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ABSTRACT
Chronic Wasting Disease (CWD), a well-described transmissible spongiform encephalopathy of the 
Cervidae family, is associated with the aggregation of an abnormal isoform (PrPCWD) of the 
naturally occurring host prion protein (PrPC). Variations in the PrP gene (PRNP) have been 
associated with CWD rate of infection and disease progression. We analysed 568 free-ranging 
white-tailed deer (Odocoileus virginianus) from 9 CWD-positive Michigan counties for PRNP poly-
morphisms. Sampling included 185 CWD-positive, 332 CWD non-detected, and an additional 51 
CWD non-detected paired to CWD-positives by sex, age, and harvest location. We found 12 
polymorphic sites of which 5 were non-synonymous and resulted in a change in amino acid 
composition. Thirteen haplotypes were predicted, of which 11 have previously been described. 
Using logistic regression, consistent with other studies, we found haplotypes C (OR = 0.488, 95% 
CI = 0.321–0.730, P < 0.001) and F (OR = 0.122, 95% CI = 0.007–0.612, P < 0.05) and diplotype BC 
(OR = 0.340, 95% CI = 0.154–0.709, P < 0.01) were less likely to be found in deer infected with 
CWD. As has also been documented in other studies, the presence of a serine at amino acid 96 
was less likely to be found in deer infected with CWD (P < 0.001, OR = 0.360 and 95% CI = 0.227– 
0.556). Identification of PRNP polymorphisms associated with reduced vulnerability to CWD in 
Michigan deer and their spatial distribution can help managers design surveillance programme-
sand identify and prioritize areas for CWD management.
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Introduction

Chronic Wasting Disease (CWD), a well described, fatal, 
transmissible spongiform encephalopathy of the Cervidae 
family, is associated with the aggregation of an abnormal 
isoform (PrPCWD) of the naturally occurring host prion 
protein (PrPC) [1–3]. First characterized in 1980 based on 
clinical and pathological findings in Colorado captive 
mule deer [2], CWD has since spread within the United 
States, been found in Canada and Europe, and been 
detected in imported cervids in Korea [4–7].

CWD is efficiently transmitted both horizontally [8– 
11] and vertically [12] with effective transmission 
between cervid species [6,13,14]. Prion shedding can 
begin during the pre-clinical stage of disease [9,15] 
through bodily fluids and excreta [9] and shed prions 
are able to be taken up by vegetation [16] and with-
stand degradation [17]. Once an animal is infected, 
CWD is always fatal [3].

CWD prevalence in free-ranging cervid populations 
has been found to be as high as 35% [18] with 

population-level impacts seen with prevalence as low 
as 13% [19–21]. Cervid populations provide not only 
social and cultural benefits through hunting and view-
ing, and ecological contributions to biodiversity, they 
also serve as a financial keystone species for conserva-
tion and management making their potential decline of 
considerable management concern.

Two non-synonymous polymorphisms within the 
prion gene (PRNP) resulting in changes to amino 
acids 95 (Q95H) and 96 (G96S), have been most 
commonly found to be associated with reduced dis-
ease susceptibility in white-tailed deer [22–35]. 
While neither have been shown to provide complete 
protection from CWD infection, they have been 
linked to reductions in genotype-specific prevalence 
rates [26, 29–31,36] or increased duration of incu-
bation [37].

CWD was first detected in wild white-tailed deer 
(Odocoileus virginianus) in Michigan in 2015 
through opportunistic passive surveillance, 6 years 
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after the state’s first detection in a captive herd. 
Since 2015, Michigan has invested in intensive sur-
veillance through localized culling and hunter 
assisted sampling and CWD has been detected in 9 
counties at the time of this study. We examined the 
current frequency of PRNP polymorphisms among 
CWD-positive and non-detected deer in 9 CWD- 
positive Michigan counties, one county in the 
Upper Peninsula and 8 contiguous counties in cen-
tral Michigan. We tested for an association between 
CWD status and PRNP polymorphisms and 
hypothesized CWD polymorphisms associated with 
reduced CWD infection are present in Michigan 
white-tailed deer.

Results

PRNP sequences were determined for 568 free-ran-
ging white-tailed deer from 9 CWD-positive 
Michigan counties. Of these samples, 185 were 
CWD-positive, 332 were CWD non-detected, and 
an additional 51 CWD non-detected were paired to 
CWD-positives to control for sex, age, and harvest 
location (Figure 1). Within the analysed 625bp region 
of the PRNP gene, we detected 12 single nucleotide 
polymorphisms (SNPs), 9 of which had been pre-
viously reported [22, 29, 33, 36, 38–41]. Of the 12 
SNPs, 5 were non-synonymous, resulting in a change 

Figure 1. Distribution of sampled (a) chronic wasting disease (CWD) positive, (b) CWD non-detected, and (c) CWD non-detected 
paired control free-ranging white-tailed deer (Odocoileus virginianus) from 9 CWD-positive Michigan counties.

Table 1. Thirteen haplotypes and associated single nucleotide polymorphisms (SNP) of the PRNP gene from 568 white-tailed deer 
(Odocoileus virginianus) from 9 CWD-positive Michigan counties. Bold text indicated non-synonymous SNPs. Asterisks indicate 
previously unreported SNPs.

Haplotype 60 153 285 286 324 438 499 555 589* 642* 643* 676

A C C A G A C A C A G C C
B C C A G A C A T A G C C
C C C A A A C A T A G C C
D C T A G A C A C A G C C
E C C A G A T A C A G C C
F T C C G A C A C A G C C
G T C A G A C A C A G C C
J C C A G G C A C A G C C
K T C A G A C A C A G C A
MI-1 C C A A A C A T G G C C
MI-2 C T A G A C A C A A A C
O T T A G A C A C A G C C
OVC1 C C A A A C C T A G C C
Non-synonymous Change - - Q95H G96S - - - - K197E - Q215K Q226K
Codon - - 95 96 - - - - 197 - 215 226
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to the amino acid sequence (Table 1). BLAST and 
literature searches indicated that 589A/G, 642 G/A, 
and 643 C/A had not previously been reported. Full 
associated sequences have been deposited in 
GenBank under accession numbers MZ913400 – 
MZ913401.

Thirteen haplotypes were predicted from the 12 
SNPs, 11 of which have previously been described [22, 
40, 41]. Of the 13 haplotypes, B was most common 
(n = 368) and was used as the reference in logistic 
regression. Haplotypes J and MI-1 were found only in 
CWD non-detected deer, precluding them from analy-
sis. Haplotypes C (OR = 0.488, 95% CI = 0.321–0.730, P 
< 0.001) and F (OR = 0.122 and 95% CI = 0.007–0.612, 
P < 0.05) were less likely to be found in deer infected 
with CWD (Table 2).

We identified 49 diplotypes with AB being the most 
common (n = 89) and used this as the reference in 
logistic regression. Twenty-four diplotypes were found 
only in positive or non-detected deer, precluding them 
from analysis. Of the remaining 25 diplotypes, BC 
(OR = 0.340 and 95% CI = 0.154–0.709, P < 0.01) was 
less likely to be found in deer infected with CWD 
(Table 3).

Three genotypes at aa96 were observed; aa96GG was 
most common (n = 387) and was used as the reference 
in logistic regression. aa96GS was less likely to be found 
in deer infected with CWD (OR = 0.360 and 95% 
CI = 0.227–0.556, P < 0.001; Table 4; Figure 2); how-
ever, we did not detect a reduced likelihood of infection 
for homozygous individuals (aa96SS). Two genotypes at 

aa95 were observed, aa95QQ was most common (n 
= 552). No significant associations were seen for geno-
type at aa95 and CWD infection.

Among the case-controlled samples, the presence of 
one C haplotype or one serine at aa96 was confirmed to 
be associated with reduced CWD infection by 0.191 
(95% CI = 0.065–0.555, P < 0.01) and 0.182 (95% 
CI = 0.063–0.528, P < 0.01), respectively. As with the 
full dataset comparison, no evidence for protection was 
seen in homozygous CC or aa96SS individuals.

The ratio of haplotypes C and F, diplotype BC, and 
genotype aa96GS (associated with reduced susceptibil-
ity) relative to non-protective haplotypes, diplotypes 
and genotypes, respectively, were compared among 
the nine studied counties. Pairwise comparisons using 
Fisher’s exact tests failed to detect significant differ-
ences among counties in the distribution of protective 
genetic types after p-values were corrected for multiple 
comparisons.

Discussion

This is the first examination of PRNP variation for a 
wild white-tailed deer population in Michigan. We 
established baseline frequencies of PRNP genotypes, 
haplotypes, and diplotypes in nine known CWD-posi-
tive counties. We found aa96GS, haplotypes C and F, 
and diplotype BC to be less frequent in CWD-positive 
deer, consistent with other studies [22, 24–27, 29–35]. 
The results of our analyses of paired samples control-
ling for potential confounding variables of age, sex, and 
harvest location further reinforce the finding of an 
association between haplotype C and the presence of a 
serine at aa96 with reduced vulnerability to CWD. 
While the C haplotype and aa96S were less frequent 
in CWD-positive deer, we did not find evidence to 
support a reduced vulnerability to CWD for homozy-
gotes. Previous work has also failed to detect a reduced 
likelihood of infection among aa96SS individuals [22]. 
In the current study, this could be indicative of a 
biological process due to strain type, or an artefact of 
the low prevalence of aa96SS reducing our power to 
detect an effect. To account for strain-type differences, 
these results should be used to target aa96GG, aa96GS, 
and aa96SS CWD-positive individuals for inclusion in 
strain-type assessments. And with increased sampling 
over time we may produce a greater proportion of 
aa96SS individuals for evaluation.

Annual apparent CWD prevalence between 2015 
and 2019 varied across the 9 positive counties with 
the highest prevalence of 1.95% seen in Kent county 
in 2019 (Table 5). We found no statistically significant 
differences in PRNP genotype or haplotype frequencies 

Table 2. PRNP haplotype frequency (f) and count for chronic 
wasting disease positive (+) and non-detected (-) white-tailed 
deer (Odocoileus virginianus) from 9 CWD-positive Michigan 
counties. Odds ratios and 95% confidence intervals are shown 
for significant variables (P < 0.05) determined by logistic regres-
sion against the most frequent haplotype, B. Asterisks indicate 
haplotypes found in only positive or non-detected deer pre-
cluding them from analysis. Bolding indicates previously unre-
ported haplotypes.

Haplotype f (+) (-) P-val Odds Ratio

A 0.239 100 171 0.682 -
B 0.324 130 238 - -
C 0.167 40 150 <.001 0.488 

(0.321–0.730)
D 0.085 33 64 0.811 -
E 0.068 32 45 0.302 -
F 0.014 1 15 0.043 0.122 

(0.007–0.612)
G 0.034 8 31 0.068 -
J* 0.003 0 3 - -
K 0.020 12 11 0.109 -
MI-1* 0.001 0 1 - -
MI-2 0.015 3 14 0.147 -
O 0.023 9 17 0.942 -
OVC1 0.007 2 6 0.549 -
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across these counties suggesting that, within the current 
known distribution of CWD in Michigan, infection 
vulnerability based on PRNP is relatively homogeneous. 
Given that deer in some counties in Michigan seem to 
have higher CWD prevalence than others, it will be of 
interest to monitor the potential selective impacts of 
CWD across these areas. While no PRNP types have 
been associated with complete resistance, the presence 
of aa96S has been associated with slower disease pro-
gression and longer survival post-infection [30, 31]. 
Longer survival may provide deer with aa96S a selective 
advantange leading to changes in PRNP frequencies in 
wild populations over time [27]. Our data present the 
current localized prevalence of G96S (28.7%) as similar 
to studies in white-tailed deer in Wyoming [38] (20%), 
but higher than those in Illinois [33] (13.8%), and 
northern Illinois and southern Wisconsin [22] (11%). 
Our characterization of PRNP frequencies, presumably 
relatively early in the disease’s occurrence in Michigan, 
provides a baseline for monitoring selective effects of 
CWD on PRNP frequencies and white-tailed deer 
population characteristics over time and should be 
used in disease modelling efforts to map risk and rate 
of spread.

It is important to note some possible limitations to 
our study that point towards the need for future inves-
tigation. This assessment was a snapshot of polymorph-
isms restricted to a 625bp region from deer in a 
relatively small geographic area. Future work to 

Table 3. PRNP diplotype frequency (f) and count for chronic 
wasting disease positive (+) and non-detected (-) white-tailed 
deer (Odocoileus virginianus) from 9 CWD-positive Michigan 
counties. Odds ratios and 95% confidence intervals are shown 
for significant variables (P < 0.05) determined by logistic regres-
sion against the most frequent diplotype, AB. Asterisks indicate 
diplotypes found in only positive or non-detected deer preclud-
ing them from analysis.

Diplotype f (+) (-) P-val Odds Ratio

All Samples
AB 0.157 36 53 - -
BC 0.113 12 52 0.005 0.340 

(0.154–0.709)
BB 0.095 20 34 0.685 -
AC 0.072 12 29 0.222 -
AA 0.058 15 18 0.619 -
BD 0.056 14 18 0.745 -
AD 0.051 9 20 0.366 -
BE 0.049 13 15 0.576 -
CC 0.030 6 11 0.691 -
BG 0.026 5 10 0.603 -
CD 0.025 2 12 0.077 -
AE 0.021 3 9 0.31 -
EC 0.019 2 9 0.168 -
BK 0.018 5 5 0.563 -
AG 0.016 3 6 0.679 -
AO 0.016 4 5 0.816 -
CG* 0.014 0 8 - -
ED 0.014 5 3 0.239 -
BMI-2 0.012 1 6 0.202 -
CF* 0.012 0 7 - -
BO 0.012 1 6 0.202 -
DD 0.011 1 5 0.273 -
AMI-2 0.009 2 3 0.984 -
EE 0.009 3 2 0.398 -
AF* 0.007 0 4 - -
BOVC1 0.007 2 2 0.705 -
CO* 0.007 0 4 - -
CK* 0.007 0 4 - -
BF 0.005 1 2 0.805 -
AOVC1* 0.005 0 3 - -
AJ* 0.004 0 2 - -
Ak 0.004 1 1 0.787 -
CMI-2* 0.004 0 2 - -
EK 0.004 1 1 0.787 -
EO* 0.004 2 0 - -
GG* 0.004 0 2 - -
KO* 0.004 2 0 - -
BJ* 0.002 0 1 - -
DK* 0.002 1 0 - -
DO* 0.002 0 1 - -
EF* 0.002 0 1 - -
EG* 0.002 0 1 - -
EOVC1* 0.002 0 1 - -
EMI-2* 0.002 0 1 - -
GMI-2* 0.002 0 1 - -
GO* 0.002 0 1 - -
KK* 0.002 1 0 - -
CMI-1* 0.002 0 1 - -
FMI-2* 0.002 0 1 - -
Paired Control Sampling
AA 0.059 5 1 0.321 -
AB 0.225 14 9 - -
AC 0.108 6 5 0.726 -
AD 0.059 2 4 0.24 -
AE 0.01 1 0 - -
AK 0.01 1 0 - -
AOVC1* 0.01 0 1 - -
AMI-2 0.01 1 0 - -
AO 0.01 1 0 - -
BB 0.078 6 2 0.476 -
BC 0.137 2 12 0.011 0.107 

(0.014–0.510)
BD 0.02 1 1 0.765 -
BE 0.059 4 2 0.795 -

(Continued )

Table 3. (Continued). 

Diplotype f (+) (-) P-val Odds Ratio

BG 0.02 2 0 - -
BK 0.01 1 0 - -
BMI-2 0.01 1 0 - -
BO 0.01 0 1 - -
CC 0.029 1 2 0.382 -
CD 0.039 0 4 - -
CK 0.01 0 1 - -
CMI-1 0.01 0 1 - -
DD 0.01 0 1 - -
EC 0.01 0 1 - -
ED 0.01 1 0 - -
EE 0.029 1 2 0.382 -
MI-2 F 0.01 0 1 - -

Table 4. PRNP genotype frequency (f) and count at codons 95 
and 96 for chronic wasting disease positive (+) and non- 
detected (-) white-tailed deer (Odocoileus virginianus) from 9 
CWD-positive Michigan counties.

Codon Genotype f (+) (-) P-val Odds Ratio

95 QQ 0.972 184 368 - -
QH 0.028 1 15 0.052 0.133 

(0.007–0.665)
96 GG 0.681 149 238 - -

GS 0.287 30 133 <0.001 0.360 
(0.227–0.556)

SS 0.032 6 12 0.66 -
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monitor frequencies of haplotype C, aa96S, and any 
new informative polymorphisms outside of the 625bp 
region will help inform disease impact, possible selec-
tion within the population, and target regions for spe-
cial management attention. Additional assessments of 
genetic connectivity among deer in the CWD-positive 
regions would also inform delineation of management 
areas.

Surveillance is currently being used as the leading 
indicator to inform CWD management in wild deer 
populations, and while beneficial, surveillance is costly, 
limited in scope, and is not in itself a management tool. 
As CWD detections continue to increase the areas 
under surveillance, the use of regionally specific data 
to allocate testing efforts and funding will be pivotal for 
success. Identification of PRNP polymorphisms asso-
ciated with reduced vulnerability to CWD and their 

spatial distribution and prevalence may help managers 
design surveillance programmes to identify and prior-
itize areas for CWD management when partnered with 
movement data and anticipated deposition of prions 
onto the landscape over time.

Materials and methods

Sampling

Medial retropharyngeal lymph nodes were collected 
from white-tailed deer by Michigan Department of 
Natural Resource staff during routine disease surveil-
lance between April 2015 and January 2020 from 9 
CWD-positive Michigan counties. Sex, harvest location, 
and age, as assessed by tooth wear and replacement, 
were collected from all sampled deer. Samples were 

Figure 2. Proportion of PRNP amino acid 96 genotypes of white-tailed deer (Odocoileus virginianus) from 9 CWD-positive Michigan 
counties.
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stored at −20°C or −80°C until prepared for DNA 
extraction.

Subsampling within each county for this study 
represented: 1) CWD-positive deer; 2) CWD non- 
detected deer; and 3) and additional CWD non- 
detected paired controls. Sampling aimed to obtain 
three individuals from unique sections (2.6 km2) in 
each township (93 km2) for CWD non-detected ani-
mals. To control for factors known to be associated 
with CWD infection probability, paired controls were 
identified for a subset of CWD-positive deer by match-
ing a CWD-positive deer to a CWD non-detected deer 
of the same age, sex, and harvest location. Due to the 
already small sample size for paired controls, we were 
unable to control for background relatedness as done 
previously [42].

Samples were collected within a short period of time 
that led us to assume relatively similar exposure to 
CWD between paired case-controls and CWD-positive 
and CWD non-detected deer.

CWD diagnosis

All animals were tested for CWD using a USDA 
approved enzyme-linked immunosorbent assay to 
detect PrPCWD at either the Michigan (East Lansing, 
MI) or Wisconsin (Madison, WI) Veterinary 
Diagnostic Laboratory. Confirmation by immunohisto-
chemistry was done by the diagnostic laboratories or by 
the National Veterinary Services Laboratory (Ames, 
IA). Sampling did not allow for the assessment of dis-
ease stage in different tissue types; however, the use of 
lymph tissue, where PrPCWD deposition first occurs, 

reduced the chance that false negatives might impact 
these results [23].

Prnp sequence analysis

Genomic DNA was isolated from lymph node tissue 
using Qiagen DNeasy Blood and Tissue Kits (Qiagen 
Inc., Valencia, CA) following manufacturer’s guidelines 
with a final elution volume of 200uL in Buffer AE.

The PRNP gene was amplified using a primer pair 
specific for the functional gene (223 5ʹ-acaccctctttattttg-
cag-3ʹ and 224 5ʹ-agaagataatgaaaacaggaag-3ʹ) [36]. PCR 
amplicons were purified using ExoSAP-IT (Applied 
Biosystems, Foster City, CA) and products were 
sequenced using the Big Dye Terminator system 
(Applied Biosystems, Foster City, CA). Sequence pro-
ducts were purified using ethanol/EDTA precipitation 
and resolved on an ABI 3500.

Sequences were visualized and edited in 
SEQUENCHER (Gene Codes Corporation, Ann 
Arbor, MI). Re-sequencing was done until regions of 
variability were confirmed three times. Haplotypes 
were generated from unphased sequences using DNA 
Sequence Polymorphism 5.10.01 (Rozas et al., 
Universitat de Barcelona). Markov chain Monte Carlo 
(MCMC) samples were taken from a minimum of 1,000 
iterations, with a discarded burn-in of 100 iterations. 
Previously published haplotype sequences [22, 43] were 
uploaded from NCBI and a local BLAST was run to 
match phased sequences to published haplotypes.

Phased sequences were translated in SEQUENCHER 
to their amino acid composition for final reporting.

Statistical analyses

We used logistic regression to identify associations 
between CWD status and haplotype, diplotype, and 
aa95 and aa96 genotypes. Chronic wasting disease sta-
tus was a binomial variable with CWD-positive deer 
coded as 1 and non-detected deer coded as 0. Genetic 
data were treated as categorical variables. The most 
common genetic type was used as the reference type 
in each analysis. Genetic types significantly associated 
with CWD status were those with P-values ≤ 0.05. 
Odds ratios (ORs) and associated 95% confidence inter-
vals were also calculated. Odds ratios with 95% con-
fidence intervals that did not include one were 
considered significant. Genetic types with significant 
ORs less than one were interpreted as exhibiting 
reduced susceptibility to CWD.

To further explore associations between CWD status 
and genetic type while controlling for other factors that 
might affect CWD status (eg, age, sex, location), 

Table 5. Apparent prevalence of chronic wasting disease in 
white-tailed deer (Odocoileus virginianus) from 9 CWD-positive 
Michigan counties. Number in parentheses corresponds to total 
number of animals tested for the year in the given county.

County 2015 2016 2017 2018 2019 Total

Clinton 0.19% 
(1038)

0.07% 
(2716)

0 (2843) 0.06% 
(1737)

0 (908) 0.05% 
(9242)

Dickinson - 0 (144) 0 (212) 0.14% 
(716)

0 (553) 0.06% 
(1625)

Eaton 0 (138) 0 (432) 0 (589) 0.13% 
(744)

0 (528) 0.04% 
(2431)

Gratiot 0 (28) 0 (49) 0 (144) 0.09% 
(1146)

0.29% 
(1045)

0.17% 
(2412)

Ingham 0.14% 
(2147)

0.09% 
(2110)

0 (2038) 0 (1599) 0 (824) 0.06% 
(8718)

Ionia 0 (18) 0 (300) 0 (899) 0.10% 
(1928)

0.21% 
(958)

0.10% 
(4103)

Jackson 0 (17) 0 (53) 0 (46) 0.13% 
(1546)

0.41% 
(1713)

0.27% 
(3375)

Kent 0 (3) 0 (21) 1.83% 
(546)

0.59% 
(1526)

1.95% 
(871)

1.21% 
(2967)

Montcalm 0 (16) 0 (48) 0.93% 
(3772)

1.12% 
(4009)

1.84% 
(1961)

1.18% 
(9806)

0.15% 
(3405)

0.07% 
(5873)

0.41% 
(11,089)

0.41% 
(14,951)

0.69% 
(9361)

0.41% 
(44,679)
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conditional logistic regression was used to identify 
associations between CWD status and genetic types 
for matched case-control pairs. The lesser number of 
available pairs (n = 51) limited the analyses we could 
conduct. Based on findings from the analyses described 
above as well as previous studies, we tested for associa-
tions between CWD status and presence of a C haplo-
type, CC genotype, and presence of at least one serine 
at aa96 using the clogit function in the survival package 
[44] in R [45] (version 3.6.1). We coded CWD status as 
described above. We did not assess haplotype F as only 
one available deer pair had a F haplotype. Significance 
was interpreted as described above.

We assessed differences in the frequency of presum-
ably protective haplotypes, diplotypes, and genotypes 
among the 9 counties where CWD had been identified 
using Fisher’s exact tests.
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