  and  blood  pressure.  Moreover,  Ang  II  has  been
established  to  inhibit  insulin-mediated  PI3K  activation  and  is  involved  in  the
pathogenesis of insulin resistance[52]. An interrelation between insulin resistance and
the  RAS pathway has  been reported in  hypertensive  patients.  Although precise
mechanism of insulin resistance and RAS is not well established, these two pathways
interact at multiple levels to regulate cellular metabolism[53]. Previously, it has been
demonstrated that Ang II induces phosphorylation of IRS1 (a key substrate of IR) at
Ser616  and  Ser312,  which  is  responsible  for  its  inactivation  and  inhibition  of
insulin/PI3K  signaling  cascade[54].  A  direct  link  between  renal  IRs,  RAS,  and
cardiovascular  complications  has  not  been  reported  and  warrants  further
investigation.

RENAL IR IN SYSTEMIC GLUCOSE HOMEOSTASIS
IR signaling has been reported to maintain blood glucose levels in the liver and other
metabolic tissues[55-57], however, there is limited knowledge regarding this action in the
kidney.  Recent  studies  have  highlighted  that  renal  IR  signaling  is  an  equally
important  contributor  and  regulator  of  systemic  glucose  levels[19,58-60].  The  first
evidence  on  kidney’s  involvement  in  glucose  metabolism  came  in  1938,  where
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Bergman et al observed that removal of kidneys in hepatectomized rabbits doubled
the  sugar  utilization  rate  as  compared  to  the  hepatectomized  animals  only[61].
Following which a number of studies substantiated the glucose production activity of
the  kidney[62,63]  and  provided  evidence  that  kidney,  in  addition  to  acidosis  or
prolonged starvation, also releases considerable amounts of glucose in normal post-
absorptive conditions[64]. Moreover, accumulating evidence predicts that the kidneys
impart  a  critical  role  in  regulating  overall  glucose  homeostasis  by  various
mechanisms,  such  as  reabsorption  of  glucose  from  the  glomerular  ultrafiltrate
specifically in the renal epithelial cells, glucose uptake and utilization for meeting the
body’s energy demands, and gluconeogenesis, i.e., endogenous glucose production
from non-carbohydrate sources[55,56].

Similar to liver tissue, renal gluconeogenesis and metabolism were found to be
dysregulated in diabetes and the insulin-resistant state[6,7]. There are studies which
suggest that renal epithelial cells double their glucose uptake in response to insulin
stimulation via translocation of GLUT (GLUT1 and GLUT4) to the plasma membrane,
which accentuates the effect of insulin on renal gluconeogenesis and on systemic
blood glucose levels[65]. Moreover, hyperinsulinemia is reported to inhibit glucose
production  and  stimulate  glucose  uptake  by  the  renal  epithelial  cells[60,66].  Both
experimental and clinical studies have documented the insulin-mediated regulation of
uptake and release of glucose. A hyperinsulinemic clamp study in humans showed a
61% decrease in renal glucose output and approximately a 72% decrease in renal
glutamine gluconeogenesis [much higher than liver (25%)] in subjects treated with
insulin[67].  Insulin has also been reported to affect the transport of gluconeogenic
substrates in the kidney[68]. These studies highlighted the significance and magnitude
of renal glucose production, and also revealed higher sensitivity of renal glucose
release  towards  insulin  as  compared  to  liver.  Moreover,  enhanced  renal
gluconeogenesis in the post-absorptive conditions has been suggested to contribute
towards  hyperglycemia  in  Type  2  diabetes  in  the  insulin-resistant  state.  This  is
supported by the increased intrinsic gluconeogenesis with simultaneous decrease in
IR levels reported in the kidney cortex of Zucker diabetic fatty rats[69]. In addition, a
marked decrease in IR expression has been observed in the renal cortex of high-fat
diet-fed rats as well as in Type 2 diabetic patients[6,7,69,70].

The role of insulin/IR signaling in regulation of gluconeogenesis transcriptional
modulation of gluconeogenic genes, i.e., PCK1 and G6PC is well known in liver[71-73].
However, studies on the role of the IR in renal gluconeogenesis regulation are limited.
In 2012, a study from the DeFronzo lab elucidated that insulin negatively regulates
gluconeogenesis via downregulating the expression of key gluconeogenic genes in the
kidney[74]. Around the same time, our group demonstrated that targeted deletion of
the IR from the PT resulted in hyperglycemia despite normal whole body insulin
sensitivity[20].  More  so,  an  increased  activity  and  elevated  mRNA expression  of
glucose-6-phosphatase (G6Pase,  a  rate-limiting enzyme in gluconeogenesis)  was
observed in  the  PT-specific  IRKO mice,  signifying  the  involvement  of  the  IR  in
regulating the expression of key gluconeogenic genes. Further, reduced IR expression
and early IR signaling along with a significant increase in phosphoenolpyruvate
carboxykinase (PEPCK) levels were found in kidney cortex of high-fat diet-fed mice[75],
providing a  clue  to  the  possible  mechanism of  insulin  involving transcriptional
regulation of PEPCK, also a rate-limiting gene in gluconeogenesis. In liver, insulin has
been  shown  to  suppress  the  expression  of  gluconeogenic  genes,  G6Pase  and
PEPCK[76]. In vitro studies performed in primary PT cells from human kidney (hPT)
showed an inhibitory role of insulin on cAMP/DEXA-induced gluconeogenesis, and
silencing of IR attenuated this inhibitory effect of insulin on PT-gluconeogenesis in
hPT[77]. All these findings clearly state that reduced IR expression/signaling might
have a causal function in gluconeogenic gene upregulation and gluconeogenesis.

In vitro studies from our group has demonstrated that loss of IR in human proximal
tubule cells attenuated the inhibitory effect of insulin on PEPCK expression in hPT
cells[77]. These studies, suggest that impaired insulin sensitivity of PT may affect whole
body glucose homeostasis by elevating gluconeogenesis via transcriptional induction
of  gluconeogenic  enzymes in the kidney.  However,  the mechanism by which IR
signaling targets gluconeogenic genes in PT needs to be further elucidated. A recent
study  from  Yáñez  lab  demonstrated  downregulation  of  IR  levels,  which  was
accompanied by increased expression and activity of PEPCK in the kidney of both
Type 2 diabetic patients (Figure 4) and in a Type 1 diabetic rat model. Moreover, they
also observed an apical redistribution of gluconeogenic genes in both the models,
implying  that  insulin  signaling  may  regulate  gluconeogenesis  through  luminal
substrate uptake[6]. Recently, Horita et al[78], put forward a concept of “selective insulin
resistance” in kidney. The state of selective insulin resistance has been recognized in
the case of liver, where inhibition of gluconeogenesis by the insulin receptor substrate
(IRS)  2  is  hindered,  whereas  IRS1-regulated  lipogenesis  is  not  altered.  On  the
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contrary, in kidney, IRS1-dependent inhibition of gluconeogenesis is impaired in the
proximal  tubule  leading  to  hyperglycemia,  while  IRS2-dependent  signaling  is
preserved[78-81].  Sasaki  et  al[82]  have  also  reported  the  role  of  insulin  signaling  in
maintaining systemic glucose homeostasis in IRS1/IRS2 double KO mice. This study
emphasized dual regulation of gluconeogenesis by insulin signaling and glucose
reabsorption.  This  is  in  consonance  with  previous  studies  suggesting  impaired
glucose levels in diabetic human PT because of enhanced glucose reabsorption and
insulin-dependent inhibition of gluconeogenesis[74,83,84],  ultimately leading to more
glucose release by the kidney as compared to the liver[58]. In the light of these findings,
regulation  of  renal  gluconeogenesis  is  still  a  matter  of  debate  because  both
suppression and elevation of gluconeogenic gene expression has been reported in
experimental rodent models of diabetes[6,85]. These observations open a whole new
avenue for investigating the role of IRs in renal glucose homeostasis.

Together, it  can be implied that impaired renal insulin signaling (especially IR
signaling) may increase gluconeogenesis, and in the setting of insulin resistance, these
impairments  can further  contribute to  other  deleterious effects.  Therefore,  more
conclusive studies are warranted to understand the pathophysiological association of
renal insulin signaling and glucose metabolism.

RENAL IR IN PROTEINURIA
The presence of proteins especially albumin in urine, aka proteinuria is an important
hallmark of renal disease,  including diabetic nephropathy. Although glomerular
dysfunction is an established cause of proteinuria[86,87], impaired tubular function also
contributes  to  albuminuria  in  diabetic  nephropathy[88,89].  Normally,  albumin  is
reabsorbed by the PT cells through receptor-mediated and fluid phase endocytosis[90].
In the proximal tubules, receptor-mediated reabsorption of albumin is executed by
endocytic  receptors,  megalin and cubilin  that  are  highly expressed in the apical
membrane of the PT cells[91]. Existing evidences suggest that besides other factors,
insulin could have a potential role in albumin uptake by the PT cells in diabetic and
non-diabetic conditions.  Retrieval of albumin from ultrafiltrate by the PT cells is
crucial  for  kidney  homeostasis.  A  cohort  study  on  non-diabetic  individuals
(Relationship  between  Insulin  Sensitivity  and  Cardiovascular  Disease;  RISC)
proposed a causal relationship between insulin resistance and albuminuria[92]. The
RISC  study  demonstrated  that  reduced  insulin  sensitivity,  measured  by  a
hyperinsulinemic-euglycemic clamp, is linked to increased risk of albuminuria in a
healthy cohort.

Intriguingly, various studies have reported that insulin could also have a potential
role in albumin uptake by the PT cells in diabetes. In the STZ-induced diabetic mice
model, downregulation of pSer473-Akt expression in the proximal tubule epithelial
cells was accompanied by decreased expression of megalin and cubilin establishing
the link between insulin signaling and albumin uptake[93].  Recently,  Zeng et  al[94],
showed  that  the  ORAI  (calcium  release-activated  calcium  channels)  are  also
accountable for the internalization of albumin in proximal tubular epithelial cells via
clathrin-mediated endocytosis and expression of these channels is insulin-dependent.
In concordance with previous studies, Mottl et al[95] showed that the urinary ACR was
positively associated with insulin-resistant young Type 2 diabetic subjects. Moreover,
insulin treatment under high-glucose conditions increased megalin expression and
albumin internalization in OK cells[96]. Insulin treatment has attenuated urine albumin
excretion in Akita mice also[97]. These reports establish a causal role of PT-specific
insulin resistance in the pathogenesis of albuminuria; however, exact mechanism of
insulin-dependent albumin uptake needs to be elucidated.

Recent data from our laboratory showed that targeted deletion of IRs from the
proximal tubule impairs tubular albumin uptake and results in albuminuria in mice
(unpublished  data).  We  have  also  established  circulating  insulin  levels  as  a
determinant of tubular albumin uptake. Moreover, down-regulation of IR and early
IR signaling in the kidney has been reported in Type 2 diabetes and models of insulin
resistance[7]  ,  which can contribute to elevated albuminuria. These recent findings
support a direct physiological role of PT-specific insulin action on albumin uptake
and albuminuria.

CONCLUSION
The physiological relevance of IRs in renal epithelial cells has gained more attention
in recent years. Studies based on targeted deletion of IR have now provided sufficient
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Figure 4

Figure 4  Expression patterns of insulin receptor and gluconeogenic enzymes in normal and diabetic human kidney. A: Expression of FBPase, PEPCK, IR,
and tubulin in renal cortex biopsies of control and Type 2 diabetic individuals analyzed by western blotting; B: Immunohistochemical analysis of FBPase, PEPCK, and
IR in renal cortex biopsies of control and Type 2 diabetic individuals (Figure is taken from reference number[6] with permission). PEPCK: Phosphoenolpyruvate
carboxykinase; IR: Insulin receptor.

evidence  to  suggest  the  significance  of  the  renal  IR  in  kidney  physiology  and
pathology. In addition, these studies have enhanced our understanding surrounding
the contribution of reduced renal IR observed in the insulin-resistance state. Overall, it
can be suggested that modulation of insulin signaling at the receptor level could
significantly affect kidney function, which thereby may result in systemic effects.
However, more mechanistic studies are warranted to understand the causal role of
reduced renal IR in the regulation of blood pressure, systemic glucose levels, and
proteinuria.
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