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Abstract: In this paper, the use of a new technique to obtain transient sensor information 

is introduced and its usefulness to improve the selectivity of metal oxide gas sensors is 

discussed. The method is based on modulating the flow of the carrier gas that brings the 

species to be measured into the sensor chamber. In such a way, the analytes’ concentration 

at the surface of the sensors is altered. As a result, reproducible patterns in the sensor 

response develop, which carry important information for helping the sensor system, not 

only to discriminate among the volatiles considered but also to semi-quantify them. This 

has been proved by extracting features from sensor dynamics using the discrete wavelet 

transform (DWT) and by building and validating support vector machine (SVM) 

classification models. The good results obtained (100% correct identification among 5 

volatile compounds and nearly a 89% correct simultaneous identification and 

quantification of these volatiles), which clearly outperform those obtained when the 

steady-state response is used, prove the concept behind flow modulation. 
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1. Introduction 

 

In the last ten years, considerable efforts have been made to use sensor dynamics as a source of 

multivariate information leading to an enhancement in the discrimination ability of poorly-selective 

metal oxide gas sensors. Hand-held ‘sniffers’ make use of simple sample delivery units based on 

pumps rather than mass-flow controllers. Because it is well known that sensor dynamics can be of help 

to increase the selectivity of metal oxide sensors, there is a need for developing uncomplicated 

methods to use transient information in such analysers. In fact, many authors have reported different 

strategies for modulating either the sensor operating temperature [1-8] or the analyte concentration [9-

11]. 

The new method presented here consists of the application of a modulated control signal to the 

peristaltic pump of a sniffer, which results in the gas flow being modulated. The effect sought by 

applying flow modulation is as follows: the concentration of analytes at the surface of the sensor is 

modulated, which results in the sensors working in a cycled non-equilibrium regime where, for 

example, adsorption/ desorption and reaction rates can be altered, leading to the development of 

specific response patterns. The method of flow modulation can be easily adapted to both static and 

dynamic headspace sampling strategies. 

Here, as a proof-of-concept, we investigate whether it is possible to easily discriminate and quantify 

among five different vapours (benzene, toluene, methanol, o-xylene and p-xylene) over a broad 

concentration range using a flow-modulated sensor array. The method employed to extract features 

from the sensor transients is based on the discrete wavelet transform [8, 12] and the pattern recognition 

makes use of simple support vector machine algorithms [13-16]. 

 

2. Experimental 

 

2.1 Set-up 

 

To achieve a flow-modulation capable sniffer, a closed loop system was designed which was based 

on a PC-controlled peristaltic pump and two three-way electro valves. Figure 1 shows the 

configuration devised. The stainless-steel sensor chamber housed three commercially-available 

Taguchi 8-series sensors (i.e. TGS-800,822 and 826). The system had two operating modes (cleaning 

phase and measurement phase). In the cleaning configuration, pure dry air enters the system through 

the first electro valve and cleans the peristaltic pump, the sensor chamber and the evaporation 

chamber. Solid arrows in Figure 1 mark the flow of clean air in this mode. In the measurement mode, 

air re-circulates in the closed circuit indicated by dashed arrows in Figure 1. Initially, the flow is kept 

constant at 250 sccm and a calculated quantity of a given pollutant in the liquid phase is sprayed into 

the evaporation chamber using a chromatographic syringe (since temperature, pressure and system 

volume were known, the volume of liquid to be injected could be calculated with the ideal gas  
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theory [11]). This allows for obtaining the steady-state response of the sensors. Then, a square-wave 

flow modulation at a given frequency is initiated, which allows for measuring the transient response of 

the sensors. The system can generate other types of waveforms such as sinusoids or sawtooth 

functions, although they have not been used in this study. 

 

Figure 1. Experimental set-up during flow modulation experiments. 

 

 
 

A microcontroller commands the speed of the peristaltic pump, which directly translates into 

different flow rates. A PC programmed with a in-house-written program communicates with the 

microcontroller so that the user can select the flow rate and the frequency and type of waveform that is 

applied to modulate the flow. Via this program, the PC commands the microcontroller to open or close 

the electro valves and to change the configuration of the system depending upon the operating phase. 

Moreover, the PC records the sensor response (i.e. sensor conductivity) at the rate of 2 samples per 

second.  

Figure 2 shows that after a few modulation periods (e.g. 2) the transient pattern of the sensors 

becomes highly reproducible. In practice, a measurement would take 2 periods of the modulation 

frequency to complete. 

Additionally, a temperature sensor was located inside the sensor chamber (placed perpendicular to 

the flow and between the chamber inlet and the gas sensors) so the effect of flow modulation in the 

temperature of the chamber (and hence in the operating temperature of the sensors) could be estimated. 

It was found that, no matter the flow modulation frequency applied, the temperature fluctuations inside 

the sensor chamber were never higher than  0.2ºC. Such as small temperature variation confirms that 

the response patterns observed in Figure 2 are due to the effective modulation of analyte concentration 

and not to a periodic heating and cooling of the sensors. 
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Figure 2. Dynamic response of three sensors. The flow modulation is applied from 550 s onwards. 

TGS 800, 822 and 826 
Flow modulation frequency: 10 mHz

 
 

2.2 Databases, Feature Extraction and Processing 

 

In total, seven different databases where gathered, which corresponded to six flow modulation 

frequencies (i.e. 10, 20, 30, 40, 60 and 80 mHz) and an additional one that grouped measurements 

performed without modulating the flow (i.e. static measurements). Five different vapours (benzene, 

toluene, methanol, o-xylene and p-xylene) at three different concentrations (200, 400 and 2,000 ppm) 

were measured. Each measurement was replicated three3 times, which gave a total of 315 independent 

measurements. All this data were gathered in a disordered way during a period of two months. 

The raw data consisted of the conductance change experienced by the sensors after the injection of 

a given species into the evaporation chamber and before a flow modulation was applied (case of static 

measurements), or in a period of the sensor conductance transient (case of flow modulation). 

Different pre-processing strategies (e.g. mean-centring or auto scaling) were used to determine how 

much the mean amplitude, variance and waveform from each sensor response contributed to the 

correct identification of the species considered. Characteristic features from the sensor transient 

response were extracted by using the discrete wavelet transform. Pre-processed data were then used to 

build and validate support vector machine (SVM) classification models aimed at identifying the 

different species and also at determining their concentration. Since simple SVMs are for binary 

classification, multi category SVM classifiers were built using a one versus one approach [16, 17]. The 

feature extraction and pattern recognition techniques employed were implemented using standard 

toolboxes and functions from MATLAB®. 

 

3. Results and Discussion 

 

In order to perform the DWT of the pre-processed sensor transients, the fourth Daubechies function 

(db4) was used as the mother wavelet. This choice was based on our previous experience with 

temperature-modulated metal oxide gas sensors [8, 12]. The first eight wavelet coefficients of the fifth-
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order decomposition of the signals were retained for further processing. Figure 3 shows the results of 

the wavelet decomposition for the transient response of sensor TGS 800 when the flow modulating 

frequency was 10 mHz and no pre-processing was employed. The values of the first 8 wavelet 

coefficients for methanol, o-xylene and p-xylene appear well apart, suggesting that these species 

would be easily discriminated using this sensor. On the other hand, the coefficient values for benzene 

and toluene clearly overlap, which implies that these volatiles would be hard to discriminate. 

 

Figure 3. Wavelet coefficients of the DWT performed on the responses of sensor TGS 

800. The flow modulation frequency was set to 10 mHz. 

Coefficient no. 

 
 

3.1 Volatile Identification and Quantification Using the Steady-state Sensor Response 

 

In the first step the discrimination of the different volatiles was attempted without modulating the 

flow. As stated above, the steady-state sensor response consisted of the conductance change. This 

database comprised 45 measurements (i.e. five volatiles  three concentrations  three replicate 

measurements). A leave one out cross-validation method was implemented as follows. A SVM 

classification model was built using 44 out of the 45 measurements available. The performance of the 

model was then evaluated using the measurement that had been left out. This procedure was performed 

45 times using always a different validation measurement. The performance in classification of the 

SVM models built was computed as the average over the 45 tests. 

A one-against-one strategy was used to build the SVM classifier. This method builds n (n1)/2 

classifiers (n = 5 in identification and n = 15 in the simultaneous identification and quantification) 

where each one is trained using input patterns from two classes. To classify a new pattern the results 

obtained by the n (n1)/2 classifiers are combined in a simple voting scheme. In case of equal number 

of votes between different classes, the one with smaller index is selected. Therefore, 10 SVM models 

were built for identification purposes. The first SVM was trained with the training samples in class 1 
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(i.e. methanol) with positive labels and all other training samples with negative labels, and so on. 

Different kernel functions were tested such as linear, polynomial (2nd degree) and radial basis. The best 

results were obtained when a 2nd degree polynomial was used as kernel function. A measurement per 

category (selected at random within the replicate measurements available in each category) was used 

to determine the optimal value of the penalty parameter, C, which is useful when building models 

where overlapping between classes is present, using a leave-one-out cross-validation. The values of C 

can lie in the interval [0, ] and large values lead to a small number of training samples being 

misclassified. For example, when C tends to infinity, no misclassifications are allowed among training 

samples. More details about the use of SVM can be found in [16]. 

Two different approaches were studied. In the first one, classification models were built using the 

information of one sensor only. This allows for studying and comparing the resolving power of every 

sensor. In the second approach, models were built that combined information from the three sensors. 

The validation results for SVM-based volatile identification using the steady-state response of the 

sensors are shown in Table 1. Correct identification peaks at 87.1% when the information from the 

three sensors is combined and a mean centring pre-processing method is employed. Confusions occur 

between some benzene and toluene samples and also between some o-xylene and p-xylene samples. 

On the other hand, if only one sensor is used, the identification ability dramatically deteriorates and 

remains below 58% regardless the sensor and pre-processing technique considered. 

Additionally, a semi-quantitative analysis was performed. This consisted of the simultaneous 

identification and quantification of the measurements. A 15 category classification was envisaged  

(i.e. five volatiles  three concentrations) and the methods implemented to build and validate the SVM 

models were analogous to the ones explained above. Table 2 summarizes the quantification results, 

which are rather poor since success rate remains below 54%. 

 

Table 1. Success rate in vapour identification (%) using the steady state sensor response. 

Validation results are reported. The optimal value of parameter C is also shown. 

Pre-processing TGS 800 TGS 822 TGS 826 All sensors 

None 54.2   C = 10 57.7   C = 102 30.8  C = 10 82.3   C = 10 

Mean-centring 49.9   C = 102 57.7   C = 102 29.2  C = 10 87.1   C = 103 

Auto scaling 53.3   C = 103 57.7   C = 103 23.1  C = 102 84.4   C = 103 

 

Table 2. Success rate in the simultaneous identification and quantification of vapours (%) 

using the steady state sensor response. Validation results are reported. The optimal value of 

parameter C is also shown. 

Pre-processing TGS 800 TGS 822 TGS 826 All sensors 

None 2.2   C = 10 8.6   C = 10 10.9  C = 103 37.7   C = 10 

Mean-centring 13.3   C = 103 24.0   C = 103 11.3  C = 103 53.8   C = 10 

Auto scaling 13.4   C = 103 19.1   C = 103 11.1  C = 104 42.6   C = 10 
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3.2 Volatile Identification and Quantification Using Flow Modulation 

 

Once more, in the first step the discrimination of the different volatiles was attempted using the 

flow modulation approach. As stated before, eight features per sensor (i.e. the first eight coefficients of 

the 5-level wavelet decomposition of the transient signals) were extracted. In total 45 measurements 

were performed for each modulation frequency investigated and, similarly to the steady-state case, 

SVM models for the identification of volatiles were built and validated (i.e, using the leave-one-out 

procedure described above). Table 3 summarises the identification results reached with the six flow 

modulation frequencies studied. Confusions occur between some benzene and toluene samples only. 

From this table, it can be derived that modulating the flow at 20 or 30 mHz results in the best 

discrimination results. The five volatiles can be perfectly identified by the SVM models when either a 

mean centring or auto scaling pre-processing is employed at 20 mHz. They can also be correctly 

discriminated when an auto scaling pre-processing is employed at 30 mHz. Since the value of 

parameter C is lower at 20 mHz than at 30 mHz, the SVM models are simpler for the former and, 

therefore, a flow modulation at 20 mHz seems the better choice for volatile discrimination.  

 

Table 3. Success rate in vapour identification (%) using flow modulation. Validation 

results are reported. The optimal value of parameter C is also shown. 

Frequency Pre-processing TGS 800 TGS 822 TGS 826 All sensors 

10 mHz 

None 86.7   C = 10 95.1   C = 10 97.7  C = 10 84.4  C = 10 

Mean-centring 79.2   C = 102 88.3   C = 10 84.4  C = 103 82.2  C = 10 

Auto scaling 82.2   C = 10 90.6   C = 10 90.6  C = 103 88.9  C = 10 

20 mHz 

None 92.9   C = 10 97.0   C = 10 97.5  C = 10 99.7  C = 10 

Mean-centring 93.3   C = 102 91.1   C = 10 97.8  C = 102 100   C = 10 

Auto scaling 88.3   C = 104 97.0   C = 102 100   C = 102 100   C = 10 

30 mHz 

None 91.1   C = 10 95.6   C = 102 95.6  C = 10 97.8  C = 10 

Mean-centring 97.4   C = 10 95.9   C = 102 99.7  C = 102 100   C = 102 

Auto scaling 95.6   C = 102 88.6   C = 102 95.4  C = 102 97.8  C = 102 

40 mHz 

None 90.6   C = 10 88.3   C = 10 79.2  C = 10 93.3  C = 10 

Mean-centring 74.7   C = 10 83.7   C = 10 83.1  C = 104 95.6  C = 10 

Auto scaling 83.7   C = 104 86.5   C = 104 75.2  C = 102 93.3  C = 10 

60 mHz 

None 83.1   C = 10 87.6   C = 10 92.8  C = 10 88.9  C = 10 

Mean-centring 78.3   C = 102 73.8   C = 104 85.3  C = 102 84.4  C = 102 

Auto scaling 72.4   C = 105 76.8   C = 105 79.2  C = 105 84.4  C = 102 

80 mHz 

None 70.2   C = 10 91.1   C = 10 83.7  C = 102 97.7  C = 10 

Mean-centring 70.5   C = 102 80.0   C = 10 84.4  C = 102 95.5  C = 10 

Auto scaling 53.3   C = 10 88.9   C = 102 78.1  C = 103 97.7  C = 10 

 

In the second step a 15-category classification was attempted (i.e. the simultaneous identification 

and quantification of volatiles). Once again, a leave-one-out training and validation technique was 

implemented. Table 4 summarises the results of this semi-quantitative analysis. This table shows that 
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the best classification rate, which reaches nearly 89%, is obtained when the pre-processing technique 

is auto scaling and the flow modulation frequency is set to 30 mHz. It is worth mentioning that at such 

modulation frequency, confusions do not occur between the different volatiles but between different 

concentrations of a given volatile. In other words, misclassified samples represent an erroneous 

estimation of the concentration but not an error in the identification of the volatile species. 

When the number of measurements is low, the leave-one-out method tends to be an optimistically-

biased estimator of the true success rate of a classifier. Therefore, a different validation approach was 

considered too. Since three replicate measurements were available per type of volatile and 

concentration, a three-fold validation strategy has been implemented. In this approach a training set is 

formed by selecting two of the three replicate measurements available and the third left out is in the 

training set. Three different folds (i.e. combinations) of training and validation sets can be defined and 

employed. The overall success rate in classification is then obtained as the average success rate on the 

three folds. This method was applied to estimate the success rate in vapour identification (i.e. 5-

category classification) and in the simultaneous identification and quantification of vapours. The best 

results were obtained when the modulating frequency and the constant C were set to 30 mHz and 10, 

respectively.  

 

Table 4. Success rate in the simultaneous identification and quantification of vapours (%) 

using flow modulation. Validation results are reported. The optimal value of parameter C is 

also shown. 

Frequency Pre-processing TGS 800 TGS 822 TGS 826 All sensors 

10 mHz 

None 64.5  C = 10 42.6  C = 10 61.8 C = 10 56.2  C = 10 

Mean-centring 60.9  C = 10 58.6  C = 10 60.0 C = 10 70.5  C = 10 

Auto scaling 68.9  C = 102 62.2  C = 102 51.4 C = 102 59.8  C = 10 

20 mHz 

None 48.4  C = 10 55.0  C = 10 67.8 C = 10 45.2  C = 10 

Mean-centring 60.9  C = 102 49.0  C = 102 72.4 C = 102 64.4  C = 102 

Auto scaling 54.1  C = 102 57.5  C = 102 86.1 C = 102 78.4  C = 10 

30 mHz 

None 72.4  C = 10 69.2  C = 10 81.6 C = 10 70.0  C = 10 

Mean-centring 73.8  C = 10 57.3  C = 10 72.4 C = 102 77.8  C = 10 

Auto scaling 72.4  C = 102 66.5  C = 102 60.9 C = 102 88.9  C =10 

40 mHz 

None 45.9  C = 10 66.8  C = 10 57.5 C = 10 50.5  C = 10 

Mean-centring 46.7  C = 102 44.2  C = 102 65.7 C = 102 62.1  C = 102 

Auto scaling 52.8  C = 102 50.9  C = 102 55.2 C = 102 65.7  C = 102 

60 mHz 

None 53.8  C = 10 65.7  C = 10 67.0 C = 10 56.5  C = 10 

Mean-centring 67.0  C = 102 40.6  C = 102 65.6 C = 10 65.6  C = 102 

Auto scaling 44.2  C = 102 44.2  C = 102 59.8 C = 106 72.4  C = 10 

80 mHz 

None 49.0  C = 10 67.8  C = 10 57.5 C = 10 70.1  C = 10 

Mean-centring 59.7  C = 102 68.9  C = 102 62.2 C = 102 75.5  C = 10 

Auto scaling 44.3  C = 10 57.1  C = 102 52.8 C = 102 82.2  C = 10 
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A 100% success rate in vapour identification and an 82% success rate in the simultaneous 

identification and quantification were obtained. Keeping in mind that the 3-fold validation strategy 

tends to be a pessimistically-biased estimator of the true success rate of a classifier, it can be derived 

that flow modulation allows for a perfect identification and a fair quantification of the vapours studied. 

Different factors may explain why 20 and 30 mHz are the flow modulation frequencies that lead to 

the best results in vapour identification and in the simultaneous identification and quantification, 

respectively. These frequencies seem appropriate for effectively modifying the concentration of 

analytes at the sensor surface, making the sensors to work in non-equilibrium regime. This helps 

specific patterns of sensor response to develop. In fact, adsorption, desorption and reaction kinetics are 

slow and too high a modulation frequency could not be appropriate for developing different sensor 

response patterns for each different volatile measured. Additionally, the volume of the sensor chamber 

and the tubing act as a low-pass filter for the flow modulation. These two reasons may explain why 

modulation frequencies of 40 mHz or higher lead to poorer results. Finally, if the frequency of the flow 

modulation is too low (i.e. 10 mHz), the sensors may work in quasi-equilibrium (i.e. similarly to when 

they are operated in steady-state) and the volatile identification results do not differ very much from 

those obtained measuring in a steady-state regime. 

In summary, the use of transient response information via flow modulation is more advantageous 

than the use of the steady state sensor response, since the former clearly outperforms the latter both in 

the identification success rate (100% versus 87.1%) and in the semi-quantification success rate (89% 

versus 53.8%). 

 

4. Conclusions 

 

In this paper, we have introduced a new technique (i.e. flow modulation) to obtain transient 

information from a sensor array. By modulating the flow of the gas mixture to be measured, the 

analytes’ concentration are altered. By doing so it was found that reproducible patterns in the sensor 

response developed, which carried important information for discriminating and quantifying the 

different volatiles considered. 

Important information from the transient response of the sensors was extracted using the DWT and 

employed to build and validate SVM classification models. Additionally, similar SVM models were 

built using the steady-state response of the sensors. The use of flow modulation led to a 100% success 

rate in identification and a 89% or 82% success rate in the simultaneous identification and 

quantification of the volatiles (depending if a leave-one-out or a three-fold validation approach is 

implemented). These results compare very favourably to the ones obtained when the steady-state 

response of the sensors was considered only. 

The fact that reliable flow modulation can be obtained using uncomplicated methods (e.g. a 

peristaltic pump) makes this option very interesting for simple gas analysis equipment such as hand-

held devices or sniffers. 
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