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Abstract

Background: The selection of task-relevant information requires both the focalization of attention on the task and
resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while
focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear,
despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of
investigating the basal ganglia’s contributions to attention is to examine the features of P300 components (i.e. amplitude,
latency, and generators) in patients with basal ganglia damage (such as in Parkinson’s disease (PD), in which attention is
often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300
subcomponents.

Methodology/Principal Findings: In order to compare distracter- and target-elicited P300 components, high-density (128-
channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early
PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-
resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were
performed using SPM5H software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal
(DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of
the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage.

Conclusions/Significance: Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are
modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention
disorders.
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Introduction

Attention underlies most cognitive processes and is therefore a

key issue in neuropsychology. Attention can be focused by relevant

signals derived from task demands (target stimuli) or captured by

salient properties of stimuli that are sometimes irrelevant for the

task (distracter stimuli) ([1,2]. During a task, input selection allows

the preferential processing of some sources of information from the

internal or external environment at the expense of other stimuli

[3]. According to Luck and Gold (2008), input selection can

further be divided into the control of selection (i.e. the

determination of which inputs have to be selected) and the

implementation of selection (i.e. the process of enhancing the

target inputs and suppressing distracter inputs).

Previous studies have shown that distracter and target

processing activities are subserved by different (but probably

interconnected) functional circuits. Indeed, two specific networks

have been identified: (i) a dorsal frontoparietal (DFP) network

connecting the dorsal parietal cortex to the dorsal frontal cortex,

(ii) a ventral frontoparietal (VFP) network connecting the

temporoparietal junction to the ventral prefrontal cortex [4].

The DFP network may generate and maintain endogenous signals

on the basis of current goals [4]. This network is involved in

processing targets and distracters but is most prominent during the

latter activity [5,6]. According to Bledowski et al. [5], this network

may reflect a disengagement of attention previously focused on the

target detection and the subsequent allocation of attentional

resources to the salient distracter stimulus. The VFP network is not

activated by expectation or task preparation but is reportedly

engaged in the detection of rare events [5–7]. Hence, the VFP

network responds (along with the dorsal network) when behavior-

ally relevant objects or targets are detected [4,7,8]. This has

already been shown for visuospatial attention [8]. The VFP is

indeed activated when attention is reoriented to a target occurring
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at an unexpected location (an invalid target). However, its

involvement in non-spatial attention has also been evidenced

when a target appears infrequently, as in an oddball paradigm

[4,5,6].

Most of these data come from neuroimaging studies (essentially

fMRI) but other methods may be of use for investigating the

involvement of cortical networks in attention processes. This is

particularly true for distributed source localization of cognitive

event-related potentials (ERPs) in general and P300 in particular

[6,9]. The P300 potential is a positive component occurring

around 300 ms after a stimulus. It is usually considered to reflect

attention and working memory [10] and occurs when a subject has

to detect an awaited and unexpected stimulus. This is the case in

an ‘‘oddball’’ paradigm in which low-probability target and non-

target stimuli are mixed with high-probability standard stimuli

[11–13]. The P300’s amplitude corresponds to the attentional

resources allocated to the task, whereas the potential’s latency is

thought to correspond to the time needed to evaluate a stimulus’

characteristics. In three-stimulus oddball paradigms with standard,

infrequent non-targets (also referred to as distracters) and

infrequent target task-relevant stimuli (i.e. targets), two main

P300 components can be identified: an early, frontocentral

component (often called P3a) that occurs when the subject is

presented with a distracter stimulus and a later, centroparietal

component (often called P3b) that follows presentation of a target

stimulus [13–17]. The early, frontal component is thought to

correspond to evaluation of the stimulus or an attention alert

[18,19]. It is further thought to correlate with the orienting

response and reflects an involuntary switch of attention (i.e.

attention reallocation) from the main task (target/standard

categorization) to a deviant, non-target stimulus [7,20–22]. This

attention reallocation could also be induced directly by deviance of

the distracter from the stimulus context, without the need for

cognitive interference with the ongoing task [23]. In this

hypothesis, the distracter P3a would thus reflect the neural

response of attentional capture. However, other researchers

believe that the P3a also reflects inhibition of an automatic

response to the salient but task-irrelevant stimulus [10,22]. The

later, more posterior component is variously thought to be related

to (i) restructuring of working memory following the presentation

of new information [24,25], (ii) the decision on how to respond

[13,26] and (iii) the stimuli’s access to global-workspace processing

[27]. The P3b component reflects attentional processes that enable

information to be categorized [11,24,25]. Experiments in healthy

subjects (either with fMRI or with standardized-weighted low

resolution electromagnetic tomography (swLORETA)) suggest

that the distracter- and target-elicited P300 components have

different brain sources [5,6]. Indeed, both approaches have shown

that the distracter-elicited ERP mainly involves sources in the DFP

network, whereas target-elicited ERPs also recruit the VFP

network.

The aforementioned data suggest significant cortical involve-

ment in attentional processes. However, the contribution of

subcortical structures in these cognitive functions is still unclear.

The cortical areas involved in these frontoparietal attentional

networks are strongly linked to the striatum via several

basothalamocortical circuits [28–30]. The head of the caudate,

the dorsolateral prefrontal (DLPF) cortex and posterior parietal

cortex form an executive loop, whereas the ventrolateral prefrontal

(VLPF) cortex, temporal cortex and the body and tail of the

caudate nucleus are involved in a visual loop. It is thus very likely

that striatal disruption will disorganize the attentional frontopa-

rietal networks identified by Corbetta [4,8] and therefore result in

attention disorders.

Basal ganglia damage (such as seen in Parkinson’s disease (PD))

may represent a novel setting for investigating this question.

Parkinson’s disease is a neurodegenerative condition characterized

by loss of dopaminergic cells in the substantia nigra pars

compacta. It causes hallmark motor symptoms associating

bradykinesia, rest tremor and rigidity [31]. Patients also develop

non-motor symptoms, including cognitive impairment. In partic-

ular, attention disorders are typically seen in PD - even in the early

stages of the disease. Nevertheless, it is still not clear whether this

impairment results from lower recruitment of attentional resources

or defective inhibition of irrelevant events [32–35]. The P300

potential has already been used to study attention impairment in

PD. Most of these previous studies evidenced a reduced P300

amplitude [34,36–42] and a longer P300 latency [36,41,43–52]. In

contrast, other similar work did not evidence these changes

[43,53–57]. However, most of these studies involved conventional

two-stimulus oddball paradigms, which prevented the separate

identification of distracter and target-elicited P300 components.

To the best of our knowledge, source analysis of P300 components

and functional imaging have never previously been performed in

PD patients performing oddball paradigms. However, high-

resolution (128-channel) EEG recording for source analysis

provides an excellent time resolution (higher than fMRI),

combined with a good spatial resolution (higher than standard

EEG). This allows accurate detection of anatomical substrates for

short-time cognitive processes as in oddball paradigms.

The aim of the present study was to investigate how the basal

ganglia might modulate the functioning of the DFP and VFP

attentional networks during distracter and target processing.

Methods

Objectives
The objective of this study was to determine the nature of

attentional impairment in early PD by combining the investigation

of the P300 components’ usual features (amplitude and latency)

with the identification of their cortical generators in a swLORETA

source analysis [58,59]. If the attentional impairment in PD results

from deficient implementation of selection, this would lead to

difficulty in resisting interference from distracter stimuli and would

thus change the characteristics of the distracter-elicited P300

(namely its swLORETA generators). Alternatively, if attention

impairment in PD is due to an alteration in control of selection,

this would result in the failure of target detection and would

prompt changes in the characteristics of the target-elicited P300

(again, its swLORETA generators).

Participants
The study included 15 right-handed patients (ten males and five

females) with probable PD according to international criteria [60].

All patients were treated and assessed after receiving their usual

anti-parkinsonian medication (eight received dopaminergic ago-

nists only, two L-Dopa only and five had a treatment associating

dopaminergic agonists and L-Dopa). The mean L-Dopa equiva-

lent daily dosage [61] is shown in Table 1. Patients with motor

fluctuations, a tremor subscore (item 20) above 2 on the UPDRS

III scale, undergoing deep brain stimulation or suffering from

depression or dementia (according to the DSM IV-TR [62] and

PD dementia criteria [63], respectively) were excluded from the

study. Fifteen right-handed healthy controls (HCs) (eight males

and seven females) also participated. According to self-reports, the

subjects had no history of psychiatric problems and were not

taking any psycho-active drugs. The HCs were also free of

Role of Basal Ganglia Circuits in Attention

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e34239



neurological disease. The two groups were matched in terms of

age, gender and duration of formal education.

Table 1 summarizes the subjects’ demographic and clinical

features.

All participants were free of visual impairments, according to

the Early Treatment Diabetic Retinopathy Study scale (ETDRS

research group, 1991). An extensive cognitive examination,

including an assessment of the overall cognitive status (Mattis

Dementia Rating Scale [64] and the main cognitive domains

(detailed in the Supporting Information S1) enabled us to rule out

cognitive decline or dementia. The severity of anxiodepressive

symptoms was assessed on the Montgomery and Asberg

Depression Rating Scale (MADRS) [65].

Description of procedures
Task and recording procedure. Subjects were comfortably

seated and watched a 17-inch monitor set 150 cm away. Event-

related potentials were recorded as the subjects performed a 3-

stimulus visual oddball paradigm similar to that used by Bledowski

et al. [66].

A session included two different task types (a circle task with

squares as distracters and a square task with circles as distracters)

with 360 stimuli each. The order of the two task types was

counterbalanced so that half the participants saw circles first and

half saw squares first.

Figure 1 depicts the experimental task: the stimuli were solid

blue shapes displayed in a semi-random order for 75 ms each. The

interstimulus interval varied from 1800 to 2200 ms. The stimuli

were defined as standard shapes (40 mm diameter circles or

35 mm sided squares), distracters (a different shape: 35 mm sided

squares or 40 mm diameter circles, respectively) or targets (smaller

than the standard shape: 33 mm diameter circles or 30 mm sided

squares) and were displayed with a probability of 0.84, 0.08, and

0.08, respectively. The subject was told to respond to the target

stimuli by pressing a button with his/her right hand within

2000 ms.

This three-stimulus oddball paradigm involves two different

attention processes: (i) the size-based detection of a target among

standard stimuli in a complex discrimination task, (ii) the shape-

based detection of expected vs. unexpected, infrequent stimuli,

together with the need to resist interference produced by

infrequent distracter stimuli (since the subjects were not told

about these distracters in advance).

Before each task, all subjects had a practice run in the absence

of distracter stimuli. The mean reaction time, the omission rate,

the overall commission rate and the distracter commission rate

were recorded. The omission rate was defined as the number of

misses divided by the total number of targets (i.e. 60)6100. The

overall commission rate was defined as the number of false alarms

divided by the total number of non-target stimuli (distracter+-
standard stimuli, i.e. 660)6100. The distracter commission rate

corresponded to the number of false alarms divided by the total

numbers of distracters (i.e. 60)6100.

The electroencephalogram (EEG) was recorded from 128 scalp

sites using a DC amplifier (ANT Software BV, Enschede, the

Netherlands) and a Quick-capH 128 Ag/AgCl electrode cap (ANT

Software BV) placed according to the 10/05 international system,

with a linked mastoid reference [67]. The impedance was kept

below 5 kV. An electro-oculogram (EOG) was recorded to detect

artifacts related to eye movements and blinks. The EEG and EOG

were digitized with a sampling rate of 512 Hz and recorded with

EEProbeH software (ANT Software BV).

EEG analysis. The EEG was analyzed with EEProbeH
software. The raw data waveforms were band-pass filtered by

convolving them with a finite-impulse response filter and a

Hamming window. The half-power cut-offs were 0.1 and 30 Hz.

EEG epochs that contained eye movements or blink artifacts were

automatically detected, then manually classified as either blinks or

eye movements and separately corrected with the EEProbeH
regression algorithm. Whenever the subject missed a target

stimulus or responded to a distracter stimulus, the event was

excluded from the EEG analysis. The waveforms (analyzed from

100 ms pre-stimulus to 900 ms post-stimulus) were averaged

separately for the standard, distracter and target conditions. In the

present study, we chose to refer to distracter- and target-elicited

P300 components, rather than the conventional definitions of P3a

and P3b. Indeed, distracters and targets can generate P3a and

P3b, although P3a components predominate for distracters and

P3b predominate for targets [14–17]. For each epoch, a baseline

correction was performed by using data from 100 ms prior to the

stimulus. The P300 components were visually defined as the

largest positive deflection in the distracter and target stimulus

waveforms within the 250 to 600 ms time window in the 128-

channel overlay plot. Detection of the P300 peak was confirmed

by calculating the global field power, which represents the signal’s

power when all electrodes are taken into account [68,69].

Table 1. Clinical and demographic features of the Parkinson’s disease (PD) patients and healthy controls: mean (standard
deviation).

PD patients Healthy controls p

Age (years) 59.2 (6.4) 59.1 (7.4) 0.979

Gender ratio (M/F) 10/5 8/7 0.456

Duration of education (years) 12.5 (2.4) 12.7 (3.2) 0.966

Mattis Dementia Rating Scale (out of 144) 141.3 (2.7) 142.1 (1.6) 0.642

MADRS score 3.1 (2.2) 2.2 (4.5) 0.029

Hoehn and Yahr score 1.5 (0.5)

UPDRS III score 18.6 (8.7)

Mean (SD) L-Dopa equivalent daily dose (mg/d) 542 (222)

Time since disease onset (years) 4.8 (3.5)

p values were determined in t-tests (except for the gender ratio, for which a x2 test was applied).
doi:10.1371/journal.pone.0034239.t001
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The P300 amplitude was defined as the voltage difference

between the baseline and the largest positive wave peak in the

analyzed time window. Latency was defined as the time between

stimulus onset and the P300 peak. Amplitude and latency

measurements were performed for the three midline electrodes

(Fz, Cz and Pz).

swLORETA P300 source localization. In order to study the

effect of processing distracter and target stimuli, difference

waveforms were calculated by subtracting the standard stimulus

waveform from the distracter waveform (to yield the D-S

waveform) and target waveforms (to yield the T-S waveform) for

each subject and for all scalp-EEG channels. P300 source analysis

was performed according to the swLORETA method with ASAH
software (ANT Software BV), as shown in Figure 2. swLORETA

is a recent update of the standardized low-resolution brain

electromagnetic tomography (sLORETA) method introduced by

Pascual-Marqui in 2002. This method is a distributed technique

that enables the so-called ‘‘electromagnetic inverse problem’’ to be

solved. sLORETA is a useful tool for modeling spatially distinct

source activities in the absence of prior knowledge of the

generators’ anatomical location. The sLORETA method

generates statistical parametric maps that reflect the reliability of

the estimated current source density distribution. It shows exact

topographic properties, with a zero-localization error for single

dipoles in noiseless simulated data (for more specific details of the

method and its experimental validation, see [58,70,71]).

swLORETA additionally incorporates a singular value

decomposition-based lead field weighting that compensates for

the sensors’ differing sensitivity to current sources at different

depths [59]. This weighting enables accurate reconstruction of

surface and deep current sources in simulated data - even in the

presence of noise and when two dipoles are simultaneously active.

The swLORETA solution was computed using a three-

dimensional grid of points (or voxels) representing the possible

sources of the signal. Furthermore, the solution was restricted to

the grey matter by selecting only voxels in which the grey matter

probability was not equal to zero (based on the probabilistic brain

tissue maps available from the Montreal Neurological Institute

[72–74]. Lastly, the 1056 grid points (with a 5 mm grid spacing)

and the recording array (128 electrodes) were registered against

the Collins 27 MRI map (with a 1 mm spatial resolution) [73].

The Boundary Model was used to compute the lead field matrix.

The lead field matrix models the mechanism by which the original

current sources are superimposed on each other to produce the

measured voltage fields at each detector; this is the first step

needed to compute any inverse solution [75].

We calculated the mean value of the swLORETA analysis

performed for all time-points within a 40 ms time window around

the P300 peak in each difference waveform. The P300 peak was

defined as the distracter-elicited P300 latency for D-S waveforms

and the target-elicited P300 latency for T-S waveforms.

Ethics
All study subjects provided their written, informed consent to

participation and the study had been approved by the local

independent ethics committee (‘‘Comité de Protection des

Personnes Nord-Ouest IV’’, 2007-A 00227-46,).

Statistical analysis
Behavioral data. Due to a floor effect and the skewness of

the distributions, Mann-Whitney tests were used to compare

reaction times, omission rates and overall and distracter

commission rates in PD patients and HCs. The significance

threshold was set to p,0.05.

Amplitude data. A three-factor, repeated-measures ANOVA

was performed on the P300 amplitude data with group (PD

patients or HCs) as a between-group factor and stimulus type

Figure 1. A schematic representation of the three-stimulus visual oddball paradigm (with the circle task on the left and the square
task on the right).
doi:10.1371/journal.pone.0034239.g001

Role of Basal Ganglia Circuits in Attention

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e34239



(distracter or target) and location as within-group factors. The

location factor had nine levels: Fz, Cz, Pz, left and right frontal

areas (consisting of channels AFF1, AFF5h, F1, F3, F5, FFC1h,

FFC3h, FFC5h, FC1, FC3 and FC5 on the left and AFF2, AFF6h,

F2, F4, F6, FFC2h, FFC4h, FFC6h, FC2, FC4 and FC6 on the

right), left and right central areas (consisting of channels FCC1h,

FCC3h, FCC5h, C1, C3, C5, CCP1h, CCP3h and CCP5h on the

left and FCC2h, FCC4h, FCC6h, C2, C4, C6, CCP2h, CCP4h

and CCP6h on the right), left and right parietal areas (consisting of

CP1, CP3, CP5, CPP1h, CPP3h, CPP5h, P1, P3, P5, PPO1 and

PPO5h on the left and CP2, CP4, CP6, CPP2h, CPP4h, CPP6h,

P2, P4, P6, PPO2 and PPO6h on the right). A Greenhouse-

Geisser correction was applied when the assumption of sphericity

was violated. When required, post-hoc analyses with t-tests were

performed. The threshold for statistical significance was set to

p,0.05.

Latency data. A three-factor repeated-measures analysis of

variance (ANOVAs) with stimulus type (distracter or target) and

location (Fz, Cz and Pz) as within-group factors and group (PD

patients or HCs) as a between-group factor was performed on the

P300 latency data. A Greenhouse-Geisser correction was applied

when the assumption of sphericity was violated. When required,

post-hoc analyses with parametric tests were performed. The

significance threshold was set to p,0.05.

P300 source localization data. All statistical analyses were

performed with SPM5H software (Wellcome Department of

Cognitive Neurology, Institute of Neurology, University College

London, London, UK).

To locate the P300 sources, a rigorous method was used to

establish a threshold value for deciding on the statistical

significance of the current density. To this end, a one-sample t-

test was performed for each voxel in the source space; the null

hypothesis was that there was no relationship between the mean

current density and the changes in our experimental conditions.

The null hypothesis can be stated formally as:

H0 : j(rg)~0 for all g~1, . . . ,N,

Figure 2. Procedure for the swLORETA P300 source analysis.
doi:10.1371/journal.pone.0034239.g002
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where j(rg) is the modulus of the swLORETA at position rg and N

is the total number of voxels in the source space.

Due to the properties of linear inverse solutions like swLORETA,

this null hypothesis will never be satisfied by any voxel; all of the

latter will present some differences from zero activity, due to the

linear mixing present in the linear inverse solution. This is why the

modulus of the swLORETA has to be normalized, in order to

distinguish between regional activity (i.e. an intensity change due to

a specific stimulation) and overall activity (i.e. an intensity change

due to a task unrelated to the stimulation). For each subject,

normalization was performed by dividing the value at each voxel by

the mean over all voxels and then subtracting a value of one:

jn(rg)~
j(rg)

1

N

XN

i~1

j(ri)

{1: ð1Þ

The mean over all voxels represents the global activity. With

this change, our null hypothesis of non-significant activation

related to changes in our experimental conditions translates into:

H0 : jn(rg)~0,

jn(rg) was defined in Eq. (1). This is similar to the overall

normalization used in positron emission tomography (PET)

experiments and which is available in the SPMH statistics package

[76,77].

Gaussian smoothing with an 8 mm full-width-at-half-maximum

kernel was performed on the normalized current density maps, in

order to increase the signal-to-noise ratio and ensure that between-

subject differences were assessed on a reasonable spatial scale with

regard to the functional anatomy.

One sample t-tests were then applied to D-S and T-S

normalized and smoothed swLORETA maps for both groups,

with a grey-matter mask; this enabled us to define the sources of

the P300 component elicited by distracter and target stimuli,

respectively.

Two sample t-tests were used to compare normalized

swLORETA maps in patients and controls. This was done with

a PD patient-HC contrast (in order to identify P300 generators

found in PD patients but not in HCs) and with a HC-PD patient

contrast (in order to highlight P300 sources only displayed by

HCs).

This operation was performed first for distracter and target

conditions as a pooled dataset and then for each condition separately.

In order to avoid false positives in these tests (while not

compromising our ability to evaluate functional networks), we

applied 125-voxel spatial clustering (corresponding to the spatial

resolution (5 mm65 mm65 mm) of our source grid) and a low p-

value (0.0005 for one sample t-tests and 0.005 for two-sample t-

tests. Combining a spatial extent threshold with low p values

decreases random activation [78].

The anatomical labels of the source locations were specified in

SPMH using a further development of a three-dimensional maximum

probability atlas [79], in order to avoid multiple anatomical

transformations that would otherwise have led to localization errors.

Results

Behavioral results
The median and ranges of behavioral results are shown in

Table 2. Mann-Whitney tests revealed a significantly higher

distracter commission rate (Z = 22.374, p = 0.018) in PD patients

than in HCs. The two groups did not differ significantly in terms of

the mean reaction time, omission rate or overall commission rate.

P300 amplitude
Table 3 shows the mean P300 amplitudes in Fz, Cz and Pz for

distracter and target stimuli.

Figure 3 shows grand averages of ERP waveforms for each

stimulus type in Fz, Cz and Pz, with identification of the distracter-

and target-elicited P300 components.

The ANOVA revealed a significant main effect of ‘‘stimulus

type’’ (F(1,28) = 4.931, p = 0.035), with a larger amplitude for the

distracter-elicited P300 than for the target-elicited P300. The

analysis also showed a main effect of ‘‘location’’ (F(8,224) = 6.658,

p,0.001) and significant ‘‘location’’6‘‘stimulus type’’ (F(8,224) =

3.106, p = 0.036) and ‘‘location’’6‘‘group’’ (F(8,224) = 4.910, p =

0.002) interactions. No main effect of group was observed. Further

analyses of the ‘‘location’’6‘‘stimulus type’’ interaction revealed

that the distracter-elicited P300 was larger than the target-elicited

P300 in the left frontal and central areas (t29 = 2.133, p = 0.042

and t29 = 2.401, p = 0.023, respectively) and at Fz and Cz

(t29 = 2.788, p = 0.009 and t29 = 2.969, p = 0.006, respectively).

The stimulus type did not have a significant effect at the other

locations. Regarding the ‘‘location’’6‘‘group’’ interaction, further

analyses revealed a significant location effect in the HCs

(F(8,112) = 8.049, p,0.001) but not in the PD patients (F(8,112) =

2.517, p = 0.087). In HCs, P300 amplitudes showed a frontopa-

rietal gradient. The P300 amplitude was larger at Fz than at Cz

(t14 = 2.641, p = 0.019) and Pz (t14 = 4.216, p = 0.001) and larger at

Cz than at Pz (t14 = 2.842, p = 0.013). It was larger in left frontal

area than in left central and parietal areas (t14 = 2.620, p = 0.02

and t14 = 3.598, p = 0.003, respectively), larger in the left central

area than in the left parietal area (t14 = 3.393, p = 0.004), larger in

the right frontal area than in the right central and parietal areas

(t14 = 2.492, p = 0.026 and t14 = 3.248, p = 0.006, respectively) and

larger in the right central area than in the right parietal area

(t14 = 2.716, p = 0.017). A median-to-lateral gradient was also seen

in frontal and central areas, with a larger amplitude at Fz than in

the left and right frontal areas (t14 = 2.513, p = 0.025 and

t14 = 2.184, p = 0.046, respectively) and a larger amplitude at Cz

than in left central areas (t14 = 2.792, p = 0.014). The other

comparisons were not statistically significant.

P300 latency
Mean latencies at each electrode are displayed in Table 3.

ANOVAs revealed a significant main effect of ‘‘stimulus type’’

(F(1,28) = 117.77, p,0.001) and ‘‘group’’ (F(1,28) = 19.66, p,0.001),

together with a significant ‘‘stimulus type’’6‘‘group’’ interaction

(F(1,28) = 4.51, p = 0.043). Further analyses revealed that the target-

Table 2. Behavioral performance of Parkinson’s disease (PD)
patients and healthy controls: median (range).

PD patients
Healthy
controls p

Reaction time (ms) 556 (435–757) 550 (439–841) 0.756

Omission rate (%) 10 (0–28) 6.7 (0–23) 0.574

Commission rate (%) 6 (0–38.9) 1.8 (0.6–9.1) 0.329

Commission rate for distracters (%)0 (0–16.6) 0 (0–1.77) 0.018*

*p,0.05.
doi:10.1371/journal.pone.0034239.t002
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elicited P300 latency was longer than the distracter P300 latency in

both groups (t14 = 9.73, and t14 = 5.91 for PD patients and HCs,

respectively, p,0.001). For target stimuli, the P300 latency was

longer in PD patients than in HCs (t28 = 3.19, p = 0.004). No other

main effects or interactions were observed.

Localization of P300 cortical generators with the
swLORETA method

The swLORETA t-test maps are shown in Figures 4 and 5.

One sample t-tests. In HCs, both distracter- and target-

elicited P300 generators appeared to be quite focused within

frontoparietal areas, as shown in Figure 4. Distracter-elicited

P300 generators were found mainly bilaterally in the middle,

frontal, precentral, inferior and superior parietal lobules and the

postcentral gyri and in the right superior and inferior frontal gyri.

Some distracter-elicited P300 generators were also found in the

bilateral lateral occipital gyri. The target-elicited P300 was

generated in the bilateral superior frontal, precentral, postcentral

gyri and superior parietal lobules, the left middle, frontal,

superior and middle temporal gyri and inferior parietal lobule

and, to a lesser extent, the right posterior cingulum and left

insula.

In the PD patients, the distracter-elicited P300 generators

were more widespread than in HCs, and primarily involved

frontoparietal areas (the right middle and bilateral superior

frontal and precentral gyri, the bilateral inferior parietal lobules

and postcentral gyri and the right superior parietal lobule).

However, temporal and occipital source locations (the bilateral

parahippocampal gyri, the right lateral temporo-occipital and

superior temporal and the left inferior temporal gyri) were also

found. The target-elicited P300 component had the same frontal

generators as the distracter-elicited P300 but differed slightly in

terms of the parietal lobe generators (left inferior parietal,

bilateral superior parietal lobules and the bilateral postcentral

gyri). Generators were also identified in the temporal and

occipital areas, with left predominance (the left parahippocam-

pal, superior, middle and anterior temporal gyri, the lateral

temporo-occipital gyri, the left insula, bilateral latero-occipital

areas and the right lingual gyrus).

Two sample t-tests. As shown in Figure 5a, application of a

two-sample t-test with an HC-PD patient contrast to all P300

components revealed fewer generators in the left inferior frontal

gyrus in PD patients than in HCs.

Figure 5b shows the same significant, inter-group difference in

this gyrus when the contrast is applied to the distracter-elicited

P300 only.

No significant group effect was found in a target-elicited P300

generator analysis.

The PD-HC contrast did not reveal any significant differences.

Discussion

The primary objective of the present study was to use

swLORETA to determine how basal ganglia can modulate the

cortical areas involved in the generation of distracter- and target-

elicited P300 components when subjects perform an attention task

that involves both control of selection and implementation of

selection [3] (as is the case in a three-stimulus oddball paradigm).

Parkinson’s disease patients were compared with matched HCs, in

order to specify the role of the associative frontostriatal loops in

attention. Our results confirmed the involvement of frontoparietal

networks in both distracter and target detection in PD patients and

HCs, as already evidenced in young healthy subjects [6]. One of

our most important findings relates to the significantly lower

number of distracter-related P300 generators in the left inferior

frontal gyrus (namely in its external and superior parts) in PD

patients relative to HCs. There were no group differences for the

target-elicited P300 sources. These results are in good agreement

with the behavioral data, since PD patients had a higher

commission rate for distracters (as already reported for other

tasks) [80–83]. Our swLORETA results are also consistent with

the scalp P300 amplitude distribution, showing a lack of frontal

predominance in our PD group (regardless of the type of stimulus).

Indeed, our HCs displayed frontocentral predominance for scalp

P300, as already been shown in other studies of elderly HCs [84–

87]. This finding contrasts with the situation usually observed in

young subjects (particularly for target P300) [5,6,10]. According to

Fabiani et al. [87], this age-related change may be related to a

continuous engagement of working-memory processes - possibly

because memory templates decay faster in old age or because

greater susceptibility to distracters in the elderly may lead to an

increased workload and thus greater recruitment of the frontal

areas. This type of frontal recruitment may be less active in PD

than in HCs, due to dysfunction of the frontostriatal circuits. Our

swLORETA results also show that at the cortical level, the

reduction in frontal generators preferentially concerns the

distracter P300.

The areas in which distracter-elicited P300 generators were

found in HCs but not PD patients correspond to the DLPF cortex,

which is part of the DFP network and is involved in the executive

frontostriatal loop [28]. Our data suggest that the attention

impairment seen in PD patients is more related to DLPF cortex

dysfunction than VLPF cortex dysfunction. This is in good

agreement with Owen et al.’s suggestion that the function of the

VLPF cortex is relatively intact in PD [88] and with the results of

task-switching studies [89]. Our results are also in good agreement

with neuroimaging studies that show DLPF dysfunction when PD

patients are performing cognitive tasks. Indeed, several PET

studies have revealed changes in blood flow in the DLPF and

hypometabolism in the basal ganglia (the putamen, caudate

nucleus or internal globus pallidus) [90–94]. Likewise, correlations

Table 3. Distracter and target-elicited P300 amplitudes and latencies: mean (standard deviation).

Distracter Target

Fz Cz Pz Fz Cz Pz

Amplitude PD 5.73 (3.25) 5.96 (3.39) 5.38 (2.84) 3.6 (2.9) 3.8 (2.3) 4.52 (2.04)

(mV) controls 6.47 (3) 5.58 (2.20) 4.1 (1.81) 5.16 (2.31) 4.77 (2.43) 4.23 (1.87)

Latency PD 397 (55) 397 (55) 397 (57) 486 (50) 487 (50) 488 (48)

(ms) controls 362 (58) 362 (58) 362 (60) 427 (53) 423 (49) 423 (48)

doi:10.1371/journal.pone.0034239.t003
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Figure 3. Grand average ERP waveforms and scalp amplitude maps at P300 peak. Top panel (3A): grand average ERP waveforms from
three midline electrodes (Fz, Cz, Pz) for standard stimuli (the thin grey line), target stimuli (the thick black line) and distracter stimuli (the grey line),
with identification of distracter- and target-elicited P300 components. Data from controls and PD patients are shown on the left and the right,
respectively. Bottom panel (3B): scalp amplitude maps at P300 peak latencies for the distracter (top) and target (bottom) stimuli. Data from healthy
controls and PD patients are shown on the left and the right, respectively. Dots indicate electrode positions on the scalp.
doi:10.1371/journal.pone.0034239.g003
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between frontal [18F]-fluorodopa uptake and performance in

working memory and verbal fluency tests have been evidenced in

PD [95].

The prefrontal dysfunction in PD is considered to result from

the disruption of the basal ganglia outflow resulting from

dopamine depletion. In turn, this interrupts frontostriatal circuits

[28] and may induce hypometabolism in frontal regions (including

the DLPF cortex, the supplementary motor area, and the anterior

cingulate gyrus) [96]. In particular, functional alteration of the

DLPF cortex is likely in PD; the fact that dopamine modulates

DLPF blood flow during planning tasks (in the absence of any

change in basal ganglion blood flow) [97] suggests direct

receptivity of the DLPF cortex to dopamine [97].

In our PD patients, only distracter-P300 generators were lacking

in the DLPF cortex; there were no differences in target-P300

sources in this area (compared with HCs). This observation

suggests that the DLPF dysfunction seen in attention tasks with

basal ganglia impairment mainly involves distracter processing,

whereas target detection does not appear to be markedly affected.

Our PD patients were just as able to detect target stimuli as HCs

were. Hence, the attention disorder in PD may be mostly related

to the impaired inhibition of irrelevant stimuli. Indeed, by using a

set-switching paradigm, Cools et al. [98] evidenced impaired

cognitive control in PD and suggested that the patients’ attention

was captured more easily by salient information.

One remaining question relates to the origin of the specific DFP

dysfunction revealed by tasks involving distracters. Is the

dysfunction directly related to the primary basal ganglion

impairment or does it depend on connections between the basal

ganglia, the DLPF cortex and another structure (for example the

anterior cingulate cortex (ACC))? We did not evidence P300

generators in the ACC, even though involvement in inhibition,

response selection and conflict monitoring has been reported in

previous studies [27,99,100]. The ACC has also been frequently

Figure 4. Colour-coded statistical maps of the P300 components grey matter current density. Each map was associated with a colour
system (blue: healthy controls; red: PD patients). The colours were superimposed and areas of overlap (cortical regions showing significant generators
for both groups) are displayed in the appropriate colour mixture (i.e. violet); (SPM5H one sample t-tests, swLORETA method p,0.0005). 4A:
distracter- elicited P300 components; 4B: target-elicited P300 components.
doi:10.1371/journal.pone.0034239.g004

Figure 5. Between-group-statistical maps of the grey matter current density for the P300 components. Healthy controls versus PD
patients (from SPM5H two sample t-tests). 5A: pooled distracter- and target- elicited P300 components. 5B: the distracter-elicited P300 component
only (swLORETA method, p,0.005).
doi:10.1371/journal.pone.0034239.g005
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related to the generation of an earlier cognitive ERP (the anterior

N200) - mainly in go-no go tasks - [101] and is known to interact

with the DLPF cortex [99,102]. In particular, a conflict signal

from the ACC could help recruit additional cognitive control

functions carried out by the DLPF cortex [99]. It can reasonably

be supposed that the ACC plays a role in inhibition in an earlier

time window than the DLPF cortex does. Further investigation of

the dynamic interaction between these two structures is thus

merited.

We are aware that the present study has a number of

limitations. Firstly, we deliberately chose to use an oddball

paradigm - the most common paradigm for studying P300 and

the mechanisms of attention. This choice is open to criticism, since

other paradigms (such as two-stimulus go/no-go tasks with a high

target probability and no distracters [101] are probably more

appropriate for evaluating inhibition. However, the latter do not

allow investigation of specific distracter and target processing and

thus would not have matched our primary objective. Paradigms

studying selective visuospatial attention might also be more

appropriate for studying selective attention [103] (cf. studies on

selective auditory attention in PD [56,104,105]) but could also

introduce confounding factors, since visuospatial perception is

impaired in PD [106,107]. Furthermore, our paradigm could have

been improved by simultaneously manipulating the difficulty of

target vs. standard discrimination and modifying the distracter, as

shown in previous studies [23,108]. This would have allowed (i)

better task performance and thus (possibly) the generation of more

intense P300 and (ii) facilitated investigation of the relationships

between stimulus-driven and task-related processes. However, our

P300 subcomponents were clearly identifiable; given our focus on

generator location, we wanted to use the same paradigm as in

Bledowski et al. [66] and one of our previous studies [6].

Secondly, most of the patients had a mild form of PD, with very

mild cognitive disorders, as evidenced by the extensive cognitive

assessment (see Supporting Information S1). Nevertheless, the PD

patients’ impairment in distracter processing was revealed by a

higher commission rate in the oddball task. This impairment was

related to a difference (relative to HCs) in distracter-elicited P300

source locations. These findings suggest that (i) the function of the

corticostriatal associative loop is altered in early-stage PD and (ii)

cortical attention networks are modulated by the basal ganglia.

Even though recruitment of PD patients with more severe

cognitive impairments may have better highlighted differences

with respect to HCs, it would also have raised several issues. For

example, a lack of specificity in the patients’ cognitive disorders

would interfere with the results. Later-stage PD would also have

prevented good task performance and thus decreased the

robustness of the ERP analysis.

Thirdly, the male-to-female gender ratio in this study was 2.0,

which is quite unbalanced and may be a possible source of bias.

Nevertheless, this ratio is very similar to that reported in

epidemiologic studies of PD patients [109,110] and confirms the

representativeness of our sample.

Fourthly, a significant group difference was observed for the

score at the MADRS. PD patients had a slightly higher score than

the HCs but it was well below the threshold of clinical significance

and none met the diagnosis criteria for depression. This is usual in

PD since some items of the MADRS can overlap with PD

symptoms (sleep difficulties, anxiety…). It is very unlikely that this

may have influenced our results.

Lastly, all patients in the present study were assessed on-drug;

this may represent a confounding factor, since dopamine

replacement therapy could either minimize differences between

PD patients and HCs in terms of performance and P300 features

or modify the function of the corticosubcortical networks.

Nevertheless, the motor symptoms and lack of motivation in off-

drug patients would have jeopardized task performance and

compromised our ERP analysis.

In conclusion, we have shown that PD patients display fewer

distracter-P300 generators in the DLPF cortex during a three-

stimulus oddball paradigm. This finding suggests dysfunction of

the dorsal frontoparietal attentional network when the basal

ganglia are impaired and provides evidence for the modulation of

cortical frontoparietal networks by the basal ganglia. Our data also

indicate that the inhibition deficit in PD is probably related to less

intense recruitment of the inferior frontal cortex following basal

ganglia impairment. These results encourage the use of other

electrophysiological methods (such as the analysis of rhythm

oscillations during distracter and target processing) to further

investigate the relationships and degree of coordination between

these networks.
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