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Abstract: The hydroponic production of microgreens has potential to develop, at both an industrial,
and a family level, due to the improved production platforms. The literature review found numer-
ous studies which recommend procedures, parameters and best intervals for the development of
microgreens. This paper aims to develop, based on the review of the literature, a set of procedures
and parameters, included in a test protocol, for hydroponically cultivated microgreens. Procedures
and parameters proposed to be included in the trial protocol for evaluating platforms for growing
microgreens in hydroponic conditions are: (1) different determinations: in controlled settings (setting
the optimal ranges) and in operational environments settings (weather conditions in the area/testing
period); (2) procedures and parameters related to microgreen growth (obtaining the microgreens
seedling, determining microgreen germination, measurements on the morphology of plants, micro-
greens harvesting); (3) microgreens production and quality (fresh biomass yield, dry matter content,
water use efficiency, bioactive compound analysis, statistical analysis). Procedures and parameters
proposed in the protocol will provide us with the evaluation information of the hydroponic platforms
to ensure: number of growing days to reach desired size; yield per area, crop health, and secondary
metabolite accumulation.

Keywords: microgreens; hydroponic; trial protocol; production and quality paremeters

1. Introduction

Microgreens are young plants that are consumed at the seedling stage, which have
a short production cycle (about 14 days) and require little space for growth [1]. Microgreens
are emerging functional foods of the 21st century [2] that are gaining interest for their
sustained nutraceutical properties and are an optimistic prospect for expanding especially
for the consumption of the population in large urban areas and in terms of food security.
Production of microgreens using hydroponic systems must be planned and controlled with
care for controlling environmental factors in order to increase quality parameters [3–6].
This is in comparison to more conventional production methods using soil, considering
all the controllable factors in hydroponic systems that have been shown to influence the
accumulation of bioactive substances [7,8], the harvest timeframe [9–11], and the quality of
the finished product [12–14]. Furthermore, the lack of a soil’s microbiome in hydroponic
systems is also important to consider, as unsuccessful parameterization leaves the plants
vulnerable to harmful spoilage by microorganisms [15–17].

However, the advantages of hydroponic platforms and the development of evaluation
protocols can lead to a positive influence on the quality of microgreens with higher con-
centrations of active substances [18,19] and nutrients valuable for human health [20–22].
This is why it is necessary to standardize certain cultivation protocols to ensure their
quality [23–25]. For instance, there is a wide range of environmental impact factors and
variation in their relationships to downstream microgreens outputs, which means that
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there is no single prescription that will guarantee perfect results [26]. The literature review
has demonstrated that there are optimal ranges within which one can begin the task of
designing effective prescriptions for successful microgreen production [3,21,27].

The time from sowing to harvest is 7–21 days for microgreens [28], a period in which
the control of vegetation factors is very important. Nutritional solution, temperature,
and light regime have the most important role in seed germination [29,30] and develop-
ment [31], while also summarizing the recent research on the many promising research
trends in refining microgreen production to achieve optimal outputs along its phenological
stages [32]. The nutritional solution, air, and water temperature, light regime, pH, electrical
conductivity, dissolved oxygen, CO2 concentration, and relative humidity are all important
factors which influence secondary metabolism from an incipient phase [33,34], which in
the final stages increases both the perceived and actual value of the plants by contributing
to human health and nutritional fortification [35,36].

Microgreen producers must integrate specific systematic hydroponic strategies to ob-
tain high-quality microgreens and high quantity [37] and quality bioactive substances [38],
while also avoiding the potential for spoilage and low-quality production [20,39] when
moving too far beyond the noted parameter ranges [3].

Many authors in the literature review have noted that best practices have not been
developed [40,41], which means that although there are many guidelines for producing
microgreens, we do not have very clearly defined standards; this literature review has
therefore gathered critical information regarding hydroponically grown microgreen pro-
duction that can be used by researchers and producers to improve the protocol for testing
platforms used to obtain microgreens [18,42].

Microgreens are currently considered among the five most profitable crops, along with
mushrooms, ginseng, saffron and goji berries [43]. Therefore, developing species-specific
growth media to support year-round production and to enhance valuable antioxidant
components is affordable and of utmost importance for the microgreens industry [19,22,43].
It is particularly important that the fundamental research into ensuring the safety and
quality of this new addition to healthy diets, microgreens, is carried out so that the produce
industry can avoid some of the problems that have challenged the mature produce and
sprout industries during the past several decades [44,45].

The paper aims to develop, based on the review of the literature, a set of procedures
and parameters, included in a test protocol, for hydroponically cultivated microgreens in
order to optimize the cultivation process and allow the harvest of the best possible products
in any hydroponic installation. Pilot trials target research into microgreens, specifically,
the influence of the crop environment and of the environment factors on the growth and
development of plants under hydroponic conditions.

2. Scope and Approach

This review was conducted as part of the GoHydro project (https://gohydro.org,
accessed on 18 April 2022). The objective of this activity was to develop a trial protocol
for hydroponic platforms for obtaining microgreens. The parameters established in the
protocol have been selected so as to provide the best information on the operation of the
platform. Feedback from these trials will be used for the final validation of the analytics
components of the GoHydro platform.

The procedures and parameters proposed to be included in the protocol are (Figure 1):
(1) different determinations: in controlled settings (setting the optimal ranges), and in opera-
tional environments settings (weather conditions in the area/testing period); (2) procedures
and parameters related to microgreen growth (obtaining the microgreens seedling, deter-
mining microgreen germination, measurements on the morphology of plants, microgreens
harvesting); (3) microgreens production and quality (fresh biomass yield, dry matter con-
tent, water use efficiency, bioactive compound analysis, statistical analysis).

https://gohydro.org
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Figure 1. Scheme of procedures and parameters proposed for the trial protocol.

In the protocol, we consider that microgreen growth could be characterized by four
main variables that are not necessarily correlated [46]: (1) number of growing days to reach
desired size; (2) yield per area (for given number of seeds), (3) crop health (percentage of
crops diseased); and (4) secondary metabolite accumulation (ascorbic acid, carotenoids,
chlorophyll, etc.).

The literature review, carried out by us, with a focus on literature from the last
10 years, was conducted between November 2021 and April 2022, using the databases: Web
of Sciences, Scopus, Science Direct, and Google Scholar. The established procedures and
parameters are analyzed with the goal to highlight, within the tested platforms, in what
way, different environment and nutritional factors (used as keywords in the review process)
can influence the development of microgreens and can improve its production and quality.

3. Trial Protocol for Evaluating Platforms for Growing Microgreens

The trial protocol for evaluating platforms for growing microgreens in hydroponic
conditions includes the procedures to be followed and the parameters considered useful
for calibrating the platform.
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Hydroponic GoHydro systems (https://gohydro.org, accessed on 18 April 2022). have
specific characteristics, such as the layer of crop used (nutrient solution), type of irrigation
(closed), method of irrigation (immersing), irrigation level (root level) [47]. Plants are culti-
vated in a substrate membrane, over which the nutrient solution passes periodically [48].

The high-capacity tank helps to maintain a constant pH. The color of the tank must
be white on the outside to maintain a constant temperature of the nutrient solution, and
it is not affected by solar radiation [49]. The water pump is in the tank, and the nutrient
solution reaches the surface of containers through a pipe system. The pump recirculates
the whole solution within 30 min of a fertilization regime, and the result is the mixing of
the solution in the system [50].

Microgreens can germinate and grow without any fertilizer application, up to the
capacity of the specific seed’s capacity [39]. However, providing mineral nutrients to
microgreens will increase yields and secondary metabolite concentration [51].

3.1. Setting the Optimal Ranges, in Controlled Settings

Setting the optimal ranges for microgreens, in controlled settings, between the limits
of favorability for each species, aims to highlight the effects of the hydroponic platform [3].
As reported in the literature, special attention must be addressed to the choice of growth
medium, which represents one of the key factors in the production process and could
influence microgreens yield and quality [52]. Parameters defined and optimal ranges for
different species of microgreens continuously monitored and controlled are presented
in Table 1 [3,19]. The spectral output of the lighting system must be quantified using
a spectrometer, at various points of growth of the trays of the platform [53].

Table 1. Parameters defined for different species of microgreens continuously monitored and controlled.

No. Parameter Unit of
Measurement

Average Value of Parameters for Example Species ***

Basil Lettuce Brussels Sprouts

1 Light W 400 400 400

1.1 Photoperiodicity h 06:30–21:30 (15 h) (10–20 h) 07:00–20:00 (12 h) 07:00–20:00 (12 h)

1.2 Light intensity µmolm−2s−1 300 (200–400) 500 300 ± 15

1.3 Color spectrum nm 440–460 (260–780) 440–460 400–700

1.4 Distance from light cm 150—Lamps HPS *
40—Lamps LED *

150—Lamps HPS
40—Lamps LED

150—Lamps HPS
40—Lamps LED

2 Ambient air temperature ◦C 21 ± 2 Day/17 Night 20 ± 2 24 Day/18 Night ± 2

3 Relative humidity % 65 ± 5 (50–60) 80 ± 5 70/80% ± 5

4 Nutrient concentration N-P-K: 3-2-3 (%) changed every 10 days ** changed every 10 days changed every 10 days

5 pH pH units 6.8 ± 0.4 6.3 ± 0.4 6.0 ± 0.2

6 Electrical conductivity mS 1.2 ± 0.2 1.8 ± 0.2 1.8 ± 0.2

7 Dissolved oxygen mgL−1 6.5 6 6

8 Solution temperature ◦C 20 ± 2 18 ± 2 20 ± 2

Note: * HPS-High Pressure Sodium; LED-Light emitting diodes. ** 8 o’clock in the morning; *** monitor daily at
8 o’clock in the morning in 3 repetitions.

The vegetation chamber is controlled by a system operated through a software pro-
gram. The environmental factors (temperature, humidity, light) are controlled and mon-
itored throughout the entire experimental period for the controlled experiments. Thus,
for example, in the case of basil, the environment factors from the vegetation chamber
shall be set as follows: temperature 21 ± 2 Day/17 Night; humidity 65 ± 5%, additional
light by lamps of 400 W, photoperiodism: 06:30–21:30 (15 h), automatic airing at ±2 ◦C,
compared to the programmed temperature. Table 2 presents measurement units, methods
and possible equipment to be used.

https://gohydro.org
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Table 2. Recommended measurement methods and equipment.

No. Parameter Unit of Measurement Methods Equipment for Measuring (Example)

1 Light W HPS/LED Parameter specific

1.1 Photoperiodicity h Soft setting Clock

1.2 Light intensity µmolm−2s−1 Number of photons Digital device (Luxmeter, spectroradiometer)

1.3 Color spectrum nm Light spectrum Spectrometer

1.4 Distance from light cm Adjustment Ruler

2 Ambient temperature ◦C Temperature sensor Temperature sensor

3 Humidity % Relative humidity Hygrometer sensor

4 Nutrient N-P-K: 3-2-3 (%) Type of solution Standard

5 pH pH units Solution reaction Laboratory pH meter

6 Electrical conductivity mS Electrical conductivity in water Digital electrical conductivity measurement
water conductivity sensor

7 Dissolved oxygen mgL−1 Oxygen level as % of Saturation Oxygenometer

8 Solution temperature ◦C Temperature sensor TMCx-HD Water Temperature Sensor

The nutrient solution shall be changed every 10 days (at 8 o’clock in the morning)
in order to satisfy the need for macro- and micro-elements [49]. After each change, the
systems and all the devices used shall be disinfected [54]. The nutrient solution shall be
monitored daily and manipulated in order to be maintained at the best parameters for the
development of plants [55]. The level of the nutrient solution must be kept constant [19].

Measurements of the oxygen dissolved into water shall be made daily [55,56]. These
measurements shall record the quantity of oxygen dissolved into water, the temperature of
the solution, the date, the time and the temperature from the atmosphere.

Artificial lighting shall be measured on all the experimental surface, in different
points [57], both from the point of view of intensity, and from the point of view of the
quality of light. Light intensity shall be measured with a digital device which determines
the number of photons relatively to surface and time (µmol m−2 s−1). The light spectrum
shall be determined by using a spectrometer. These measurements shall be made above
each tray [58] and at differences of 10, 20, 30 and 40 cm above their canopy.

In the case of measurements related to water losses, the crop trays shall be measured
daily by using the digital scales [59].

3.2. Weather Conditions in the Area/Testing Period

In order to determine whether the weather conditions in the area/testing period have
an influence on the operation of the hydroponic platform, important atmospheric data will
be recorded daily [46]. The growing medium plays a very important role in determining
the microgreens’ yield and quality [52], and the sustainability of the production process.
The determined parameters will be: temperature min/max/medium (◦C); atmospheric
humidity min/max/mean (%).

3.3. Procedures and Parameters Related to Microgreen Growth
3.3.1. Obtaining the Microgreens Seedling

In the case of hydroponic crops, the production of the seedling is essential in order to
obtain uniform and quality microgreens. Varieties with rapid seed germination and not
requiring low temperature treatments to stimulate it are preferred (lettuce may require
precooling). This is preferable so as not to have an additional factor influencing the results.

The seeds are in seminal rest until the best medium allows for germination. The culti-
vation of microgreens requires an ample supply of neutral to slightly acidic water [44,60].
Seeds of some varieties are soaked overnight to enhance germination.

The crop sublayer, humidity, temperature and light regime have the most important
role for the seed germination. The germination of microgreens seeds will be carried out in



Foods 2022, 11, 1327 6 of 16

darkness at 20–24 ◦C (depending on the species) and 100% relative humidity [3]. For basil
seeds, germination occurred in a climatic chamber in the dark at 24 ◦C for 3 days [25,61].
After approximately 3 days, the plants are exposed to light and watered daily until the first
set of true leaves begin to emerge.

There are three distinctive phases in the process of seed germination [49]: water soaking,
reinitiating metabolic activities from the seed, appearance of the radicle and its elongation.

Among common substrates used for the microgreens production, peat-based media
are the most utilized, followed by coconut coir and several synthetic media [25]. Recently,
natural fiber-based media—such as jute, cotton, cellulose, etc.—have gained increasing
popularity since they could represent a sustainable alternative [43,62].

The seeds are placed directly in the sterile sublayer. Bulgari et al. (2021) [25] investigate
the influence of three growing media (vermiculite, coconut fiber, and jute fabric) on yield
and quality parameters of two basil varieties (green basil—Ocimum basilicum L., red basil—
Ocimum basilicum var. Purpurecsens) and rocket (Eruca sativa Mill.) as microgreens. The
results showed that the choice of the substrate significantly affected the yield, the dry
matter percentage, and the nitrate concentration of microgreens, while the other qualitative
parameters were most influenced by the species.

Seeds may require sterilization. Seed contamination is a well-known problem in the
microgreens industry [63]. If seeds are contaminated, pathogens can become internalized
from the beginning of the growing process and once incorporated are very difficult to
remove [64]. During seed germination, the seed releases a mixture of carbohydrates and
peptides that can attract surrounding bacteria in the rhizosphere [44,65]. It is recommended
that the saturation with oxygen of the nutrient solution be maintained above 6.5 mg L−1, in
order to eliminate the risk of the appearance of pathogens and for an optimal development
of the root system [49].

Recently, studies have demonstrated that microgreen growing systems, especially
hydroponic systems, are vulnerable to pathogen proliferation when seeds are contaminated,
highlighting the importance of seed sanitation [44]. Some examples are summarized in
Table 3.

Sanitization of the harvested product is not likely to be an effective control strat-
egy [44]. Once contaminated, it is almost impossible to eliminate pathogens from living
plant tissues [44,63]. Microgreens are very delicate and can be easily damaged by harsh
sanitizing treatments [69].

Seeds should receive precautionary sanitary treatments for eliminating pathogenic
bacteria such as those recommended for sprouts production by the U.S. Food and Drug
Administration [70]. Tavan et al. (2021) [71], proposes that Tuscan black kale (Brassica
oleracea var. acephala) seeds be first sterilized by soaking for 2 min in 80% ethanol, rinsed
twice with distilled water, and then oven-dried at 45 ◦C for 40 min.

A textile material will be placed over the seeds to stop the light. After moistening and
the beginning of the germination process (3 days), the textile material shall be removed for
growing seedlings [72].

Bulgari et al. (2017) [73] recommend in the case of hydroponic cultivated basil, on
polystyrene cell trays filled with vermiculite, a crop density of approximately 21,700 plants m−2

(about eight plants per cell).
To determine the density, depending on the species of microgreens, the amount of

seeds can be calculated according to the size and shape of the trays using Microgreens Seed
Density Calculator [74].

Seeding density impacts microgreens yield [24,75]; as the seeding density increases, the
weight per individual plant decreases due to competition among seedlings, while the total
yield increases from the increased number of seedlings in each area, up to an equilibrium
production capacity.

3.3.2. Determining Microgreen Germination

The proposed parameters for testing are as follows:
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Germination Energy (GE, %)—is the speed at which the germination process is initiated
in a seed placed under germination conditions. The percentage of pure seeds normally
germinated in the period of 1/3 to 1

2 (usually 3–4 days) of the time established for the
determination of the germination capacity is expressed [76].

Table 3. Studies showing the possibility of microgreen contamination.

No. Reference Investigation Context Results

1 Xiao et al., 2015 [66]

Escherichia coli O157:H7 were able to
survive and proliferate significantly on

radish microgreens in both soil-substitute
and hydroponic production systems,

with higher populations reported in the
hydroponic production system.

The results showed that contaminated seeds led to
systematic contamination of whole plants, including

both edible and inedible parts, and seed coats
remained the focal point of Escherichia coli O157:H7

survival and growth throughout the period of
microgreen production.

2 Wang et al., 2015 [67]

Examined the survival and proliferation
of seed-borne Listeria monocytogenes and
other members of the seeds microbiota

on microgreen plants grown in soil
substitute and hydroponic

production systems.

During microgreen growth for 10 days, Listeria
monocytogenes counts on the seed coats increased by
0.7 and 1.3 log, respectively, for soil and hydroponic

systems. Similar increases were observed on the
edible portion of the microgreens. Seed coats, roots,

and cotyledons were most heavily.

3 Di Gioia et al., 2016 [52]

Reported lower microbial populations in
recycled fiber mats and on microgreens

growing on them than in peat-based
mixes and microgreens grown

in pure peat.

They suggested that recycled fiber mats may be safer
growth media than peat. Recycled textile-fiber and

jute-kenaf-fiber may be valid alternatives to
peatbecause both ensured a competitive yield, low

nitrate content and a similar or higher
microbiological quality.

4 Wang and Kniel 2016 [64]

Evaluated the capability of the human
norovirus surrogate, murine norovirus

(MNV), to internalize from roots to edible
tissues of kale and mustard microgreens,
as well as virus survival in recirculated

water without disinfection.

They found constant high levels of viral RNA in
edible tissues. MNV remained infectious in

previously contaminated hydroponic systems for up
to 12 days and was translocated in edible tissues via

roots. Examination of the spatial distribution of
bacterial cells on different parts of microgreen plants
showed that contaminated seeds led to systematic

contamination of whole plants, including both aerial
parts and roots.

5 Reed et al., 2018 [68]

Reported that the type of growth
medium played an important role in

serovar-dependant Salmonella survival
and growth on microgreens irrigated

with contaminated water.

Of the different growth media tested, hydroponic
pads resulted in the highest percentage of

Salmonella-positive samples and the highest
Salmonella population level on microgreens.

Germination Capacity (GC, %)—is the capacity of the seeds to germinate, in a limited
number of days, established for each species (7–10 days) [77]. It is expressed as a percentage
of the number of pure seeds germinated.

Germination Index (GI) [78–80]—determining the germination index shall be assessed
when this vegetation phase is finalized; the germination of seeds is considered complete
when the petiole has reached at least the minimum same dimension as the dimension of
the seed; measurements shall be made daily, until the 10th day, at the same hour.

GI = [Number of germinated seeds (n1)/Days of first count] + [Number of
germinated seeds/Days of second count (n2)] + . . . + [Number of germinated

seeds/Days of last or final count (n10)]
(1)

In the GI, maximum weight is given to the seeds germinated on the first day and
less to those germinated later on. The lowest weight would be for seeds germinated on
the 10th day. Therefore, the GI emphasizes on both the percentage of germination and its
speed. A higher GI value denotes a higher percentage and rate of germination [79].
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3.3.3. Measurements on the Morphology of Plants

The determination is performed in the juvenile vegetative phase before harvesting the
microgreens. The surface of the leaves (leaves area) will be determined with a planimeter
on 10 plants per tray [73]. Ten representative plants for each tray of the platform will be
harvested on the diagonals of the tray. Another possibility is to calculate the Leaf Area
Index (LAI) by employing the formula of Fang et al. (2019) [81].

LAI =
Leaf area per plant

(
cm2)

Land area occupied by a plant (cm2)
(2)

3.3.4. Determining the Health State of Plants

Due to the short crop time for microgreens, there are few severe pests or physiological
disorders [82]. The most significant disease in microgreens production is damping off
in recently germinated seedlings. Seeds can be sterilized prior to planting to minimize
disease incidences.

Determining the health state of plants shall be achieved through the continuous
monitoring of all the symptoms that appear [83]. The health state of plants shall be noted
in ascending order with grades from 1 to 9, with the maximum grade corresponding to
a perfect health state [84]. The results shall be presented as average values of repetitions,
graphically represented compared to time.

We consider it appropriate to assess the average intensity of the disease attack using
the FAO grades (Table 4; using grades 1 to 9) [84].

Table 4. Scale of attack intensity rating.

Note for Attack Intensity Surface Attacked

1 If the attack is not observed

2 When the attack is incipient, with less obvious symptoms

3 If the stains occupy up to 5% of the surface

4 When the stains cover between 5–15% of the surface

5 When the stains cover between 15–25% of the surface

6 When the stains cover between 25–40% of the surface

7 When the stains cover between 40–50% of the surface

8 When the stains cover between 50–75% of the surface

9 When the stains cover between 75–100% of the surface

Next, we can calculate the degree of attack that represents the expression of the
influence and severity of microgreens health.

The degree of attack (DA, %) is calculated according to the relation [84]:

DA, % = F, % × I, %/100 (3)

where:

F, %—attack frequency of a phytopathogen;
I, %—attack intensity of a phytopathogen.

F, % = N × 100/Nt (4)

N = number of plants (organs) attacked.
Nt = total number of plants (organs) observed (controlled).

I, % = Σ (i × f)/n (5)

i = percentage of grade awarded.
f = number of plants (organs) marked with the respective note.
n = total number of attacked plants (organs) analyzed.
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Recent studies on artificial lighting systems have shown that the quality of light and
light spectrum can influence plants significantly [3]. There are multiples ways that this can
have an influence; for example, it can influence plant health, increasing the concentration
of active substances and thus improving the quality and improving the efficiency of use
and marketing of microgreens (Table 5).

Table 5. Studies showing the possibility of influencing the quality and quantity of microgreens with
the help of artificial lighting systems.

No. Reference Investigation Context Results

1 Kim et al., 2016 [85]

Reported that there is a potential for
LED light in the UV and blue ranges

to enhance food safety of
hydroponically grown microgreens
by treating the water as it circulates.

Light in blue and UV wavelengths is able to kill
bacteria. Regardless of the bacterial strain, the

sensitivity of illuminated bacterial cells to bile salts
and NaCl considerably increased compared to

non-illuminated controls.

2 Samuolienė et al., 2016 [86]

Evaluate the role of 638 and 665 nm
red light components on quantitative

changes in antioxidants and to
assess the effect of light quality on

the antioxidative status of
basil and parsley.

Red spectrum (638 nm) can improve its antioxidant
properties, while blue light improves the yield of

other phytochemicals related to high-quality
products. Increased or supplemental red light
significantly increased contents of phenolics,

α-tocopherol and ascorbic acid.

3 Lobiuc et al., 2017 [87]

Different ratios of LED blue and red
illumination; 4 light treatments were
100% white (White) and various red

(R) to blue (B) ratios, as follows:
2R:1B, 1R:1B and 1R:2B, intensities

Growth of microgreens was enhanced with
predominantly blue illumination, larger cotyledon

area and higher fresh mass. The same treatment
elevated chlorophyll a and anthocyanin

pigments contents.

4 Zhang et al., 2020 [88]

Effects of light-emitting diode (LED)
light on growth, phytochemical

compound content and antioxidant
capacity, as well as the post-harvest
quality of sprouts and microgreens

were investigated.

LED light can promote the accumulation of
different phytochemicals, such as phenolic

compounds, vitamins, glucosinolates, chlorophyll
and carotenoids. Meanwhile, the antioxidant

capacity could also be significantly increased by
growth under LED light, in particular UV-B light.

The accumulation of mineral elements (Ca2+, Fe2+,
K+) increased after light exposure.

5 Artés-Hernández et al., 2022
[89]

Use of UV and visible spectrum LED
lighting to improve the quality of

microgreens to enhance their
health-promoting compounds.

Illumination with UV and/or different regions of
the visible spectrum during growing and shelf life

are good abiotic elicitors of the production of
phytochemicals in young plants, mainly through

the activation of specific photoreceptors.

3.3.5. Microgreens Harvesting

Microgreens are harvested, for analysis, when over 50% of them are at their best
time for harvest. Microgreens are ready for harvest when they reach the first true leaf
stage, usually at about 2 inches (5.08 cm) tall [28,90]. The recommended maximum height
limit is 6 cm [91]. The time from seeding to harvest can vary greatly by crop from 7 to
21 days [28], but is typically around 14 days [63]. The use of seedling height as a harvesting
index can be recommended, as it can be determined easily [91]. However, leaf area can
also be used as a harvesting stage index [91]. As different parts of the plants, such as
seeds, cotyledons and leaves, may have different health-promoting properties, the ideal
time of consumption in order to benefit their phytochemicals varies [92], which shows the
importance of determining antioxidant activity at different stages. No formal studies in the
literature were found about how harvest age affects the shelf life of microgreens [44].

Production in small trays will likely require harvesting with scissors [28]. The ma-
jority of vegetable varieties grown as microgreens are ready for harvest in about 2 weeks.
Pannico et al. (2020) [93], proposes for lettuce microgreens harvesting at 16 days after sow-
ing, upon the appearance of the first two true leaves. They are weighed to determine
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the fresh vegetable mass, then they are dried (lyophilization) in the oven at 70 ◦C for
3 days [71], or 4 days [72], to constant weight [94]. Lyophilization is considered to be the
best dehydration method for both storage and sample pre-treatment, since it does not cause
thermal degradation of carotenoids [95]. Drying the vegetable material is an important
process when it comes to a correct characterization of plants and the active substances
accumulated by them. The dry matter shall be recorded next for each sample and then it
shall be chemically analyzed.

Time of the day for harvesting may have significant implications for the bioactive
composition [96] and shelf-life of microgreens [97]. Noichinda et al. (2007) [98] propose
that the microgreens be harvested in the morning, so as to avoid exposure to light, opening
of the stomata and possible tendencies to lose the weight of the preserved samples.

Careful harvesting is required and quick cooling removes the vital heat and suppresses
the rate of respiration, spoilage and senescence [70]. Samples collected from the platform
will be stored at −20 ◦C until analyzed [99].

Current dip/wash and drying procedures significantly reduce the quality of the
microgreens since microgreens are very delicate [44]. Improved wash/drying technologies
are necessary to provide ready-to-eat microgreens with better quality and longer shelf
life [100]. The post-harvest wash step can be avoided when the microgreens are grown
under controlled settings to minimize the microbial contamination [27,100]. Microgreens
crops usually are grown indoors. Thus, the materials used for propagation can be easily
decontaminated to maintain compliance with food safety regulations.

3.4. Microgreens Production and Quality
3.4.1. Fresh Biomass Yield

All the microgreens within each tray will be cut right above the substrate level (cutting
them at the base, excluding the substrate) and collected to determine Fresh Weight (FW,
kg m−2) [25].

3.4.2. Dry Matter Content

Dry Weight (DW, g m−2) will be measured on an analytical balance following lyophiliza-
tion until a constant weight was reached. Each sample shall be dried in an oven at 70 ◦C
during 3 days [71] until constant weight is reached and DW shall be recorded (at 75 ◦C,
4 days) [25]. The dry samples will be finely ground to be utilized for chemical analysis.

3.4.3. Water Use Efficiency

Water Use Efficiency (WUE) can be an important indicator of the efficiency of the
hydroponic platform. It is calculated based on total harvested biomass [71]:

WUE = TFW/ΣW (6)

where:

TFW—total harvested biomass, g.
ΣW—total water added to each growing container of hydroponic platform.

3.4.4. Bioactive Compound Analysis

The most important bioactive compounds in microgreens include vitamins (vitamin C),
minerals (copper—Cu, zinc—Zn, and selenium—Se), and phytochemicals (e.g., carotenoids
and phenolic) [21].

Vitamin C, also known as ascorbic acid, is a potent antioxidant and is essential for
a variety of biological functions [101], such as wound healing, collagen synthesis, and
immune system regulation [102]. As microgreens are usually consumed fresh, Vitamin C
can be largely retained without cooking [103]. For the total ascorbic acid (TAA, g kg−1)
analysis, a UV-Vis spectrophotometer will be used [92].

Several trace minerals, i.e., Cu, Zn and Se, as cofactors or components of antioxidant
enzyme, play an essential role in the endogenous antioxidant defense system of the human
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body, and are therefore referred to as antioxidant minerals [104]. The content of chemical
elements (Ca, Mg, Na, K, Mn, Fe, Zn, Cu, Se) (g kg−1) and volatile oils (mg L−1), shall be
determined by specific HPLC methodology (chromatographic) [105].

Phytochemicals (e.g., carotenoids and phenolics) are found in significant amounts in
microgreens [22]. Carotenoids possess antioxidant activity and play important physiologi-
cal roles in the human body [106]. Phenolic compounds are the most abundant secondary
metabolites of plants ranging from small molecules, e.g., phenolic acids, to flavonoids with
multiple rings, and to highly polymerized compounds, e.g., tannins [107]. Phenolics are
antioxidants for plants to repair damage caused by free radicals and have shown many
health benefits for humans [107].

Bioactive compound: carotenoids (µg mL−1) and total polyphenols (µg mL−1) will be
analyzed by HPLC methodology [108].

3.4.5. Statistical Analysis

All data will be analyzed for differences using SPSS software and will be presented as
average ± SE (standard error). Average values must be separated by LSD test (p < 0.05).
The data will be analyzed in combination and compared to obtain significance and es-
tablish optimal environmental conditions, which must be provided by the hydroponic
platform [46]. Data collection will be carried out in three repetitions. The statistical pro-
cessing through the analysis of the variance will thus highlight the differences that may
exist between repetitions. This ensures the accuracy of the data, real feedback, and the
possibility to improve the accuracy of the hydroponic platform.

4. Conclusions

One of the major limitations of the expansion of microgreen consumption is the rapid
deterioration of their quality, which occurs immediately after harvest, thus limiting their
marketing. From this point of view, the test protocol must provide a suitable platform for
the hydroponic production of microgreens on different substrates, indoors, representing
a sustainable alternative to conventional agriculture.

Many studies have shown that the variation in the content of bioactive compounds
in microgreens is based on several factors, such as genetic material (species), cultivation
conditions and light parameters (spectral quality and intensity), but also other variables
(including nutrition/biofortification and growth medium) have implications for shaping
the nutritional and phytochemical composition of microgreens. Despite the short grow-
ing cycle, special attention should be paid in the testing protocol to establishing growth
media for microgreens, which is one of the most important factors in the production pro-
cess that influences the quality of microgreens and highlights the characteristics of the
hydroponic platform.

Feedback from these trials will be used for the final validation of the analytics compo-
nents of the hydroponic platform.
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