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Background. Chronic overnutrition leads to cardiac dysfunction and insulin (INS) resistance. Dipeptidyl peptidase-4 (DPP-4)
improves glucose metabolism and insulin sensitivity in both human and animal models. In this study, we explored whether
DPP-4 inhibitor sitagliptin (SIT) is involved in the protection of cardiac function and β-cell function using an obesity female
mouse model. Methods. Six-week-old C57BL6/J mice were fed a high fat and fructose Western diet with DPP-4 inhibitor SIT for
12 weeks. Cardiac function was examined by echocardiography. Body weight, plasma glucose, and insulin concentrations were
measured. The contents of total S6 kinase 1 (S6K1), phosphorylation of S6K1 activation, and INS docking proteins INS receptor
substrates 1 and 2 (IRS-1, IRS-2) were assayed, and histology of heart tissue was performed. Results. Chronic Western diet
consumption elevated plasma glucose and insulin and caused obesity, diastolic dysfunction, and β-cell dysfunction. DPP-4
inhibition with SIT resulted in reduction in body weight, fasting glucose, and plasma insulin, and improved cardiac diastolic
dysfunction. SIT also decreased mTOR/S6K1 activation and prevented the degradation of IRS-1 and IRS-2. Conclusions. This
study revealed pleiotropic protective effects of DPP-4 inhibitor SIT on cardiac function, glycemia, and β-cell function together
with reducing S6K1 activation and IRS-1 and IRS-2 degradation in the obesity female mouse model.

1. Introduction

Overnutrition is defined as excess nutrient supply for normal
metabolism and growth. Overnutrition has been linked to
both insulin (INS) resistance and β-cell dysfunction [1, 2].
The global obesity epidemic is a major reason for the
increased incidence of type 2 diabetes mellitus (T2DM) and
associated cardiovascular diseases (CVD). Obese individuals

may have CVD complications, including hypertension, car-
diac diastolic dysfunction, macro- and microvascular disease,
and early onset of cardiovascular morbidity [3, 4].

Chronic overnutrition leads to activation of the
evolutionarily conserved mammalian target of rapamycin
(mTOR) and its downstream signaling molecule, p70 ribo-
somal S6 kinase 1 (S6K1) [5]. Activation of the INS receptor
triggers phosphorylation of tyrosine residues and subsequent
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activation of the INS docking proteins (INS receptor
substrates 1 and 2; IRS-1, IRS-2). It results in the phosphor-
ylation/activation of phosphatidylinositol 3-kinase and
protein kinase B (Akt). Tyrosine phosphorylation of IRS-2
appears to play an important role in the antiapoptotic actions
of INS in β-cells [6]. mTOR/S6K1 signaling impairs INSmet-
abolic signaling through enhanced serine (Ser) phosphoryla-
tion of IRS-1, a mechanism implicated in the pathogenesis of
INS resistance. Ser phosphorylation of IRS-1 and IRS-2 result
in their targeting for proteosomal degradation, which, in
turn, leads to impaired INS metabolic signaling [7]. Dipepti-
dyl peptidase-4 (DPP-4) inactivates and degrades glucagon-
like peptide- (GLP-) 1 and glucose-dependent insulinotropic
polypeptide (GIP) [8], thereby limiting the favorable meta-
bolic action of these proteins. DPP-4 inhibitors such as
sitagliptin (SIT) are a new therapeutic strategy for improving
glucose metabolism in patients with T2DM.

SIT inhibits DPP-4, which is responsible for degrading
GLP-1. Inhibition of DPP-4 increases circulating levels of
GLP-1. GLP-1 is produced by L-cells in small and large
intestines in response to nutrient intake [9]. GLP-1 is
degraded by DPP-4 in the bloodstream [9]. SIT also
regulates GLP-1 receptor and cannabinoid receptor- (CB-)
1 gene expressions, which are associated with appetite
regulation in diabetic rat and may decrease oxidative stress
and liver tissue damage [10].

Female mice showed that they are more prone to develop
obesity than male mice. An 8-week administration of
Western diet (WD) abolished the enhancement of insulin
sensitivity and induced cardiac diastolic dysfunction in
female mice but not in male mice [11]. SIT improves
glucose metabolism and insulin sensitivity in both human
and animal models [12, 13]. SIT also attenuated the annual
exacerbation of diastolic dysfunction in patients with
T2DM for 24 months [14]. However, the mechanism
underlying this protective effect of SIT remains unclear. In
this study, we used the overnutrition obesity female mouse
model to evaluate whether a 12-week treatment with SIT
improves cardiac diastolic dysfunction and glucose homeo-
stasis and reduces β-cell dysfunction. We hypothesized that
the SIT may exert its effect through insulin metabolic signal-
ing molecule, p70 ribosomal S6K1, and through phosphory-
lation of INS docking proteins IRS-1 and IRS-2.

2. Methods

2.1. Animals. The experimental study was approved by the
Suzhou Science and Technology Town Hospital Institutional
Animal Care and Use Committee. Six-week-old wild-type
control (C57BLKS/J) female mice were purchased from the
animal center of Soochow University (Suzhou, China) and
were housed under standard laboratory conditions. Groups
of 6-week-old mice were fed a WD consisting of high-fat
(46%) and a high-carbohydrate component as constituted
with sucrose (17.5%) and high-fructose corn syrup (17.5%)
and water for 12 weeks with or without SIT (15mg/kg/day)
[15]. Another group of age-matched controls were fed regu-
lar mouse chow (CD) with or without SIT for the same
period of time.

2.2. Biochemical Examination. Venous blood sample was col-
lected from fasting mice for four hours. Glucose and insulin
assay were analyzed using an alpha track II glucometer and
an ultrasensitive mouse insulin ELISA kit (Crystal Chemical
Inc., Wakefield, MA, United States). Samples were drawn
immediately prior to the start of the treatment period and
at the end of the study. Hemoglobin A1c (HbA1c) was mea-
sured using a DCA vantage analyzer (Seimens City, United
States). Plasma total cholesterol and triglycerides, serum
potassium, and sodium were measured using an Olympus
AU680 automated chemistry analyzer (Beckman Coulter,
Brea, CA). Triglyceride content in liver samples was also
analyzed [16].

2.3. Echocardiography. Two-dimensional echocardiograms
were performed as described previously [11]. The myocar-
dial performance index (MPI) was calculated as the sum
of isovolumic contraction and relaxation times divided by
ejection time. The data was obtained by a pulsed-wave
Doppler, and parameters were assessed. Calculations were
made in accordance with the specific guidelines for rodent
echocardiography. All data were acquired and analyzed by
a single-blinded observer using Echo PAC (GE Vingmed)
offline processing.

2.4. INS Signaling Protein Assay. Pancreas islet cells will be
isolated by type V collagenase digestion, followed by Ficoll
400 gradient separation, as described in [17]. Proteins
involved in INS signaling, including IRS-1, IRS-2, Akt, and
S6K1, will be analyzed in pancreatic islets by Western blot.

2.5. Hematoxylin and Eosin Staining. Specimens of the hearts
were fixed by formalin for 24 hours, dehydrated by 70%, 80%,
and 90% ethanol for 3 hours, respectively, then 100% ethanol
I for 2 hours and 100% ethanol II for 2 hours, and vitrified by
xylene I and xylene II for 20 minutes. After immersing in
paraffin I and II for 40 minutes, the specimens were embed-
ded and sliced (5μm). Staining was performed as follows:
hematoxylin staining for 15 minutes, hydrochloric acid alco-
hol solution for 35 seconds decoloring, eosin staining for 10
minutes, and 90% ethanol for 40 seconds decoloring. Then,
neutral balsam was used for mounting, and the section was
observed and photographed under the microscope [18].

The heart injuries were divided into three categories.
Normal structure: the myocardial structure is normal, the
cells are closely aligned, the boundaries are clear, and
there is no obvious degeneration, congestion, and edema.
Moderate structure injury: the myocardial arrangement
was slightly irregular, the myocardial cells were swollen,
the myocardial hyperemic edema was visible, and a small
amount of lymphocyte infiltration was visible. Serious
structure injury: The injury shows loose arrangement of
myocardial cell, irregular part of the myocardial fiber frac-
ture, apparent vacuole degeneration, height of myocardial
interstitial hyperemia and edema, and a large amount of
inflammatory cell infiltration.

2.6. Statistical Analysis. All data are expressed as means± SE.
A one-way analysis of variance was used to assess the overall
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difference between groups. A value of P < 0 05 was consid-
ered statistically significant.

3. Results

3.1. Baseline Parameters. In this study, body weight over the
course of the 12-week treatment period was elevated in both
CD and WD groups. In addition, body weight in the WD
group increased more significantly than that in the CD group
(P < 0 01, Table 1). SIT treatment significantly reduced the
elevation of body weight in the WD+SIT group (P < 0 05).
Body weight and % of body weight gain did not differ
between CD and CD+SIT groups after treatment (P > 0 05).

3.2. Metabolic Parameters. Liver weight, plasma cholesterol,
triglycerides, and alanine aminotransferase (ALT) were sim-
ilarly elevated in the WD group, indicating lipidemia and
liver impairment in WD mice (Table 1). Liver weight eleva-
tion in WD mice was not reduced by SIT treatment. SIT
treatment decreased the elevation of cholesterol, triglycer-
ides, and ALT in WD mice (P < 0 05).

3.3. Glucose Homeostasis Parameters. Baseline fasting glu-
cose and HbA1c in all groups did not show significant
difference at the beginning of the study. At the end of
study, WD groups had higher elevated fasting glucose and
HbA1c compared to CD groups (Figures 1(a) and 1(b)),
and the fasting glucose and HbA1c in the WD+SIT group
were significantly lower compared to those in the WD group
(P < 0 05). However, the values did not return to the normal
range. The results indicate that progressing hyperglycemia
was ameliorated by SIT. In this study, mice in the WD group
had higher plasma insulin concentrations compared to CD
group mice (P < 0 01). SIT also reduced the plasma insulin
significantly in the WD+SIT group compared to that in the
WD group (Figure 1(c)).

3.4. WD-Induced Diastolic Dysfunction Was Improved by
SIT. Female mice fed with WD for 12 weeks exhibited abnor-
mal echocardiographic diastolic function parameters when
compared with CD and CD+SIT groups (Figures 2(a)–2(d)).
The MPI, which assesses both systolic and diastolic function,
was increased in the WD group, but its impact was greatly
decreased by SIT treatment (Figure 2(a)). An increase in this

parameter is indicative of impaired cardiac function. The
increase in MPI in the WD group is likely due to abnormal
diastolic function as indicated by both a prolonged period of
isovolumic relaxation (Figure 2(b)) and a decrease in mitral
inflow Vp (Figure 2(c)). The E/Vp ratio, a marker of left
ventricle filling pressure, was elevated in the WD group
compared with CD and CD+SIT groups. This further sup-
ports the diagnosis of diastolic dysfunction (Figure 2(d)).
SIT treatment effectively decreased this elevation in filling
pressure. SIT treatment also significantly ameliorated the
impact effects of WD-induced cardiac diastolic function.

3.5. WD-Induced Abnormalities in Myocardial Structure
Were Improved by SIT. The myocardial structure in the CD
group and CD+SIT group exhibited normal histology.
The cells are closely aligned with clear boundaries. They
also do not show degeneration, congestion, and edema
(Figures 3(a) and 3(b)). Compared to CD mice, WD mice
showed severe myocardial structure injury (Figure 3(c)). In
the WD+SIT group, hearts showed a moderate myocar-
dial structure injury. Overall, there is less evidence of
cellular injury than in the WD group (Figure 3(d)).
The injury of myocardium structure was less severe in
WD+SIT group mice than that in WD group mice.

3.6. Evaluation of Insulin Signaling in Pancreas. In WD fed
mice, progressive β-cell failure leads to overt hyperglycemia.
They usually develop obesity and hyperglycemia due to
endocrine pancreatic insufficiency [19]. Western blot evalua-
tion demonstrated decreased total IRS-1 and IRS-2 and an
increased phosphorylated Ser636 of IRS-1 and Ser731 of IRS-
2 in pancreas tissue (Figures 4 and 5). SIT treatment reduced
the degradation of IRS-1 and IRS-2 (P < 0 05) and phosphor-
ylation of IRS-1 and IRS-2. S6K1 phosphorylation was
increased in WD fed mice compared to CD counterparts
and was decreased by SIT treatment (Figure 6). Our pancreas
tissue data confirmed β-cell dysfunction in the WD fed
mouse and demonstrated excessive activation of S6K1 as
well as increased abnormal Ser phosphorylation of IRS-1
and IRS-2, along with degradation of total IRS-1 and
IRS-2. Moreover, these alterations were attenuated by
SIT treatment.

Table 1: Baseline and posttreatment parameters of body weight and plasma metabolic markers in control and WD group mice with or
without SIT treatment. Values are mean± SE. ∗P < 0 05 compared to the CD or CD+ SIT group; §P < 0 05 compared to the WD group.
Sample sizes are noted in parentheses.

Parameter CD (12) CD+ SIT (12) WD (12) WD+SIT (12)

Pretreatment body weight (g) 18.1± 0.3 18.2± 0.4 18.1± 0.3 18.1± 0.4
Posttreatment body weight (g) 28.3± 1.3 28.8± 1.5 51.6± 2.5∗ 44.5± 2.6∗ ,§

Hepatic weight (mg) 826± 32 819± 39 2453± 196∗ 2232± 188∗

Hepatic triglycerides (nmol/g) 15± 3 16± 3 45± 4∗ 32± 4∗ ,§

Plasma cholesterol (mg/dL) 82± 5 80± 6 157± 6∗ 132± 8∗

Plasma triglycerides (mg/dL) 133± 10 137± 11 325± 16∗ 269± 18∗ ,§

Plasma alanine aminotransferase (U/L) 25± 2 27± 3 82± 6∗ 63± 5∗ ,§
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4. Discussion

The aim of the study was to determine whether a 12-week treat-
ment with DPP-4 inhibitor SIT ameliorates overnutrition-
induced progression of abnormal cardiac dysfunction and
glucose homeostasis in obese female mice. The role of insulin
metabolic signaling molecules was also investigated. This study
showed that DPP-4 inhibitor SIT improves cardiac diastolic
function in female obese mice. This improvement was associ-
ated with the protective effect of β-cell function by reductions
of mTOR/S6K1 activation, degradation, and serphorylation of
INS docking proteins IRS-1 and IRS-2. The results show that
targeted pharmacologic interventions with DPP-4 inhibitor
could be useful in ameliorating pathophysiologic abnormalities
in cardiac diastolic dysfunction and preventing the activation of
insulin metabolic signaling molecules through enhanced
mTOR/S6K1 activation and Ser phosphorylation of IRS-1 and
IRS-2. This is one mechanism implicated in the pathogenesis
of INS resistance in the setting of obesity or diabetes.

Chronic overnutrition with a WD resulted in obesity,
insulin resistance, and elevated plasma DPP-4 activity as well
as heart enlargement and dysfunction [20]. Diabetic db/db

mice are reported to exhibit increased interstitial fibrosis as
early as 2 months of age [21]. We observed an improvement
in cardiac diastolic function which was associated with
reductions in myocardial fiber fracture, apparent vacuole
degeneration, myocardial interstitial hyperemia, edema, and
inflammatory cell infiltration in WD fed mice with SIT
administration. Cardiac structure in theWD group was more
impaired, and this could be due to the result of stress on the
left ventricle wall caused by an increase in left ventricle filling
pressure. DPP-4 inhibitor linagliptin suppresses reactive
oxygen species (ROS) generation, nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, and proinflam-
matory signals and reduces collagen deposition [22]. There
is growing evidence that a DPP-4 inhibitor could exert cardi-
oprotection and improve left ventricular function by reducing
oxidative stress and apoptosis and increasing reperfusion
injury salvage kinase (RISK) activity [23]. Thus, it is likely
that SIT may blunt myocardium injury progression. The
underlying mechanism needs to be further investigated.

Multiple metabolic and proliferative pathways implicated
in INS resistance lead to Ser phosphorylation of IRS-1. How-
ever, the role of the mTOR/S6K1 signaling pathway is
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Figure 1: WD mice have elevated fasting glucose and HbA1c levels at the end of treatment. Both fasting glucose (a) and HbA1c (b) were
reduced by SIT treatment at the end of the study. WD mice had increased serum insulin concentrations (c). ∗P < 0 05 compared to CD at
the end of experiment; #P < 0 05 compared to WD at the end of experiment.
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particularly interesting because it is affected by nutrients and
energy status. Studying this pathway allows for a comprehen-
sive evaluation of the role of overnutrition on INS resistance
and β-cell failure. Excessive activation of mTOR/S6K1 can
also impair INS metabolic signaling through enhanced Ser
phosphorylation of IRS-1 and IRS-2, which targets these
molecules for proteosomal degradation. This is a widely
accepted mechanism which contributes to the pathogenesis
of INS resistance in several tissues, including skeletal muscle
[24–26]. Our data in the pancreas tissue confirmed β-cell
dysfunction in the WD fed mouse and demonstrated exces-
sive activation of S6K1 as well as increased abnormal Ser
phosphorylation of IRS-1 and IRS-2, along with degradation
of IRS-1 and IRS-2. Moreover, these alterations were attenu-
ated by SIT treatment in our obese female mouse model.
Other studies have demonstrated increased mTOR/S6K1
activation in the transgenic Zucker obese (ZO) rat [2, 27], a
model of overnutrition and obesity which carries a mutation
of the leptin receptor and develops INS resistance and glu-
cose intolerance. This suggested that the mTOR/S6K1 and
INS metabolic signaling pathways in the pancreas play an
important role in the development and survival of β-cells.

S6K1 KO mice have decreased β-cell size and mass, hypoin-
sulinemia, and glucose intolerance, suggesting a critical
participation of this pathway in β-cell survival [28]. How
DPP-4 inhibitor attenuates the activation of the S6K1 in the
setting of overnutrition- and obesity-induced INS resistance
as well as its relation to β-cell function is yet fully elucidated.

Chronic treatment of WD fed mice with the DPP-4
inhibitor led to marked inhibition of plasma DPP-4 activity
and improved insulin sensitivity. DPP-4 inhibition may sup-
press INS resistance with a decrease in body weight but not
back to control levels [20]. In a fatty liver Shionogi-ob/ob
male mouse model, SIT administration reduced body weight,
blood glucose levels, and hepatic fibrosis. It also attenuated
hepatic stellate cell activation and Kupffer cells [29]. Consis-
tent with these studies, we observed the differences in body
weight between CD and WD at the end of experiment in
our female obesity model. However, in insulin-resistant male
ZO rats, DPP-4 inhibitor linagliptin treatment for 8 weeks
did not alter the body weight during the study period [30].
This difference in results may due to the different animal
strain used (rat versus mouse; male versus female), as well
as different inhibitor and treatment time.
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Figure 2: Echocardiographic assessment of cardiac function was evaluated at the end of treatment. WD induces diastolic dysfunction in WD
mice. Bar graphs show (a) MPI, (b) isovolumic relaxation time (IVRT), (c) Vp, and (d) E/Vp ratio, an index of LV filling pressure. Values are
means± SE. ∗P < 0 05 compared to CD at the end of experiment; #P < 0 05 compared to WD at the end of experiment.
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In our study, food intake or calorie intake was not mea-
sured to evaluate whether beneficial effects of SIT could be
due to a decrease in food intake or low-calorie intake. A
research study demonstrated that SIT attenuated body adi-
posity, without affecting food intake, in C57BL/6 mice with
diet-induced obesity [31]. However, in a clinical study
patients who were given with SIT 100mg (oral) daily for 4
weeks, postprandial serum glucagon, fasting blood glucose,
and 24-h caloric intake decreased [32]. The possibility that
SIT exerts its beneficial effects in part via suppression of food
intake or low-calorie intake cannot be excluded.

Saxagliptin monotherapy prevented or delayed the
progression of impaired glucose tolerance or impaired fasting
glucose to type 2 diabetes mellitus in obese patients with
newly diagnosed prediabetes [33]. SIT administration
decreased ambient blood glucose levels and improved the
glucose excursion rate. This was associated with elevated
plasma insulin and reduced plasma glucagon levels [34].
SIT also decreased circulating DPP-4 activity, improved
glucose tolerance, glucose-stimulated insulin secretion, and
insulin sensitivity, and reduced plasma triglycerides and cho-
lesterol levels [35]. In the recent study, SIT protected liver
tissue, modulated lipid metabolism in a mouse model, and
mediated expression levels of key enzymes for lipid metabo-
lism [15]. Our results also showed that SIT decreased the

elevation of cholesterol, triglycerides, and ALT in the WD
group. Given that SIT altered the elevation of cholesterol,
triglycerides, and ALT in the WD+SIT group compared
to the WD group, this indicates that plasma glucose met-
abolic change may be involved in the improvement effect
of SIT on cardiac dysfunction in WD fed female mice.
In addition, high-fat fed mice treated with SIT exhibited
significant improvement in insulin sensitivity indicating
that improvements in glycemic control were not solely a
consequence of enhanced insulin secretion [36]. The
recent study suggested that the protective effects afforded
by this DPP-4 inhibitor may derive from improvement
of the metabolic profile and from cytoprotective properties
[37]. In the Zucker diabetic fatty (ZDF) rat, Ferreira et al.
have found that chronic SIT treatment corrected the glyce-
mic dysmetabolism, hypertriglyceridemia, inflammation,
and hypertension and reduced the severity of the histo-
pathological lesions of pancreatic endocrine and exocrine
tissues, together with a favorable redox status, which pro-
vides a further advantage in the management of diabetes
and its proatherogenic comorbidities [38].

In summary, our study supports a newly described pleio-
tropic protective effect of DPP-4 inhibitor SIT on diastolic
function and β-cell function in the obesity female mouse
model. Despite the improvement in glycemic control, the

(a) (b)

(c) (d)

Figure 3: (a) and (b) illustrate the normal appearance of the myocardial structure in the CD group and CD+ SIT group. The myocardial
structure in WD mice showed a severe myocardial structure injury, including a loose arrangement of myocardial cell, irregular part of the
myocardial fiber fracture, apparent vacuole degeneration, myocardial interstitial hyperemia and edema, and a small amount of
inflammatory cell infiltration mainly composed of lymphocytes (c). SIT treatment improved the myocardial arrangement, swollen cells,
hyperemic edema, and lymphocyte infiltration (d).
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Figure 4: Western blot analysis of phosphorylated (p) and total IRS-1 in pancreas tissue at the end of experiment, total IRS-1 decreased, and
Ser phosphorylation of IRS-1 increased in WD mice. SIT treatment reduced the total IRS-1 significantly, not the ratio of p/total. ∗P < 0 05
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Figure 5: Western blot analysis of phosphorylated (p) and total IRS-1 in pancreas tissue at the end of experiment, total IRS-1 decreased, and
Ser phosphorylation of IRS-2 increased in WD mice. SIT treatment reduced both the total IRS-2 significantly and the ratio of p/total. ∗P <
0 05 compared to the CD group; #P < 0 05 compared to the WD group.

7Journal of Diabetes Research



HbA1c and fasting glucose values remained elevated. It is
likely that the pleiotropic effects of SIT relate to factors other
than improvements in glycemia and lipidemia. These find-
ings suggest a potential clinical utility for SIT in the obe-
sity/diabetic population. However, some limitations exist in
the current study, such as pancreas histomorphology could
not be done to study the impact of SIT on pancreas lesions
and the indirect effect on dysfunction by assessing S6K1,
IRS-1, and IRS-2 was not evaluated. Additional studies are
needed to further elucidate the potential role of mTOR/
SGK1 and INS docking proteins INS receptor substrates 1
and 2 as mediators of the efficacy of SIT on insulin resistance.
DPP-4 activity and GLP-1 levels will be also needed to be
measured to confirm that chronic overnutrition elevates
plasma DPP-4 activity and DPP-4 inhibitor inhibits plasma
DPP-4 activity.
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phosphorylation of S6K1 over total S6K1 increased in WD mice. SIT treatment reduced the ratio of p/total in WD mice
significantly. ∗P < 0 05 compared to the CD group; #P < 0 05 compared to the WD group.
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