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With several US Food and Drug Administration (FDA)-approved drugs and high barriers to resistance,
nucleoside and nucleotide analogs remain the cornerstone of antiviral therapies for not only
herpesviruses, but also HIV and hepatitis viruses (B and C); however, with the exception of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which vaccines have been developed at
unprecedented speed, there are no vaccines or small antivirals yet available for (re)emerging viruses,
which are primarily RNA viruses. Thus, herein, we present an overview of ribonucleoside analogs
recently developed and acting as inhibitors of the viral RNA-dependent RNA polymerase (RdRp). They
are new lead structures that will be exploited for the discovery of new antiviral nucleosides.
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Nucleoside analogs against DNA viruses
Nucleoside analogs remain the cornerstone of antiviral therapy,
with more than 30 drugs approved over the past 50 years.1,2 5-
Iodo-20-deoxyuridine (IDU), discovered by W. Prusoff in 1959,3

is considered to be the first antiviral active against herpes simplex
virus (HSV). Subsequently, the discovery in 1971 by G. Elion of
acyclovir [9-(2-hydroxyethoxymethyl) guanine], an anti-HSV
antiviral, was a major breakthrough because acyclovir was (and
still is) the only highly selective antiviral drug with little or no
adverse effects on uninfected human cells.4 The discovery of
HIV during the 1980s as the causative agent of AIDS, as well as
of 30-azidothymidine (AZT, zidovudine) have driven the synthe-
sis of numerous nucleoside analogs and their chemistry.5 These
nucleosides include: 20,30-dideoxynucleosides (ddNs), such as
D4T (stavudine) against HIV; some L-analogs, such as L-dT (tel-
bivudine) against HBV, and 3TC (lamivudine) and FTC (emtric-
itabine) against HIV; and some carbocyclic analogs of
nucleosides (carbanucleosides), such as carbovir and its prodrug
abacavir (ABC) against HIV and entecavir against HBV (Fig. 1).
A. Holy and E. De Clercq pioneered a second generation of
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antiviral nucleosides,6,7 called acyclic nucleoside phosphonates
(ANPs), which are a major class of antivirals. Three of these have
a broad antiviral spectrum against several DNA and RNA viruses
and retrovirus: cidofovir (HPMPC) was particularly effective
against herpesviruses [e.g., cytomegalovirus (CMV), HSV-1 and
HSV-2, Varicella zoster virus (VZV)]; adefovir (PMEA) and its bis(-
POM)-prodrug (adefovir dipivoxil) against HBV; and tenofovir
(PMPA) and its bis(POC)-prodrug (tenofovir disoproxil) and teno-
fovir alafenamide against HIV and HBV (Fig. 1).
General mechanism of action of nucleosides
Nucleoside analogs (and acyclic nucleoside phosphonates) gen-
erally act in their 50-triphosphorylated form and target viral
DNA/RNA polymerase and HIV reverse transcriptase, thereby
preventing the formation of viral nucleic acid. However, if the
nucleoside triphosphate is the active form, it cannot cross the
cell membrane because it is negatively charged; thus, one uses
parent nucleosides that, after penetration into the cell, are then
transformed into analogs of nucleoside triphosphate by three
successive phosphorylations (Nu? NuMP? NuDP? NuTP)
www.drugdiscoverytoday.com 1945
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FIGURE 1
Chemical structures of antiviral nucleosides. This includes nucleoside analogs (IDU, AZT, D4T, L-dT, 3TC, FTC), carbocyclic nucleoside analogs (ABC and
entecavir) and acyclic nucleoside phosphonates (PMEA, HPMPC, and PMPA) and their prodrugs [bis(POM)PMEA, bis(POC)PMPA, and tenofovir alafenamide].
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catalyzed by various nucleoside and nucleotide kinases in the
host cell or from some viruses (Fig. 2).8

However, both the first phosphorylation step and the penetra-
tion of Nu or NuMP into the cell remain the limiting steps; as a
result, some nucleosides might appear inactive whereas their
triphosphates inhibit the viral polymerase. To address these lim-
itations, kinase bypass strategies have been developed that
involve the direct delivery of phosphorylated nucleosides into
cells.9–12 To mask the negative charges of the phosphate moiety
and increase cellular penetration while maintaining a good solu-
bility in physiological fluids, various biolabile phosphate protect-
ing groups have been developed. Nucleoside monophosphate is
then released by enzymatic or intracellular chemical degradation
of the biolabile groups by various enzymes, such as reductases,
carboxylesterases, and cytochrome P450, allowing targeting to
specific organs. Many biolabile groups have been developed to
date, such as cycloSal, Hept-direct, nitrofuranylmethyl amidate,
bisdithioethanole (DTE), and bis(S-acyloylthioethyl) (SATE)
(Fig. 3). They have their own characteristics (stability, mecha-
nism of release, polarity, solubility, etc.) that guide their use.
Although some of these nucleoside prodrugs have entered clini-
cal trials, none have been approved to date.

Other prodrugs, such as bis(POM) and bis(POC), which were
mainly applied to ANP, led to marketed antiviral nucleosides
(Fig. 4). Furthermore, the ProTide technology, based on triester
aryloxy phosphoramidate prodrugs, invented by C. McGuigan
in 1990,13–16 has been successfully applied to various nucleoside
analogs, including the marketed antiviral drugs sofosbuvir, teno-
fovir alafenamide, and remdesivir, with generally increased
1946 www.drugdiscoverytoday.com
antiviral activity compared with the parent nucleoside. This is
a versatile method because variations can be made at the ester
(R), amino acid (R0) and aryl moieties. In addition, the chirality
at the phosphorus (Rp or Sp) is also important for the antiviral
activity.

Once incorporated into the growing viral nucleic acid, if a
nucleoside lacks the 30-OH group (such as AZT, D4T, 3TC, PMEA,
or PMPA), they inhibit chain elongation and act as (obligate)
chain terminators. However, some nucleosides that still have a
30-OH group (such as entecavir, L-dT, IDU, and HPMPC) can also
inhibit chain elongation, but only after several incorporations
that result in changes in the structure of viral nucleic acid and
a pause in its synthesis; these compounds are referred to as ‘de-
layed chain terminators’.
(Re)emerging RNA viruses: A new threat
The continuous growth of the human population, as well as
human interactions with wild environments, have resulted in
several emerging and re-emerging RNA viruses responsible for
highly lethal viral diseases and pandemics.17–20 This includes
not only SARS-CoV (2002, global), but also DENV (2002, 2010,
2019 Americas and 2013, Southeast Asia), Chikungunya (2005,
India and 2014, Americas), Rift valley fever (2007, East Africa),
H1N1 influenza (2009, global), Middle East respiratory syndrome
coronavirus (MERS-CoV, 2012, Middle East), Ebola virus (2013,
West Africa and 2018, Africa), Zika virus (2015, pan-Americas),
Yellow fever (2014, Africa), Nipah virus (2018, India), and, more
recently, the SARS-CoV-2 virus (2019, worldwide).21–23 Most
RNA viruses are often zoonotic or vector-borne infectious agents
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FIGURE 2
Main mechanism of activation of antiviral nucleosides by various nucleoside and nucleotide kinases. After cell penetration, the nucleoside is converted by
nucleoside kinases (dN kinases) to its monophosphate, then to the diphosphate by nucleoside monophosphate kinases (NMP kinases) and finally to the
triphosphate by nucleotide diphosphate kinase (NDP kinases). Adapted from.8
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FIGURE 3
Examples of kinase bypass strategies applied to deliver antiviral nucleosides as their monophosphate prodrug analogs.
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with natural reservoirs, such as chimpanzees for HIV, bats for
MERS-CoV and SARS-CoV, fruit bats and primates for Ebola,
human H1N1, and swine flu.24–26 Approximatively two or three
new RNA viruses are discovered each year, which can be a major
public health challenge because their rates of spread and muta-
tion are often higher than those of DNA viruses.27–29 With the
exception of SARS-CoV-2, for which vaccines are now available,
there are no vaccines or antivirals for most other RNA viruses.

Nevertheless, several lessons learned from the fight against
chronic DNA viral infections will help in designing novel antivi-
ral nucleosides against RNA viruses: first, long-term antiviral
therapy produces dominant strains of resistant mutants (even
though nucleoside analogs have a high barrier to drug resis-
tance).30 Additionally, inhibition of virus metabolism has a
direct impact on host cells. From a chemical point of view,
research on antiviral nucleosides has benefited from a better
understanding of their mode of action (either by acting directly
on viral polymerases or based on interference of cellular
enzymes), from their structure per se (conformation, stereoselec-
tivity, and phosphonate and phosphate prodrugs), and their
metabolisms and interactions with target viral proteins; further-
more, some structural requirements for the antiviral activity of
nucleosides have been established.31–33 Nucleobase modifica-
tions have also been extensively explored,34 and it appears that,
for enzymatic incorporation of nucleosides, modifications at C5
of pyrimidine, and at C7 of purines are tolerated35 as long as they
maintain Watson–Crick base pairing. Other sugar or nucleobase
modifications have also been correlated with antiviral activi-
ties,36 and docking studies have helped to understand the inter-
action of some ribonucleosides with the RdRp of RNA viruses.37

The search for broad-spectrum antivirals is the preferred strat-
egy for inhibiting viral replication of RNA viruses. Indeed, they
www.drugdiscoverytoday.com 1947
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FIGURE 4
Relevant prodrugs, including ProTide technology, applied to marketed antiviral nucleosides.
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all have a relatively conserved RdRp,38–40 which is a key viral
enzyme and, thus, represents the main therapeutic target
(Fig. 5).41–44 However, most viral RNA replicases lack proofread-
ing activity (via an exonuclease), except coronaviruses,45 leading
to many errors during the replication process.46,47 Thus, RNA
viruses can not only become resistant, but also escape vaccine-
induced immunity. 48

Therefore, viral infections caused by RNA viruses can be trea-
ted with inhibitors of nucleic acid synthesis or those that induce
lethal mutagenesis by a high rate of viral mutations.49,50 Given
that no homolog of RdRp has been found in human cells and
the extensive knowledge of its function, it is an important target
for the discovery of new nucleoside analogs against RNA
viruses.51–53
Nucleoside and nucleotides analogs against RNA
viruses
Sofosbuvir, a uridine nucleotide prodrug, is one of the most suc-
cessful discoveries of an RdRp inhibitor, now used in the treat-
FIGURE 5
Percentage similarity of RNA-dependent RNA polymerases of various RNA viruse
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ment of HCV. However, compared with the antiviral
nucleoside analogs approved against DNA viruses, only a few
nucleoside analogs and nucleobases have been developed against
RNA viruses so far. Therefore, we discuss the structural features
and mechanisms of action of selected antiviral nucleoside ana-
logs acting against RNA viruses (Fig. 6).
Ribavirin
Ribavirin (RBV) is a unique ribonucleoside, first synthesized in
1970 at ICN pharmaceuticals, which bears a 1H-1,2,4-triazole-
3-carboxamide moiety as nucleobase. This ‘old’ antiviral com-
pound is a broad-spectrum agent, active against various DNA
and RNA viruses.54–58 It has been clinically approved together
with IFN-a not only as an HCV treatment, but also for treating
infections caused by respiratory syncytial virus, adenovirus, han-
tavirus and some hemorrhagic fever viruses (Lassa, Congo). RBV
has several mechanisms of action; RBV monophosphate (RBV-
MP) can first inhibit the inosine monophosphate dehydroge-
nase, which is involved in the de novo synthesis of purine nucleo-
tides (IMP and GTP). This results in the depletion of intracellular
Drug Discovery Today

s. Adapted from.51 For definitions of abbreviations, please see the main text.
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FIGURE 6
Structure of antiviral nucleosides inhibitors of RNA-dependent RNA polymerases of RNA viruses.
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GTP and, thus, has a direct impact on both cell and viral replica-
tion. An immunomodulatory activity of RBV was also suggested
(increase in T helper lymphocyte activity). The 50-triphosphate
form of RBV (RBV-TP) can directly inhibit the RdRp of RNA
viruses. In addition, ribavirin can interfere with the formation
of the 50 cap structure of viral mRNA, probably by inhibiting gua-
nyl transferase and methyltransferase. Finally, ribavirin could
enhance viral mutagenesis by substitution of RTP for GTP,
because most RdRps lack proofreading abilities, which could
explain why RBV is not used in the clinic as widely as one might
expect. However, overall, RBV remains a potential important
drug for the treatment of (re)emerging viruses.

Sofosbuvir discovery
Sofosbuvir was discovered in 2007 by M. Sofia at Pharmasset
through in-depth investigation of the impact of structural mod-
ifications at the C20 position of ribofuranose [e.g., by 20-methyl
and 20-fluoro modifications (direct impact on the 30-endo confor-
mation)] on antiviral activity. It was approved by FDA in 2013 for
the treatment of chronic HCV infection.59 HCV belongs to the
large Flaviviridae family, which includes hepaciviruses (e.g.,
HCV) and flaviviruses [e.g., Yellow fever, Dengue (DENV), West
Nile (WNV), and Zika viruses), all of which are important threats
to human health.60 Sofosbuvir is the 20-b-methyl analog of the 20-
a-fluorouridine 50-monophosphate containing a phosphoroami-
date moiety where R0 = L-alanine, R = isopropyl ester, and aryl = -
phenyl (Fig. 4).61,62 Sofia determined that the Sp isomer
(EC90 = 0.42 lM) was tenfold more active than the Rp isomer
(EC90 = 7.5 mM), with no cytotoxicity (up to 100 lM). After cell
penetration, the prodrug is cleaved by host enzymes and chem-
ical hydrolysis, releasing sofosbuvir-50-monophosphate, which
is then converted by various host kinases to its active metabolite,
resulting in high levels of the triphosphate analog in the liver.
Sofosbuvir is a chain terminator.
Other 20-alkylated ribonucleoside analogs
While working on the discovery of sofosbuvir, Sofia and others
explored important structural features of this molecule.63 For
instance, the presence of 30-OH in the a-orientation is required,
whereas some modifications at the 20 position by either a a-
fluorine or a a-OCH3 are tolerated. Thus, other 20-methyl-
ribonucleosides were developed either as nucleosides or as pro-
drugs. For instance, 20-methylcytidine, 7-deaza-20-
methyladenosine exhibited antiviral potency against various
other (+) single-stranded (ss)RNA viruses. In general, 20-methyl
ribose-modified nucleosides and their prodrugs are more potent
against (+)ssRNA viruses than against (�)ssRNA viruses. AT-527
is a purine nucleotide prodrug, developed by Atea Pharmaceuti-
cals against Coronavirus 2019 (COVID-19).64 It is a salt formed
at the nucleobase moiety (0.5 H2SO4), which, after dissolution,
allows the release of AT-551 (free base form of AT-527). AT-551
then acts as a substrate for cathepsin A, carboxylesterase 1
(CES1), and several other enzymes, and is finally converted to
www.drugdiscoverytoday.com 1949
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AT-9010, the active triphosphate metabolite.65 Unfortunately, it
recently failed in a Phase II COVID-19 clinical trial.

10-Cyano and 40-azido-substituted nucleosides, including
remdesivir and R1479
Other modifications were explored at the 10- and 40-positions of
the ribose moiety. For instance, 10-methyl- and 10-fluoromethyl-
led to compounds with little or no activity.66,67 Other analogs
were designed in which the N in the glycosidic bond was
replaced by a carbon, leading to the development of 10-
substituted C-nucleosides.68 These compounds are not substrates
of N-glycoside hydrolases and phosphorylases, which cleave par-
ent nucleosides. GS-441524, discovered by Gilead from screening
libraries of nucleoside analogs, is a C-nucleoside adenosine ana-
log bearing a 10-CN group.69 Its phosphoramidate pronucleotide
analog (remdesivir), originally developed against Ebola virus, has
broad-spectrum antiviral activity against various RNA viruses,
including Lassa fever virus, Nipah virus, and coronaviruses. It is
an inhibitor of RdRp, which evades proofreading by viral exori-
bonuclease (ExoN), and acts as a RNA chain terminator (delayed
chain terminator). Remdesivir is approved by the FDA for the
treatment of COVID-19 in selected patients. It was found from
various 10-modifications (methyl, vinyl, and ethynyl) that the
10-CN modification led to more a potent antiviral. Docking stud-
ies of the 50-triphosphate form of remdesivir into viral RdRp
revealed a unique pocket in the protein where the 10-cyano group
binds (with Asp865-Lys593); this might explain why 10-cyano
analogs are selective for viral polymerases and stable to the viral
exonuclease.70,71

Similar small modifications were also introduced at the C40

position of the ribosyl to modify the sugar pucker from the
northern conformation ‘C30-endo/C20-exo’ to the southern
‘C20-endo/C30-exo’ one. Several 40-fluorine and 40-methyl analogs
in a series of riboses and 20-deoxyriboses, as well as their prodrugs
with little or no antiviral activity, were designed. The 40-
azidocytidine (R1479 developed by Roche) is an inhibitor of
RdRp from HCV (IC50 = 1.28 lM), but is also active against
DENV, henipaviruses, and respiratory syncytial virus.72 Balapi-
ravir, its O-acylated prodrug, was effective against HCV, but
was less potent than sofosbuvir and, thus, its development was
halted. Interestingly, 40-azido-aracytidine (RO-9187) was not
only a potent anti-HCV analog (IC50 = 0.171 lM), but also an
effective inhibitor of tick-borne encephalitis virus (EC50

0.3 lM). 73

Heterocyclic base-modified nucleosides, including molnupiravir
and favipavir
Among current efforts to develop antivirals agents against RNA
viruses, nucleosides analogs bearing modifications at the base
moiety represent an important class of drug candidates. Favipi-
ravir (T-705), a pyrazine analog (6-fluoro-3-hydroxy-2-pyrazine
carboxamide), developed by the Toyama Chemical Company,
is a potent RNA polymerase inhibitor. It is used in Japan to treat
influenza viruses [A(H1N1)pdm09, A(H5N1), and A(H7N1)] and
has shown excellent results against oseltamivir-resistant
viruses.1,74 Favipiravir also exhibits efficient antiviral effects
against other (+)ssRNA and (�)ssRNA strand viruses, such as filo-
viruses (Ebola), arenaviruses, noroviruses, bunyaviruses, toga-
1950 www.drugdiscoverytoday.com
viruses, hantaviruses, and flaviviruses.75 The activation
mechanism whereby it exert its antiviral activity requires its con-
version to favipiravir ribofuranosyl 50-triphosphate from (T-705
RTP) by cellular enzymes in host cells. Favipiravir-RTP is recog-
nized as a purine analog and is incorporated selectively into
RNA extensions by viral polymerase (not human DNA poly-
merase), acting as antiviral lethal mutagen.76 Favipiravir could
be repurposed for the treatment of moderate COVID-19 (Phase
III clinical trials), although adverse events have been
reported.77–79

Molnupiravir (MK-4482), a b-D-N4-hydroxycytidine 50-
isopropylester prodrug, developed by Merck, is active against a
broad spectrum of RNA viruses. During RNA synthesis through
RdRp, molnupiravir is incorporated in place of cytidine or uracil,
leading to mutated RNA products. Thus, this molecule inhibits
viral replication via a lethal mutagenesis mechanism, resulting
in the accumulation of mutations beyond the replication fidelity
required for viability.80,81 Molnupiravir was approved in the UK
in November 2021 for the treatment of COVID-19 by oral admin-
istration and received FDA emergency use authorization in
December 2021.82,83 Molnupiravir also inhibits the replication
of influenza viruses and respiratory syncytial viruses,84 Venezue-
lan equine encephalitis virus,85 Chikungunya virus,86 and Ebola
virus,87 and confers minimal cytotoxicity with genetic barriers to
resistance.

Among the nucleosides modified at the base moiety, 7-deaza-
adenosine analogs represent an emerging class for the develop-
ment of new antivirals. Modifications of the ribose moiety by
methyl at 20-position (7-deaza-20-C-methyladenosine, MK-608)
and its fluorine derivative exhibit anti-HCV activity at submicro-
molar concentrations.88,89 Since 2011, Hocek’s group has
reported various 7-substituted 7-deazaadenine ribonucleosides,90

which were converted in their 50-O-triphosphate form. They
both inhibit the RdRp of Zika virus, Japanese encephalitis virus,
and West-Nile virus. The nucleosides were then transformed into
their prodrug forms [such as phosphoramidates, mono-SATE,
and bis(SATE)], with micromolar or submicromolar antiviral
activities. The bulkier aryl substituents were found to be less
active with micromolar activities, but lower cytotoxicity. Surpris-
ingly, the conversion in the prodrug forms of the corresponding
nucleosides did not increase the antiviral activities or decrease
the cytotoxicity, which might suggest unconventional nucle-
oside activation. With the emergence of RNA viruses and the lack
of approved drugs, 7-substituted-7-deazapurines represent an
important class of nucleoside analogs.

Imino-C-nucleosides, including galidesivir (BCX4430)
Immucilins are chemically stable C-nucleoside analogs in which
the O of the sugar ring is replaced by an NH, and have attracted
increased attention for drug discovery.91 They target the inhibi-
tion of purine nucleoside phosphorylase (PNP), a key enzyme
involved in purine metabolism. They mimic the transition state
of PNP (e.g., the ribooxocarbenium intermediate). Immucilin-A
(BCX4430, galidesivir) an adenosine nucleoside analog devel-
oped by BioCryst Pharmaceuticals, is broadly active against filo-
viruses and flaviviruses.92 After incorporation into the growing
viral RNA strand, it inhibits viral RdRp as chain terminator. Gali-
desivir is in development for the treatment of RNA viruses, such
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as SARS-CoV-2, Ebola virus, Marburg virus, and Yellow Fever
virus.93

Concluding remarks
RNA viruses are the causative agents of various pandemics,
including COVID-19. Only a few ribonucleoside analogs (sofos-
buvir, remdesivir, and molnupiravir) have been approved for
the treatment of RNA viruses as direct-acting antivirals. It is
expected that new structural details of RdRps from these RNA
viruses, as well as ligand-bound analyses, will help to design
new therapeutics. Given that RNA replication depends on a large
supply of NTP from the host cell, ribonucleoside analogs that
inhibit the de novo pathway might also lead to new antivirals.
Other important ribonucleoside analogs are currently being
explored, such as rigid amphipathic nucleosides, N6-aryl-
substituted purine analogs and new prodrugs, L-analogs, 50-
modified nucleosides, and fleximer analogs. Lessons learned
from DNA viruses as well as recent structural findings regarding
RdRp in RNA viruses could help design new broad-spectrum
nucleosides analogs through practical guidelines and facilitate
their clinical development. However, small modifications of
the nucleoside scaffold (sugar, nucleobase, or prodrug) can
impact their biological activities (gain and loss) in terms of bio-
logical and pharmacokinetics parameters, cellular uptake, and
so on. Thus, synthetic platforms should be used to develop
new and more complex ribonucleoside analogs and their pro-
drugs. In general, for both academic laboratories and pharmaceu-
tical industries, flow chemistry coupled with techniques used in
artificial intelligence will maximize the chances of discovering
new and potent antiviral nucleosides.

As recently stated by great discoverers and developers of
antiviral nucleosides: ‘Nucleosides: the best is still to come!!’
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