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Abstract: Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that
are generally divided in those with non-segmented and those with segmented genomes. Whereas
most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is
expanding, with many causing devastating diseases worldwide, affecting a large number of major
bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorga-
nization with the establishment of the order Bunyavirales. This article overviews the major plant
viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and
emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features
shared with the animal-infecting counterparts are mentioned, however, special attention is given to
their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and
viral counter defense to antiviral RNAi.

Keywords: Tospoviridae; Orthotospovirus; Phenuiviridae; Tenuivirus; Fimoviridae; Emaravirus;
Tomato spotted wilt virus; TSWV; Rice stripe virus; RSV; European mountain ash ringspot-associated
virus; EMARaV

1. Introduction

Negative-strand RNA viruses (NSVs) have historically been classified into two ma-
jor groups, those with non-segmented genomes (order Mononegavirales) and those with
segmented genomes. Plant viruses, although being a relative minority of NSVs, have
representatives in both groups within the families Rhabdoviridae and Bunyaviridae, and
several floating genera (Tenuivirus, Ophiovirus, Emaravirus, and Varicosavirus). The first
overview of the plant-infecting viruses among the NSVs was published a decade ago [1],
but research has progressed, new viruses have been discovered, floating genera have
been upgraded to the family level, and reverse genetics systems have been developed.
Furthermore, in 2018, the taxonomy of NSVs faced a major overhaul and reorganization
based on observed homology between the viral RNA-dependent RNA polymerases (RdRp)
with, amongst others (Table 1), the establishment of the new order Bunyavirales, including
the families Bunyaviridae and Arenaviridae and several newly established families. Within
the order there are three newly established plant virus families: Fimoviridae (an upgrade of
the Emaravirus genus), Phenuiviridae (siglum/merge and upgrade of the former Phlebovirus
and floating Tenuivirus genus into one family), and Tospoviridae (an upgrade of the former
genus Tospovirus, now Orthotospovirus, previously part of the former Bunyaviridae). The
establishment of these families within the order, and the merging of tenuiviruses and
phleboviruses, is supported by phylogenetic analyses (Figure 1). In addition to that, two
new genera have very recently been established within the Phenuiviridae, comprising new
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and distinct NSV plant viruses with segmented genomes, i.e., Coguvirus and Rubodvirus
(Table 1).

With this taxonomy update, latin binomials have also been introduced. However,
scientists have preferred species to be recognized as the primary subjects of virology, in
analogy to common practices elsewhere in biology [2].

In the following sections, a brief history and introduction to the families Tospoviridae,
Phenuiviridae, and Fimoviridae will be given, followed by a detailed description and update
on their molecular biology and replication cycle, as well as the role of non-structural
accessory proteins in host adaptation, transmission, and evolution. The overview will be
closed with some perspectives and challenges faced for the plant-infecting members of the
Bunyavirales.

1.1. Tospoviridae: Genus Orthotospovirus

It was not until the 1990s of the past century when Tomato spotted wilt virus (TSWV)
became recognized as the first plant-infecting virus of the Bunyaviridae, within the genus
Tospovirus (siglum from tomato spotted) [3]. At first, it was the sole species of the genus, but
with the development of molecular tools and diagnostics, the genus soon expanded and by
now has grown to almost 30 established and tentative species. Nowadays tospoviruses are
widely distributed and found in many agricultural, horticultural, and ornamental crops
(dicots and monocots) [4]. With the establishment of the order Bunyavirales, the genus
Tospovirus has been fully upgraded to the family Tospoviridae, which currently holds one
genus, Orthotospovirus.

Species demarcation relies on amino acid (aa) sequence identity (<90%) of one of its
major structural proteins, i.e., the nucleo(capsid) protein (N), with all other established
orthotospoviruses. Whereas this is the major demarcation criterium and led to the recogni-
tion of the two major American and Euro-Asian clades of orthotospoviruses, the species
are often biologically distinguished additionally by their host range and vector specificity.
Orthotospoviruses are transmitted in a persistent manner, in which the virus also replicates
in the insect vector thrips (Family Thripidae). Approximately 15 different thrips vectors have
been identified to transmit orthotospoviruses, although some have a limited geographical
distribution [4–6].

Although tomato spotted wilt disease was already reported more than 100 years ago
in Australia, it was not until the 1980s that TSWV rapidly spread due to the worldwide
expansion of Frankliniella occidentalis, the Western flower thrips, one of its major thrips
vectors [5,7]. Subsequently TSWV has become one of the most important and devastating
plant viruses worldwide [8], and many review papers have already appeared on orthoto-
spoviruses, often with special emphasis on certain issues such as the molecular biology,
host defense mechanisms, epidemiology, and vector transmission,. Readers are also re-
ferred to other articles for additional reading [4–6,9–12]. Although the sections further
below will generally speak on orthotospoviruses, most information is taken from studies
on TSWV, unless stated otherwise.
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Table 1. Taxonomy and classification of plant-infecting NSVs as of 2018. Only families and genera that contain the plant-infecting viruses are specified. The number of genome segments
is indicated in parentheses next to the genus name. The total number of currently established species and known vector species for the plant-infecting members of the Tospoviridae,
Phenuiviridae, and Fimoviridae, are indicated in parentheses next to the type species and their mode of transmission, respectively. All NSVs are currently assigned in the phylum
Negarnaviricota (for “negative RNA”) and subsequently split into subphyla Haploviricotina (for monopartite viruses) and the Polyploviricotina (for segmented viruses).

Negarnaviricota-
Subphylum Class Order Family Genus Containing

Plant-Infecting Members Type Species Natural Mode of
Transmission ****

Haploviricotina
Monjiviricetes

Mononegavirales
(11 families, 71 genera,

339 species)

Rhabdoviridae
(6/30 genera contain

plant-infecting viruses)

Alphanucleorhabdovirus (1) Potato yellow dwarf
virus Arthropods

Betanucleorhabdovirus (1) Sonchus yellow net virus Arthropods

Gammanucleorhabdovirus (1) Maize fine streak virus Arthropods

Cytorhabdovirus (1) Lettuce necrotic yellows
virus Arthropods

Dichoravirus (2) * Orchid fleck virus Arthropods

Varicosavirus (2) * Lettuce big-vein
associated virus

Plasmodiophorid
protists ***

Milneviricetes Serpentovirales Aspiviridae (formerly
Ophioviridae) Ophiovirus (4) Citrus psorosis virus

(CPsV)
Plasmodiophorid

protists

Polyploviricotina Ellioviricetes
Bunyavirales (12

families, 45 genera and
two unassigned genera)

Phenuiviridae (3/19
genera contain

plant-infecting viruses)

Tenuivirus (4-8) Rice stripe virus (8) Arthropods (14)

Coguvirus (2) ** Citrus concave
gum-associated virus (2) ND (Grafting) ****

Rubodvirus (3) ** Apple rubbery wood
virus (2) ND (Grafting) ****

Tospoviridae Orthotospovirus (3) Tomato spotted wilt
virus (26) Arthropods (15)

Fimoviridae Emaravirus (5-10)
European Mountain Ash
ringspot associated virus

(11)
Mites (6)

* Genera containing bi-segmented rhabdoviruses. The order Mononegavirales being defined for viruses with unsegmented genomes, might lead to their reclassification in the future. ** Coguvirus and Rubodvirus
are recently proposed genera with similarities to Phenuiviridae *** Plasmodiophorid protists are soilborne obligate biotrophic pathogens of higher plants. **** ND, not determined (many plant viruses, though,
can be transmitted also by mechanical inoculation or grafting).
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1.2. Family Phenuiviridae: Genus Tenuivirus

Tenuiviruses constitute the major plant-infecting members of the family Phenuiviridae.
Tenuiviruses have only been recognized as a plant virus group in the early 1980s, and at the
beginning of 1990s were still reported to possibly contain a negative RNA genome. At that
time, the group comprised five viruses: Rice stripe virus (RSV), Maize stripe virus (MStV),
Rice hoja blanca virus (RHBV), European wheat striate mosaic virus (EWSMV), and Rice grassy
stunt virus (RSGV). However, diseases caused by these viruses were already discovered
and described as early as 1890 (RSV), 1929 (MStV), and 1935 (RHBV) [13].

Nowadays, the genus Tenuivirus comprises eight species, most of them infecting
monocotyledonous hosts in the family Poaceae. RSV is the type species in the genus. Partial
or complete sequence data suggest that other viruses, notably Ramu stunt virus (RmSV)
affecting sugarcane in Papua New Guinea, and Maize yellow stripe virus detected on maize in
Egypt, are distinct tenuivirus species, and metagenomic analyses suggest that a tenui-like
virus may be present in the gymnosperm black spruce [14]. Tenuiviruses are transmitted by
delphacid planthoppers in a circulative-propagative manner [15]. They generally induce
the formation of white or yellow “stripes” in the leaves of infected plants, and they can
severely reduce crop yield [16]. Tenuivirus-like disease symptoms have been observed in
cereal crops for more than a century, whereas, in some of these cases, the role of a tenuivirus
as the disease agent has only recently been confirmed [13,15,17].

RSV and RGSV constitute important problems on rice in Asia; RHBV, Echinochloa hoja
blanca (EHBV) and Urochloa hoja blanca virus (UHBV) are present in the Americas only;
MStV is the most prevalent, affecting mostly maize, in Africa, Asia, Central America, and
Australia. Iranian wheat stripe virus has only been described in Iran. Melon tenuivirus (MeT)
and European wheat striate mosaic virus (EWSMV, a tentative species) are present in Europe
and have a minor agronomic impact. MeT differs from the other tenuiviruses because of its
atypical genomic organization, efficient mechanical transmission [14], and being the first
tenuivirus to infect dicotyledonous hosts.

1.3. Fimoviridae: Genus Emaravirus

Since the 1960s there have been reports of a ringspot disease in European mountain ash
in several European countries, but it was not until the 1990s that the putative causal agent, a
virus, was visualized using electron microscopy [18]. The virus, named European mountain
ash ringspot-associated virus (EMARaV), provided the name to the genus Emaravirus, a taxon
consisting of plant-infecting viruses. Emaraviruses have 5 to 10 genome segments. The
pleiomorphic, double membrane-bound particles have a diameter of 80–200 nm enclosing all
RNA segments that are bound by the N protein [19]. The most devastating viruses to natural
environments, landscapes, and agriculture include Pigeon pea sterility mosaic virus 1 (PPSMV-1),
European mountain ash ringspot associated virus (EMARaV), Rose Rosette virus (RRV), and High
Plains wheat mosaic virus (HPWMV) [20–22]. According to the ICTV, the genus comprises of
11 species, and peer reviewed literature searches identifies at least 18 more tentative species.
The majority of the species identified infect Rosid and Asterid Eudicots, i.e., deciduous trees
and shrubs [23]. Until now, only two species are known to infect monocots: HPWMV and
Ti-ringspot associated virus (TiRsAV) [24,25]. Continuing high throughput sequencing (HTS)
efforts by researchers globally has led to additional peer review reports of additional tentative
species. These recent and expanding discoveries of new virus species that are likely members
of the genus Emaravirus makes this an emerging genus whose global impact is not yet realized
at the ecological or agronomic level.
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Figure 1. Phylogeny of seven major families within Bunyavirales in terms of the RdRp. Displayed is an unrooted neighbor
joining (NJ) tree. Three families that include plant-infecting viruses are identified by green branches. The plant viruses of
Tospoviridae and Fimoviridae share closer relationship than plant-infecting members of Phenuiviridae. A more comprehensive
analysis of the family-level phylogenies within Bunyavirales is provided in Herath et al. [23].

2. Virion Composition, Genome Organization, and Intracellular Replication Cycle
2.1. Orthotospoviruses

Orthotospoviruses consist of spherical, membrane-bound virus particles of approxi-
mately 80–120 nm in diameter (Figure 2a). The lipid envelope contains two viral envelope
glycoproteins, Gn and Gc, that are produced by proteolytic processing from a glycoprotein
(GP) precursor (n and c referring to the amino and carboxyterminal position within the
precursor) and are instrumental in the acquisition and transmission by thrips vectors.
The core of the virus particle contains the viral ribonucleo(capsid) proteins (RNPs) that
consist of the viral RNA genome tightly enwrapped by nucleo(capsid) protein (N) and a
few molecules of the viral RNA-dependent RNA polymerase (RdRp, also refered to as L
protein) (Figure 2b,e).
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Figure 2. Transmission electron microscopy of TSWV particles ((a) courtesy of J. van Lent), TSWV ribonucleoproteins
(RNPs) (b), RHBV tenuivirus particles (c), Emaravirus particles ((d) courtesy of K.S. Kim), and a schematical presentation of
a viral ribonucleoprotein (RNP) (e). RdRp, RNA-dependent RNA polymerase (for tospoviruses also called L protein); N,
nucleo(capsid)protein; potential other host-factors. Panhandle formed by complementary termini, and acting as promoter
for replication–transcription, is shown in light gray at the position of the indicated N and RdRp. Size bar represents 100 nm
(modified from [1]).

The genome consists of three linear, single stranded (ss)RNA segments that, according
to their sizes, are denoted Large (L, ≈9 kb), Medium (M, ≈4.8 kb), and Small (S, ≈2.9 kb)
RNA (Figure 3). The L RNA is of entire negative polarity and encodes the RdRp (≈330 kDa)
on the viral complementary (vc) strand (vc) [26]. Both M and S RNA contain an ambisense
gene arrangement, i.e., encoding two non-overlapping reading frames (ORFs) on opposite
strands that are separated by a non-coding intergenic region (IR) [27,28]. The M RNA
encodes the non-structural cell-to-cell movement protein (NSm, ≈33 kDa) on the viral (v)
strand and the GP precursor (≈128 kDa) on the vc strand [28,29]. Likewise, the S RNA
encodes a second non-structural NSs protein (≈52 kDa) on the v-strand and the N protein
on the vc strand [27] (Figure 3)

The 3′ ends of both genomic v and vc-RNA strands are highly conserved with nine
nucleotides (3′-UCUCGUUA -5′) that are shared among all genomic elements of all or-
thotospoviruses. The 5′ end contains a highly conserved sequence that is inverted and
complementary to the 3′ end, forming of a dsRNA panhandle structure and giving ortho-
tospoviral genomic RNPs a pseudo-circular appearance (Figure 2b,e) [3,30]. The highly
conserved sequences at the termini act as promoters for replication and transcription
and extends with a segment specific sequence up to 15 nts. All proteins encoded by the
RNA genome are expressed from near-genome length (L) or subgenomic length mRNAs
(NSm, GP, NSs, N) transcribed from the genomic RNA [31]. Production of viral mRNAs
involves a process of cap-snatching during which mature cellular host mRNAs are cleaved
by the viral transcriptase complex about 12–18 nucleotides (nt) downstream the 5′-cap
and used to prime transcription on the viral RNA template. Transcription termination of
the subgenomic length M/S RNA-derived mRNAs occurs in the IR. This region is highly
rich in A- and U-tracks and is predicted to fold into a stable hairpin structure that is
postulated to act as transcriptional terminator [32]. As a result, viral mRNAs distinguish
from viral (anti)genomic RNA molecules not only by the presence of a heterogeneous,
non-viral sequence a the 5′ end but also by their size [33]. Other studies have indicated an
additional role of the IR/hairpin structure in translational enhancement of viral mRNAs,
in concert with N and NSs [34]. Orthotospoviral mRNAs lack a canonical poly(A)-tail, but
also the 3′ end conserved genome segment terminal sequence. Furthermore, in contrast to
(anti)genomic RNA molecules, viral mRNAs do not become encapsidated by the N protein,
nor are they found within virus particles [31]. Crystal structure analysis, folding predic-
tions, and RNA-N protein binding studies have shown that the N protein oligomerizes into
an asymmetric trimeric ring in which the N and C-terminal (globular) arms of monomeric
N mediate interaction to neighboring subunits. Genomic RNA is embedded within an
inner cleft of the ring, which presents an RNA binding site, and in this way protects against
cellular nucleases [35–38].
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Figure 3. Genome organization of the plant-infecting representatives from the Phenuiviridae (genus Tenuivirus), Tospoviridae
(genus Orthotospovirus), and Fimoviridae (genus Emaravirus) of the order Bunyavirales. Although emaravirus genomes contain
5 to 10 segments, as a reference genome HPWMV is shown. Functional homologous genes are indicated by color and
indicated in the legend. v: viral RNA, vc: viral complementary RNA. Open reading frames (ORFs) are indicated by boxes.
ORFs from ambisense RNA segments are expressed from sub-genomic length mRNAs, while ORFs from RNA segments of
entire negative polarity are expressed from (near) genomic length mRNAs (modified from [1]).

During the cytoplasmic replication of viral RNA, v-strands of the L RNA were ob-
served in accumulating amounts during the course of infection, while the vc-strand was
only observed in steady-state low levels. The ambisense M and S RNA v- and vc-strands
were synthesized more equimolar, although the v RNA strands were produced in the
highest amounts. Both strands of the M and S RNA were found in virus particles, although
v-strands were observed most, whereas for the L RNA, only v-strands were found. Ratios
of encapsidation in virus particles thereby seemed to reflect the amounts produced during
cytoplasmic replication and support a random encapsidation mechanism [31,39].

Transcription–replication of the orthotospoviral RNA genome occurs in the cytoplasm
and requires the RdRp and N proteins. The viral RdRp contains the conserved motifs and
features of RdRp proteins typical from segmented NSV, i.e., an N-terminal endonuclease
domain required for cap-snatching and a central domain containing the six motifs of RNA
polymerase, including the typical “SDD” core motif. However, a cap-binding domain
has not been identified yet and on this point also no structural sequence homology was
observed with the cap-binding domain within PB2 of the influenza virus RdRp (composed
of the three subunits PA, PB1, and PB2), nor within any other bunya/arenaviral/tenuiviral
RdRp protein [40,41]. More recent 3D structural folding analysis and biochemical studies
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have shown the presence of a (putative) Cap-binding domain within the C-terminus of the
RdRp of La Crosse peribunyavirus, Rift valley fever phenuivirus, and California Academy
of Science reptarenavirus [42–44]. In case of the La Crosse RdRp, similar as within the
influenza PB2 subunit, a protruding C-terminal domain was observed with the ability for
large movements during transcription initiation [42,45,46].

As for the nuclear replicating orthomyxoviruses/influenza viruses, nascent mRNAs
produced by the RNA polymerase II machinery present the source for capped-RNA leader
sequences to initiate genome transcription [47,48], and the cytoplasmic replicating orthoto-
spoviruses may likely use cytoplasmic RNA processing bodies (PB). Arabidopsis thaliana
mutants, depleted from elements of the RNA decay machinery or nonsense-mediated
decay pathway, exhibited increased susceptibility to TSWV infection [49]. Furthermore,
TSWV N protein was observed to partially co-localize to P bodies. These observations
match earlier observations made with Sin Nombre (SNV) hantavirus that showed first links
to PB as a source of capped RNA for cap-snatching [50,51].

Viral replication is considered to occur at electron dense matter in the cytoplasm, in
areas often designated as viroplasm [52], but whether and how these relate to the sites
where transcription/cap-snatching occurs (P bodies?) is not known. After replication,
progeny viral RNPs either move intra/intercellularly or mature into enveloped virus
particles. To this end, RNPs receive their envelop membrane at the Golgi complex, as
observed with most other animal-infecting viruses from the Bunyavirales, a process that
involves multimeric protein interactions between the three major structural proteins (N,
Gn, and Gc) and takes place at the ER and Golgi [53–59]. Viral Gn and Gc are produced by
proteolytic processing of the GP precursor at the ER, most likely by ER-resident proteases,
from where they concentrate at ER-export sites (ERES). Gc is only able to reach ERES
by condensation with the cytosolic N protein [55]. Both mature envelope glycoproteins
escape from ERES by COPII vesicle transport, requiring heterodimerization of Gc and
Gn. The Gn glycoprotein contains a Golgi localization signal within its transmembrane
domain (TMD) that allows for the escape and movement towards the Golgi complex by its
own [54,56]. Intracellular movement of the mature envelope glycoproteins and N relies
on actin filaments [54,60] and not on microtubules, as observed with the animal-infecting
bunyaviruses in animal cells. Particle maturation occurs via wrapping of RNPs by an entire
Golgi stack, in contrast to budding into the lumen of Golgi cisternae, as seen with most
animal-infecting bunyaviruses [61,62]. Doubly enveloped virus particles resulting from
this next fuse with each other and lead to the accumulation of mature (singly enveloped)
virus particles in large vesicles. From there, the virus awaits uptake/acquisition by thrips
upon feeding on the infected plants, and further disseminate [61].

2.2. Tenuiviruses

Viral particles are composed of non-enveloped ribonucleoproteins (RNPs), comprising
ssRNAs encapsidated by the N protein. N monomers are able to self-interact, forming
oligomers independently of RNA binding [63]. The predicted polar amino acids in the deep
hydrophobic binding groove of the N protein are critical for RNA binding and to protect
the RNA against RNAse digestion [63]. The RNPs are 3 or 8 nm wide with various lengths
and look like circular “strings of beads” in purified preparations (Figure 2c,e). Whereas
all but one [64] non-plant-infecting members of the Phenuiviridae have three genomic
fragments, most tenuiviruses have four or five fragments (Figure 3). Exceptions include
RGSV and the tentative tenuivirus RmSV, both with six fragments, and MeTV, which has
eight genomic fragments, the highest number thus far for a tenuivirus. Whereas the genome
of tenuiviruses encodes a precursor to glycoproteins, enveloped virus particles have never
been observed. For this reason, tenuiviruses are generally known to exist as infectious RNPs.
Although one might debate whether or not to regard these as particles, the embedding of
all genomic elements within separate infectious RNP units, in contrast to the membrane-
bound particles of tospoviruses and emaraviruses, raises the question whether and how
to guarantee the fact that neighboring cells are infected with an entire set of all genomic
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segments. For this very same reason, some even postulate that tenuiviruses present
multipartite viruses, i.e., each segment is encapsidated in separate particles, a situation
common for plant viruses but very rare in viruses infecting other non-plant systems [65].
The 5′ and 3′ extremities of all genomic RNA segments share 10 complementary terminal
nucleotides (ACACAAAGUC), which are conserved among tenuiviruses and partially
shared with other phenuivirids, but also an additional 7–15 nucleotides, with a looping
out of one C residue at position 11 in one of the extremities [14]. The RNAs encode
either one ORF in negative polarity, or two ORFs in ambisense orientation. The genomic
segments are numbered by decreasing size, among which four to five show similarity
among tenuiviruses, whereas other segments are unique to an individual virus (Figure 3).

For tenuiviruses, like all other members of the Bunyavirales, the largest segment (RNA1)
of about 9 kb encodes the RdRp (≈340 kDa), required for virus replication (Figure 3). The
RdRp also contains endonuclease activity required for cap-snatching [40,41]. The RdRp
is associated with RNPs of RSV, as commonly observed for polymerases of NSVs. Both
RGSV and EWSMV encode a second small protein pV1 in a virion sense, although there is
no obvious similarity between the two proteins of these viruses (nowadays, and as applied
in this overview and figures of the genome organizations, tenuivirus-encoded proteins are
more generally referred to as pC and p (or pV), and V and C referring to their encoding
by the viral (v) or viral complementary (c) genomic strands. In older literature, many of
these (non-structural (NS)) protein genes were often referred to as NS (v-strand encoded)
or NSvc (vc-strand encoded)). The pV1 protein of EWSMV, but not of RGSV, presents a
domain similar to plant NAC-like transcription factors that regulates genes involved in
plant development and in responses to biotic and abiotic stresses [17].

Except MeTV and RmSV, all tenuiviruses contain a RNA2 segment of ≈3.5–4 kb,
encoding two proteins in ambisense orientation, pC2 and p2, that also appear to be homol-
ogous between tenuiviruses. The pC2 protein (also referred to as NSvc2 in many papers) is
an insoluble protein that matures from ER to the Golgi complex via COPII-dependent vesi-
cle transport [66] and acts as a helper component in insect transmission [67]. The protein
shows some similarity to the GP encoded by the M RNA of uukuviruses (Phenuiviridae).
The p2 encoded on the viral genomic strand is a weak suppressor of RNA silencing in
plants and is thought to promote systemic infection through interaction with nucleolar
fibrillarin.

RNA3 of most tenuiviruses and the functional/genetical homologous RNA5 of RGSV
(≈2–2.7 kb) encodes two proteins in ambisense orientation (Figure 3). The one encoded by
the viral genomic strand is p3 or NS3 (non-structural protein 3) and functions as a silencing
suppressor (see below), and the protein encoded by the viral complementary strand is the
structural protein pC3 (N or NC). For RGSV RNA5, the functional homologous genes are
denoted p5 and pC5 (or N), respectively (Figure 3).

RSV RNA4 and the functional homologous RNA6 of RGSV (≈1.9 to 2.5 kb) encode
two proteins: the major non-capsid protein p4 (or NS4) that accumulates in infected cells,
forming amorphous inclusions and needle-like structures typical of tenuivirus infection,
and pC4 or NSvc4/MP involved in virus movement in infected plants. For RGSV, these
are, likewise, referred to as p6 and pC6 (MP), respectively (Figure 3).

RNA 5 (≈1300 nt) present in MSpV and EHBV encodes a highly basic hydrophilic
protein (≈44 kDa) of unknown function.

RNAs 3 and 4 of RGSV (3.1 and 2.9 kb, respectively) each code for two proteins in
ambisense orientation, but both proteins show no similarity to other tenuivirus proteins
and their functions remain unknown (Figure 3).

The dicot infecting MeTV and the tentative tenuivirus RmSV differ from the other
monocot-infecting tenuiviruses in their genome organization (Figure 3). Besides the 9-
kb RNA1, encoding the RdRp, they possess seven and five additional RNA segments,
respectively, of 1.2 to 1.8 kb that either encode one or, in ambisense gene arrangement, two
proteins. The proteins encoded by RNA4 of MeTV, and by RNAs 2 and 5 of RmSV are
similar to the N (NP) protein of the other tenuiviruses. RNAs 5, 6, and 7 of MeTV show
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some similarity to RNAs 3, 4, and 6 of RmSV, but they present no similarity to any other
tenuivirus proteins. The function of all these proteins remains unknown.

The complementary extremities of each tenuiviral RNA segment, similar as described
for orthotopoviruses and common for all segmented NSVs, enable base pairing and thereby
forming a stable panhandle structure, which explains the circular appearance of their RNPs
(Figure 2c) [1]. These panhandle structures are important for replication and transcrip-
tion, as in animal-infecting members of the Phenuiviridae [68]. All components required
and being part of the replicase complex of tenuiviruses are not well known. The host
chaperone HSP70 was shown to be necessary for RSV infection and to interact with the N-
terminus of RSV RdRp, indicating that HSP70 probably plays a role in viral replication [69].
Tenuiviruses replicate both in plants and insects, but their replication and gene expression
patterns display a clear difference related to host specificity. In plants, the ratios of all four
RSV segments varied by no more than 15-fold, but in planthoppers, a 300-fold difference
was observed between segments [70]. Along the same line, the expression patterns of the
seven genes were also different between plants and insects [70]. Earlier studies had already
shown the effects of panhandle structure (de)stabilization on replication/transcription of
the animal-infecting phenuivirid Uukuniemi (UUK) [71], but also on the possibility to repair
genomic termini [72]. During replication of genomic RNA segments in plants and insects,
extensions of 16 and 15 nt, respectively, are found at the 3′ extremity of RSV segments 1
and 2, which seem to become progressively eliminated after switching to plant hosts [73].
If and how the extensions on RSV RNA segments would affect their replication by compro-
mising the formation of the panhandle structure and its replication/transcription promoter
activity is not known [74]. A recent study showed the targeting of these extensions by
an endogenous insect microRNA (miR-263a) and repressing the inhibitory effect of the
extensions on viral promoter activity in insects [75].

As with other viruses from the bunyavirales, tenuivirus proteins are expressed from
subgenomic or near-genomic length viral mRNAs that are transcriptionally initiated by
cap-snatching, similar to tospoviruses (for a review on cap-snatching, see [76]). To this end,
the N-terminal part of the RdRp contains endonuclease activity [41] consistent with the
RdRps from other viruses that employ cap-snatching. As a consequence, the 5′ extremities
of tenuivirus mRNAs are heterogeneous and differ from those of the genomic RNAs [77].
How a snatched capped RNA leader primes transcription initiation is not clear. The “base-
pairing” model indicates that the 3′ terminal residues of the capped RNA leader base pair
with at least one of the first nucleotide of the viral template. The “prime-and-realign” model
proposes that capped RNA leaders, after being extended for one or a few nucleotides, shift
backwards to realign on the first 3′ terminal residues of the viral template and re-elongate.
For RSV, the latter has been observed quite frequently and more than with RGSV, especially
with short-capped RNA leaders. It is therefore postulated to convert short leaders into
more suitably sized primers for elongation [77,78]. High-throughput sequencing analysis of
non-viral leader sequences from tenuivirus mRNAs also showed frequent targeting of host
cellular mRNAs encoding translation- and photosynthesis-related proteins [77]. Besides
endonuclease and polymerase activity within tenuivirus RdRps, the RSV RdRp furthermore
contains deubiquitination activity [79]. The biological significance of this activity for the
virus infection cycle is unknown, although a recent study has shown that the accumulation
of RSV in the planthopper is inhibited by ubiquitin-conjugating enzyme E2 [80].

How plant viruses induce symptoms in their hosts has not been completely elucidated.
Symptoms appear as consequence of infection due to the hijacking of important plant
functions by viral components. For tenuiviruses, RGSV p5 protein is shown to interfere
with the CBL–CIPK Ca2+ signaling network involved in the regulation of ion homeostasis.
RGSV-infected plants show a significant decrease of potassium content, whereas some
RGSV symptoms mimic potassium deficiency [81]. It has also been reported that virus
infection interferes with plant hormone homeostasis and affects plant development. RSV
p2 directly interacts with rice auxin response transcription factor OsARF17, a modulator
of auxin signaling, and interferes with its DNA binding activity, making the plants more
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susceptible to viruses [82]. RSV infection hijacks brassinosteroid signaling pathway in
rice, suppressing jasmonic acid-mediated resistance [83]. Upon RGSV infection, genes
associated with tillering and genes involved in the inactivation of gibberellic acid and
indole-3-acetic acid were activated, which may account for the excess of tillering and the
stunting observed during RGSV infection [84]. The RGSV p3 has been proven to induce a E3
ubiquitin ligase (named P3-inducible protein 1 (P3IP1)) that triggers ubiquitin–proteasome-
mediated degradation of the NRPD1 subunit of plant-specific RNA polymerase IV, which
is necessary for RNA-directed DNA methylation. Transgenic expression of RGSV p3 or
knockdown of NRDP1 resulted in abnormal development similar to RGSV symptoms
in rice [85]. A region of RSV RNA4 was observed to be (partially) complementary to a
sequence of the eukaryotic translation initiation factor eIF4A gene. Virus-derived small
interfering (vsiRNAs) from that region are found in infected N. benthamiana that potentially
could target eIF4A mRNA for regulation, causing leaf twisting and stunting [86].

Chloroplasts play an important role in virus infection, and virus-induced alteration of
chloroplasts is often associated with photosynthesis defects and chlorotic symptoms [86,87].
Genes related to chlorophyll synthesis are predominantly suppressed by RGSV infec-
tion [84]. RSV infection also disturbs chloroplast targeting of host proteins [88–90], and the
downregulation of chloroplast genes by RSV infection has been shown to be associated
with chlorosis [86].

2.3. Emaraviruses

Emaravirus particles resemble those of orthotospoviruses, although they appear dis-
tinct on one point. In most emaraviruses, double-membrane-bound bodies (DMBs)/particles,
ranging from 80 to 200 nm in diameter, have been observed (Figure 2d). Within the infected
cell, they often localize near the ER and Golgi. Moreover, flexuous structures, 3–10 nm
in diameter, and resembling the RNPs of orthotospoviruses and tenuiviruses, have been
collected from infected tissues (Figure 2e) [19].

Within the figure on genome organizations, the emaravirus HPWMV genome is taken
as a reference, with eight genome segments (Figure 3), each encoding one ORF in negative
polarity; however, across all described species, the genome segments vary in number
between 5 to 10 segments. For this reason, one might debate on what is a reference genome
for emaraviruses, and in the future a situation establishes with similarity to tenuiviruses
(Figure 3). For example, Actinidia chlorotic ringspot-associated virus (AcCRAV) and Pigeon pea
sterility mosaic virus (PPSMV-1) have only five RNA segments [91,92]. Across all species,
the RNAs 1 through 4 are highly conserved and are numbered by decreasing size, while
the segments RNA 5 through 10 vary between 1000 and 1700 nts, are not ordered by
size, appear genome segment variants or duplications, and their occurrence varies among
emaravirus species (Figure 3). This makes the counting and numbering of a reference set
of genome segments a difficult and challenging issue with emaraviruses, and for which a
clear definition may be needed.

As for tenuiviruses, RNA1 encodes the viral RdRp, RNA2 encodes the envelop GP
precursor, RNA3 encodes the viral N protein, and RNA4 encodes the viral MP (Figure 3).
The RdRp is usually between 260 and 270 kDa and shares significant homology with the
counterparts of bunyaviruses. The N-terminal region contains endonuclease domain and
is suggested to function similar to the orthotospovirus endonuclease in cap-snatching
from cellular mRNAs [40]. Evidence for cap-snatching was provided in studies of fig
mosaic virus (FMV). Polyribosomal RNA was isolated from infected fig leaves, and 5′

rapid amplification of cDNA ends (RACE) was performed identifying 12–18 nt of non-viral
RNA sequences at the 5′ end of FMV RNAs [93]. The polymerase active site consists of
six motifs known as the preA, and A through E motifs that lie toward the C-terminal
half of the RdRp [23,94,95]. The importance of this region for viral RNA synthesis was
confirmed by introducing a mutation into the rose rosette virus (RRV) RdRp that debilitated
RNA synthesis [95]. The C-terminal region has a domain that is suggested to bind 5′ 7-
methylguanosine cap structures, although this has not been shown experimentally [23,96].
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Envelope glycoproteins Gn and Gc are derived from the GP precursor encoded by
RNA2 (Figure 3). Among emaraviruses, the mature envelope glycoproteins appear to have
three transmembrane domains, but the numbers of glycosylation sites vary. Unlike ortho-
tospoviruses that have two mature envelope glycoproteins, emaraviruses may have two
or three mature glycoproteins. PPSMV-1 has a single peptide cleavage site, FS201/D202D,
predicted to yield two mature glycoproteins Gn (22.4 kDa) and Gc (51.6 kDa) [96]. Anal-
ysis of the Juju yellow mosaic virus GP suggests that there are two protease cleavage sites,
V25ES/SS and V218LA/DD. Processing of the precursor polyprotein produces three mature
glycoproteins, Gn (22.3 kDa), Gs (3.0 kDa), and Gc (50.89 kDa) [97]. For AcCrAV, the two
predicted cleavage sites are VNT23/K24V and VKA196/E197D and are predicted to produce
Gn (19.8 kDa), Gs (2.6 kDa), and Gc (53.1 kDa) [92]. Whether Gs shows functional similarity
to the animal-infecting bunyavirus GP-derived NSm protein [98] is not known.

RNA3 encodes the N protein of 32–37 kDa, and can vary from 12 to 80% amino acid
sequence identity between species (Figure 3). At the amino acid level, there are three
conserved blocks of amino acids, namely, NV(L/V)S(F/Y)NK, NRLA, and GYEF, predicted
to be involved in RNA binding [99–101]. Cellular studies of the FMV nucleocapsid showed
localization and motility along the endoplasmic reticulum (ER). Electron mobility shift
assays demonstrated N protein-binding viral RNAs. The N coats the viral RNA, which
is then surrounded by double membrane envelope that protrudes through the ER. Nu-
cleocapsids form aggregates in cells, and their motility depends upon the actinomyosin
system [102]. Interestingly three species seem to have two versions of RNA3—HPWMoV,
Perilla mosaic virus (PerMV), and Pistacia mosaic virus (PiMV)—the latter of which stands
out as a recently identified species that is described as having two distinct versions of
RNA3, which for PerMV are named RNA3a and RNA3b [103–105].

RNA4 encodes the MP of approximately 27 kDa. Studies using Raspberry leaf blotch
virus (RLBV) and FMV showed that each P4 protein could rescue a movement-defective
potato virus X that lacks a portion of the TGB1 movement protein [106–108]. Across
emaravirus species, the P5 through P10 proteins show low sequence similarity, and the
functionally identified proteins may not be conserved across species. In addition, the
occurrence and function of additional RNA5 and RNA6 vary among different emaravirus
species. Two representatives of contrasts among species are RRV and HPWMV whose
genomes contain seven and eight genome segments, respectively. Another unique feature
of emaravirus genomes is that the RNA 5 through 10 segments appear redundant in terms
of encoding highly similar proteins. One example is PerMV, which has three versions of
RNA6 named RNA6a, RNA6b, and RNA6c [104]. PiMV has two variants of RNA5 named
RNA5a and RNA5b. For PiMV and RRV, the RNA5 and RNA7 share between 37% and
40% identity and the P5 and P7 proteins share approximately 40 to 73% identity [103,109].

The 3′ and 5′ termini of all RNA segments are highly conserved and show inverted
complementarity, thereby enabling the formation of a panhandle (Figure 2e) and containing
promoter activity for replication and transcription. The consensus sequence GGAGAA-
CACUACU at the 3′ terminus and the AGUAGUGAACUCC at the 5′ terminus of each
genome segment is conserved across all members of the Fimoviridae and share identity with
the animal- and insect-infecting Peribunyaviridae and Cruliviridae and two genera of Phasmaviri-
dae (Feravirus and Jonvirus) [23]. The endonuclease domain in the viral RdRp, along with the
potential panhandle structure of the terminal genome sequences, suggests a cap-snatching
model for RNA synthesis. However, unlike orthotospoviruses and tenuiviruses, extraction of
stable high-molecular-weight dsRNAs have been reported for RLBV, RRV, FMV, PPSMV-1,
PPSMV-2, TiRsAV, Alfalfa ringspot-associated virus (AraV), Aspen mosaic-associated virus
(AsMaV), and others [25,95,96,107,110–112]. In fact, dsRNA isolation technology is becoming
commonplace for HTS approaches to identify new tentative emaravirus species. This is
unexpected for NSV, for which the general overarching model of replication is that the viral
genomic (or v) and antigenomic (or vc) RNAs are never naked but always encapsidated by the
N protein. The only model to explain the accumulation of dsRNAs applies to positive-strand
RNA viruses for which the 3′ end of the genomic RNA creates a transient RNA primer for
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reverse transcription and extension of the anti-genomic RNA producing the double-stranded
(ds) replicative form. This model for negative strand RNA virus genome synthesis might
not apply to emaraviruses, for which there are several reports of dsRNA accumulating. Fur-
ther research is needed to learn if the replicative strategy for emaraviruses occurs de novo or
involves endogenous priming.

3. The Role of Non-Structural, Accessory Proteins in Host Adaptation:
Inter/Intracellular Movement and Counter-Defense of Antiviral RNAi
3.1. Orthotospoviruses

Orthotospoviruses show similarities in genome organization, encoding proteins
(RdRp, N, GP) and their functions, and expression strategy to homologs from the animal-
infecting members of the Bunyavirales. However, they encode one additional non-structural
accessory protein (NSm, in which m refers to its encoding by the M RNA segment (Figure
3)), in a completely separate ORF, absent in animal-infecting counterparts. Although a
similarly named protein is found in the latter group and is processed from the GP precursor,
it has a completely different function. The orthotospovirus NSm protein is involved in
the adaptation of orthotospoviruses to infect plant hosts, i.e., it presents the viral MP, a
requirement that applies to all systemic plant viruses to allow cell-to-cell movement of
infectious viral entity, mostly through modification of plasmodesmata, the channels that
connect the cytoplasm of two neighboring cells [113]. Orthotospovirus NSm enables the
intercellular movement of infectious RNPs via a tubule-guided manner through plasmod-
esmata [29,114]. NSm-mediated RNP transport involves an interaction between NSm and
N protein [115–119]. The protein is only transiently expressed during early stages of the
infection cycle in planta and during that time not only localizes at plasmodesmata but
also associates with cytoplasmic localizing RNPs [29]. Microinjection studies of fluoresc-
ing dyes in stable tobacco transformants expressing NSm show diffusion of LYC-dextran
(10 kDa) molecules via NSm-modified plasmodesmata, but this is not observed in untrans-
formed tobacco plants, indicating that NSm modifies/enlarges the size exclusion limit of
plasmodesmata [120].

During the intra/intercellular trafficking, NSm interacts with ER chaperones from
the DnaJ protein family [115], co-chaperone SGT1 [121], and At-4/1 [122]. The latter
protein is found in ER-derived membrane structures nearby the plasmodesmata and is
able to independently move intra- and intercellularly. NSm physically interacts with ER
membranes; however, it does not rely on the ER to Golgi transport pathway, nor the
cytoskeleton for its trafficking [123]. Mutations in NSm that impair the interaction with ER
inhibit cell-to-cell movement [123]. Furthermore, the C-terminal end of NSm is essential
for orthotospovirus movement, as mutants lacking this domain do not interact with N, nor
are they able to form tubular structures [118,119].

Although NSm assists in cell-to-cell movement of viral entity in a tubule-guided
manner, it is also able to complement movement-deficient Tobacco mosaic virus (TMV) in
cell-to-cell and long-distance movement [58,124]. TMV does not rely on a tubule-guided
cell-to-cell transport, nor does it move as mature particles, and therefore these data imply
that orthotospovirus NSm is able to support long-distance movement of viral RNAs. The
C-terminus of NSm appears to be essential for this movement [124]. Similar rescuing of
a movement-deficient Cucumber mosaic virus (CMV) or Alfalfa mosaic virus (AlMV) by
complementation with TSWV NSm has been observed [119,125].

The second non-structural protein (NSs, in which s refers to its encoding by the S RNA
segment (Figure 3)), like the ortholog from the animal-infecting relatives within the Peribun-
yaviridae and Phenuiviridae, is involved in the modulation of host antiviral defense responses.
While in animal systems this involves antagonistic properties of interferon-induced defense
responses and shut-off of host cell protein synthesis [126], in plants, the orthotospovirus
NSs protein acts as a suppressor of the antiviral RNAi defense response [10] (Figure 4).
RNA interference (RNAi, and also known as RNA silencing) is a conserved eukaryotic
gene regulatory mechanism that also acts as an antiviral defense mechanism. It is triggered
by double-stranded (ds)RNA structures that arise during viral infections (viral dsRNA
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intermediates or intramolecular folding structures) that are recognized and processed by
Dicer enzymes (in plants, Dicer-like (DCL)) into viral small interfering RNAs (siRNAs)
approximately 21 nt in size. From these, one strand is loaded in an argoaute (AGO) protein,
the effector component of the RNA-induced silencing complex (RISC). Using this guide
strand, RISC recognizes (viral) RNA target sequences with sequence complementarity and
subsequently cleaves/degrades the RNA by AGO slicer activity [10].
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(for an overview on (antiviral) RNAi, see [10]).

The NSs protein is able to suppress local and systemic silencing of GFP [127–131]
and exerts RNA silencing suppressor activity by binding long double-stranded (ds)RNA
and small interfering (si)RNAs, thereby preventing their processing by Dicer-like proteins
(DCLs) into siRNAs and the activation of antiviral RNA-induced silencing complexes
(RISCs), respectively [132,133] (Figure 4).

The protein is also able to bind the structurally similar micro (mi)RNAs and thereby
interfere in host gene regulation and plant development [132]. This agrees with observa-
tions made in tomato plants infected with Groundnut bud necrosis tospovirus (GBNV),
in which the NSs protein affects miR319 regulation of the transcription factor TCP1 and
controls leaf senescence [130].

Mutation of a WG/GW motif, known to enable Argonaute (Ago) binding (the core
component of RISC), compromises the ability of TSWV NSs to suppress local RNA silencing,
but not systemic silencing, and implies that this mutant is still binding siRNAs and thereby
prevents systemic silencing [129,134,135]. Interestingly, this motif is not found widely
spread among orthotospovirus NSs proteins and raises the question as to whether TSWV
NSs indeed compromise antiviral RISC activity via Argonaute binding, as well as whether
this is generic to all orthotospoviruses (Figure 4).

Alanine substitution analysis of TSWV NSs showed the importance of the N terminal
domain in RNA silencing suppression [134], while mutations in a putative alpha helix
(amino acids 338–369) within the C-terminal part of the NSs protein from Watermelon silver
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mottle orthotospovirus (WSMV) indicated the importance of this domain in self-interaction
and RNAi suppressor activity [131,136], although these latter mutants still retained the
ability to bind siRNAs. The GBNV NSs protein furthermore has been shown to exhibit
helicase, ATPase, and 5’ α phosphatase activity, in which the ability to suppress RNAi was
independent of helicase and ATPase activity [137,138].

In agreement with its role in virulence, the NSs protein is able to restore the pathogenicity
of suppression-deficient heterologous viruses and support systemic movement [131,139,
140]. In a similar way, during a mixed infection of two orthotospoviruses, NSs is able to
trans-complement and facilitate systemic movement of a co-infecting orthotospovirus [141],
sometimes even in an otherwise restrictive host [142].

In plants, NSs is localized in the cytoplasm where, depending on the isolate, it is
found in fibrillar structures or paracrystalline arrays [52,143]. Only in the case of Capsicum
chlorosis orthotospovirus (CaCV) has NSs been reported to also localize in the nucleus [58],
but its function there remains unknown.

Orthotospoviruses also replicate during their persistent transmission by thrips. After
uptake by L1/L2 larval stages, viral proteins can be detected in the foregut, midgut,
ligaments, and salivary gland tissues. Whereas in larvae the primary site of replication
involves the midgut epithelium (and nearby muscle cells) and tubular salivary glands,
this shifts towards the primary salivary glands in adults, and suggests tissue tropism
changes with insect development. Within the salivary glands, accumulating amounts of
N and NSs proteins are detected, and mature particles can be discerned secreted into the
salivary gland ducts [144–149]. The non-structural (cell-to-cell movement) NSm is also
expressed in thrips tissues but is thought to not have a function during the infection cycle
in thrips. The protein localizes in small electron dense (protein) bodies in various tissues
but does not from tubular structures as observed in plant cells, despite its ability to induce
tubular structures in Spodoptera frugiperda insect cells [114]. Furthermore, in thrips, NSm
does not associate with viral RNPs nor with gap junctions, the functional equivalence of
plasmodesmata [150].

3.2. Tenuiviruses

Tenuiviruses encode several non-structural proteins with known or unknown function
(Figure 3), of which one is involved in cell-to-cell movement. In RSV, protein pc4 encoded by
RNA4 presents the MP (Figure 3). It accumulates close to the cell walls of infected rice leaves
and allows intercellular trafficking of the virus [1,151]. RSV pc4 interacts with several host
proteins, particularly the chaperon-like HSP20 [1]. It can also bind single-stranded RNA,
most likely required to enable viral movement [152]. pc4 interferes with the S-acylation
of the remorin (REM1) and induces its autophagic degradation [153]. Remorins are plant-
specific membrane-associated proteins involved in cell-to-cell signaling and restriction of
virus movement [154,155], of which group 1 remorins are extensively involved in restricting
virus trafficking through plasmodesmata [156]. Their overexpression impairs cell-to-cell
movement of various RNA viruses, including RSV in rice [153]. A transmembrane domain
of pc4 is essential for its localization to plasmodesmata and for its ability to recover the
movement of movement-deficient potato virus X [89,152]. RGSV pc6 shows molecular
similarity to RSV pc4 and also acts as a MP [157]. RSV pc4 and RGSV pc6 are both targeted
to plasmodesmata via the endoplasmic reticulum-to-Golgi secretory system and actin
filaments, and VIII-1 myosin is involved in their plasmodesmata targeting [158,159].

Besides cell-to-cell movement, the systemic infection of plants requires that viruses
enter the sieve elements and spread through the phloem to infect new organs. Silencing
of RSV p2 protein abolished systemic movement in N. benthamiana, showing that this
protein contributes to long-distance virus spread [160]. Upon transient expression in N.
benthamiana epidermal cells, P2 (fused with YFP) initially moves to the nucleolus, where
it co-localizes with Cajal bodies [161]. At later stages, P2 leaves the nucleolus and forms
numerous distinct bright spots in the cytoplasm [160]. P2 interacts with fibrillarin in the
nucleolus of infected N. benthamiana cells. Fibrillarin depletion affects the nucleolar and
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cytoplasmic localization of p2-YFP fluorescence and abolishes systemic movement of RSV
but not of several positive-stranded viruses [160]. The mechanisms by which p2 may
recruit or manipulate nucleolar functions to promote virus systemic infection, however, are
not well known yet.

Like nearly all plant viruses, tenuiviruses also encode proteins counteracting plant
defenses, particularly anti-viral RNA silencing. The first tenuivirus RNA silencing sup-
pressor identified is the p3 (NS3) protein from RHBV (NS5 for RGSV) [162,163] (Figure 4).
RHBV p3 is able to inhibit silencing not only in plant and insect, but also in mammalian
cells, where it has even been shown to act cross-kingdom and rescue a Tat-negative HIV
mutant [164]. The RSV p3 suppressor of RNAi self-interacts through several motifs, notably
at the N-terminus [165]. Disrupting the interaction by mutagenesis abolishes its silencing
suppression activity, showing its functional importance [165]. The RHBV p3 protein ef-
ficiently binds both siRNAs and miRNAs, with an affinity depending on the size of the
target: 21-nt RNAs are bound >100 times more efficiently than 26-nt RNAs [162,166]. On
the other hand, the RSV p3 appears to bind dsRNA in a size-independent manner, although
small dsRNAs are preferentially bound [167]. By sequestering siRNAs, p3 prevents their
uploading and subsequent activation of antiviral RISC, while sequestering of miRNAs
leads to interference of host gene regulation. Mutants that lost siRNA binding activity are
compromised in their ability to suppress RNAi [166,167]. The protein also modifies the
expression of plant endogenous genes [168] via interaction with OsDRB1, an indispensable
component of the rice miRNA-processing complex. It acts as a scaffold between OsDRB1
and pri-miRNAs to regulate their association and aid to in vivo processing of pri-miRNAs.
In A. thaliana, the protein can partially substitute for the function of dsRNA-binding do-
main (dsRBD) of AtDRB1/AtHYL1 during miRNA biogenesis. As a result, p3 induces
the accumulation of several miRNAs, most of which target pivotal genes associated with
development or pathogen resistance. Therefore, p3 is postulated to hijack OsDRB 1, a
key component of the processing complex, for the biogenesis of miRNAs, and support
virus infection and pathogenesis in rice [169]. While p3 counteracts the antiviral RNAi
machinery, it is targeted for degradation by different plant defense mechanisms. The
ubiquitin-like protein 5 (UBL5) of rice and N. benthamiana interacts with p3 and mediates its
degradation by the 26S proteasome, participating in plant defense against infection [170].
P3IP, a previously uncharacterized plant protein, also interacts with p3 and mediates its
degradation by autophagy. Transgenic overexpression of P3IP in N. benthamiana confers
resistance to RSV, confirming the role of autophagy in suppressing RSV infection [171].
Besides p3, p2 (NS2) also exhibits (weak) RNA silencing suppressor activity and exerts
this activity through interaction with the plant endogenous suppressor of gene silencing
SGS3 [172]. A hypothesis is that p2 promotes the degradation of rice SGS3 via ubiquitina-
tion and autophagy, as described for the weak silencing suppressor p4 of the rhabdovirus
Rice stripe mosaic virus [173] (Figure 4).

After serial mechanical inoculations of EWSMV on N. benthamiana, RNA2 encoding
the p2 and pc2 proteins surprisingly became lost but without any obvious effects on symp-
tomatology and mechanical transmission efficiency [17]. The reason for this is unknown,
but it indicates that p2 is dispensable for EWSMV infectivity in N. benthamiana. However,
this observation is in contrast with the finding that p2 is required for long-distance move-
ment of RSV [160]. pC2, required for virus movement in the insect body (see paragraph
“transmission”), also appears dispensable for EWSMV infection of plants, at least in N.
benthamiana.

In RGSV, NS5 (p5) protein, similar to RSV p3, functions as an RNA-silencing suppres-
sor [174] (Figure 4). RGSV p2 also shows (weak) RNA silencing suppressor activity [175].
RGSV p5 interacts with itself and with its cognate p3, for which p5 requires both the
N-terminal and C-terminal domains [174]. RGSV p5 also interacts with two kinases in the
CBL-CIPK Ca2+ signaling network, a plant-specific Ca2+ sensor-effector module. How-
ever, it is not clear whether this is related to the activity of p5 as a silencing suppressor
protein [81]. Contrary to RSV p3, RGSV p5 does not have any distinct binding activity
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with 21-, 22-, or 24-nucleotide small interfering RNA (siRNA) duplexes [176]. RSV p3
and RGSV p5 also differ in their subcellular localization: whereas GFP-fused RGSV p5
disperses mainly in the plant cytoplasm, RSV p3 localizes in both the nucleus and in the
cytoplasm. Altogether, tenuiviral RNAi suppressor proteins do not seem to act similarly,
as supported by differences in their subcellular localization [176].

3.3. Emaraviruses

Emaraviruses encode the RdRp, N, Gn, and Gc proteins as for other plant- and
animal-infecting members of the Bunyavirales. However, they encode additional non-
structural accessory proteins, and there are only a few reports suggesting functions in
cell-to-cell movement or silencing suppression, yet the functions of most proteins are not
determined experimentally. Until now, the majority of efforts by researchers have been at
the epidemiological level and using next-generation sequencing technology to discover
new species members of the genus. The recent development of an infectious clone for RRV
creates the opportunity for reverse genetic studies to investigate the functions of various
RRV proteins and to carry studies of virus–host interactions at the cellular and molecular
levels [95].

Some functional studies have identified RNA4 to encode the MP, and amino acid
sequence alignments have allowed the extrapolation to suggest all emaravirus RNA4
segments encode the viral MP (Figure 3). The RLBV and FMV P4 proteins were experimen-
tally shown to function as viral MPs through complementation studies using a movement
defective PVX or tobacco rattle virus (TRV). GFP-fused P4 proteins were seen to move
between leaf epidermal cells, which are also characteristic of plant viral MPs. The FMV P4
localizes to plasmodesmata and potentially assembles into tubule-like structures similar to
the tospovirus Nsm protein. Amino acid sequence analyses indicated that these MPs have
conserved structural features including an N-terminal signal peptide sequence followed
by predicted β-strands and interspersed α-helices that are similar to plant virus MPs of
the 30K superfamily [106,108]. All 30K superfamily members have a conserved aspartic
acid (D) residue referred to as the “D motif”. The emaraviruses and orthotospoviruses
have a common motif surrounding the D motif: F-X-F-P-X(14)-D-X(52–63)-W, while the
tenuiviruses have a submotif F-X-F-P-D [23].

For many other species, RNA5 and RNA6 are suggested to encode virus MPs, but
their origins seem to vary among species, and experimental investigations testing their
functions are lacking (Figure 3). For example, the P5 and P6 proteins associated with a
recently identified isolate of EMARaV obtained from Sorbus intermedia encode p42.4 kDa
and 27 kDa proteins, respectively, sharing significant homology with the FMV P4 MP [112].
The Eurasian aspen mosaic-associated virus P5 protein shares similarities with the EMARaV
P4 and the FMV P6 proteins. On the other hand, researchers hesitate to suggest that the
PPSMV-2 P5 and P6 proteins are MPs because they do not show relatedness to P4 [96].
HPWMV RNA6 encodes a p6 protein of 492 amino acids in length while RRV RNA6 is
suggested to encode two proteins, p6a and p6b, which are 62 and 233 amino acids in length,
respectively [24,109]. As already remarked in Section 3.2, the difficulty and challenging
issue of counting and numbering of a reference set of genome segments for emaraviruses
is not yet helping to solve some of the above discrepancies and questions, but hopefully
will become clarified in the future once these issues have been solved and well defined.

The HPWMV RNA7 and RNA8 encode the p7 and p8 silencing suppressor proteins,
respectively [177] (Figure 4). The p7 silencing suppressor binds long dsRNA and protects
them from dicing to small RNAs, and p8 protects small dsRNAs. RRV encodes seven RNA
segments. The RRV RNA5 and RNA7 segments encode proteins of 467 and 465 amino
acids in length, respectively, sharing 54.5% identity, suggesting that they may be orthologs
or paralogs [95,178]. The RRV p7 protein is not homologous with HPWMV p7 and thus
experimental studies are needed to learn the biochemical functions of the RRV p7 protein.
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4. Transmission
4.1. Orthotospoviruses

The spread of orthotospoviruses relies on a complex of interactions between the virus,
thrips vector, and host plant, which is additionally influenced by many (a)biotic factors. In
many studies on this topic, and to which most studies described in this section relate to,
the major species F. occidentalis has been used.

Thrips are only able to transmit the virus when they feed on infected plants primarily
during their larval L1 or L2 stages [5,146,179–182]. Acquisition of the virus likely involves
receptor-mediated endocytosis into midgut epithelium cells. The mature envelope gly-
coproteins Gn and Gc are transmembrane proteins that act within the virion envelop
as attachment and fusion proteins, respectively. Evidence for the latter comes from the
presence of a highly conserved domain in Gc, shared between orthotospoviruses and
the animal-infecting viruses from the former Bunyaviridae, e.g., Bunyamwera virus [183],
pointing towards a functional homology. This domain likely acts as the fusion domain, as
earlier demonstrated with Hantavirus Gc membrane fusion studies [184–188]. Recently,
the atomic resolution of the soluble part of the TSWV Gn attachment protein has been
determined and Gn shown to dimerize [189]. The atomic resolution details for Gn structure
and interacting interfaces suggest that Gn homodimerization is an essential building block
within the virion envelope. Considering that analysis was performed in the absence of
Gc, further studies are needed to understand the constitution of the holo-spike complex,
although other studies have shown Gn-Gc heterodimers form through disulfide bonds on
the viral membrane. These combined studies led to a model wherein homodimers and
heterodimers play a role in TSWV virion assembly [189].

TSWV replicates in the midgut and then disseminates into the thrips body, where
the virus next primarily localizes in the salivary glands as the (second) major site of
replication [144,182]. Thrips that have acquired the virus during their larval stages become
viruliferous vectors able to transmit the virus during the adult stage, mostly for the rest
of their life span. When thrips feed as adults on virus-infected plants, the virus remains
restricted to the midgut, and adults do not become viruliferous [190,191], implying that the
midgut acts as a barrier to virus escape during certain developmental stages.

The viral Gn and Gc form the holo-spike complex enabling transmission of orthoto-
spoviruses by thrips, and mutants hardly producing virus particles, but also accumulating
defective-interfering (L-RNA derived) RNA molecules, are compromised in their transmis-
sion efficiency [192,193]. Feeding studies using thrips and a solution containing the soluble
form of Gn revealed the ability of thrips to acquire and transmit TSWV was significantly in-
hibited [194,195]. Similarly, feeding thrips on transgenic plants expressing the soluble form
of Gn enormously reduced viral transmission efficiencies by thrips, although this did not
protect the plants against TSWV infection [196]. In the Neohydatothrips variabilis/Soybean
vein necrosis orthotospovirus pathosystem, thrips fed on a combination of soluble peptides
containing the “RGD” and the “R229” motifs, characteristic of cellular attachment domains
and present in Gn of several orthotospoviruses from the American clade, reduced virus
transmission by 67% [197].

Although about 15 thrips species have been identified as vector for orthotospoviruses,
they exhibit a vector competence towards certain orthotospovirus species only, and not
all [6]. While the viral spike complex plays an important role in mediating vector acquisi-
tion, it is not yet understood which features determine vector specificity. Recent studies
that aim to identify host proteins involving virus acquisition have identified six TSWV
interaction proteins (TIPs), using the Gn attachment protein as bait, from first instar lar-
vae (L1) [198]. Among these host proteins, some appear to share homology to proteins
that associate with the infection cycle of other vector-borne viruses, but their role in the
orthotospovirus transmission cycle by thrips still needs to be determined.

Transmission of orthotospoviruses by thrips is (indirectly) affected by many other
factors, often involving altered (preferred) feeding behavior on infected plants (versus
healthy plants), and in which the thrips (indirectly) benefits from the virus, e.g., increased
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life span, fecundity, and offspring [199–204]. Concerning the latter, virus infection has
been observed to cause transcriptome changes in various life stages of thrips, as well as
innate immune responses [205–210]. Studies on miRNA profiling have also been performed
and may help to further understand gene regulation in thrips during the course of virus
transmission [211]. Comparative transcriptome analysis of F. fusca and F. tritici, a vector
and non-vector of TSWV, respectively, has revealed some differences, but the relevance of
those towards virus transmission still needs to be further investigated [212]. In some cases,
however, no clear effects of viral infection on thrips have been observed [213,214].

Data also show that viral infection changes the plant metabolism and defense re-
sponses, turning these plants to be more conducive for thrips feeding/
colonization [200,201,203,214]. Upon infection, the viral NSs protein suppresses jasmonic
acid (JA) accumulation and moreover reduces genes related to terpenoid synthesis and
the content of monoterpene volatiles, causing plant hosts to become more attractive for
thrips [215,216]. On tomato plants producing higher amounts of acylsucrose, thrips egg-
laying decreases, and virus inoculation is suppressed [217].

Although Gn and Gc are indispensable for acquisition and transmission of orthoto-
spoviruses by thrips, the NSs protein also appears needed for persistent infection and
transmission. Studies on a collection of NSs-defective TSWV isolates showed that these
could not be transmitted by F. occidentalis [218]. While those viruses could still be acquired
by thrips and observed to reach the salivary glands, viral titers were significantly reduced
and led to a loss of transmission. This was likely due to the absence of a functional NSs
protein, as well as in thrips needed to suppress antiviral RNAi.

The presence of thrips resistance in plants indirectly affects the acquisition and inocu-
lation of the virus by thrips as well. While transmission from these plants is basically not
affected, thrips show a lower fecundity and lower preference for these plants, and beneficial
effects on virus transmission may thus be expected in outstanding crops [219]. Altered
feeding and survival rates have also been reported with thrips on peanuts containing
resistance traits against TSWV [220,221].

Studies on Thrips tabaci have indicated the complexity of virus vector competency, in
which the clonal type of T. tabaci (population (genetic) structure) and a specific interaction
with the (local) virus isolate play a major role [222–227]. Moreover, studies with F. occiden-
talis indicate the presence of hereditary traits involved in virus vector competence [228].

4.2. Tenuiviruses

Tenuiviruses are transmitted horizontally by delphacid planthoppers in a circulative-
propagative manner, i.e., the virus multiplies in the insect vector. They are also vertically
transmitted by viruliferous females to their offspring [15]. Immunofluorescence microscopy
shows that RGSV and RSV first infect the midgut epithelium of the insect, spread into
visceral muscle tissues, disseminate in the hemolymph and other organs, and then move to
the salivary glands from which virus transmission to plants can occur [229–231]. There are
some key differences regarding tissue tropism: RGSV infects the principal and accessory
salivary glands of its vector but is not found in neural tissues and ovarioles, whereas RSV
is found in both the ovarioles and in the principal salivary glands of its vector but appears
absent from the accessory salivary glands [230–233].

Most bunyavirids are enveloped viruses that enter arthropod cells through interaction
between virus surface glycoprotein and host receptors, and in some cases, host receptor is
identified as lectin or integrin [229]; on the other hand, tenuiviruses are non-enveloped and
do not display glycoproteins in what is thought to be the virion [229]. The structural protein
pc3, interacting with viral RNA to constitute the RNP [63], is an important determinant
both for tenuivirus horizontal and vertical transmission. RSV N (pc3) interacts with at
least five vector proteins [229] including the cuticular protein CPR1 and the lipid transport
protein vitellogenin [234]. CPR1 appears to bind RSV in the insect and to stabilize virus
concentration in the hemolymph, perhaps protecting the virus or helping its movement to
the salivary tissues [234]. Vitellogenin, the precursor of egg yolk in oviparous species, is
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essential for transovarial transmission of RSV [235]. RSV RNPs binds hemocyte-produced
vitellogenin [236] and enables them to invade oocytes through a vitellogenin transportation
route [229,237], leading to vertical transmission.

Several viral proteins are involved in viral infection of the insect and horizontal trans-
mission. The glycoprotein pc2 (NSvc2) is required for RSV entrance into the planthopper
midgut cells. It acts as a helper component for transmission, the first described for a persis-
tent propagative virus [67]. In infected cells, NSvc2 is processed into two mature proteins:
an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C) that both
interact with RSV RNPs. NSvc2-N binds to an unknown receptor at the surface of midgut
lumen via its N-glycosylation sites. Upon recognition, the midgut cells undergo endocy-
tosis followed by compartmentalization of RSV RNPs/NSvc2-N/NSvc-C complexes into
early and late endosomes. Under the acidic condition present inside the late endosomes,
NSvc2-C undergoes a conformation change that triggers cell membrane fusion, allowing
the release of RSV/NSvc2-N complexes from endosomes into the cytosol [67]. Although
typical membrane-bound particles, as with all other members of the Bunyavirales, are not
observed with tenuiviruses, NSvc2-N and NSvc2-C clearly act as functional homologs of
Gn and Gn, enabling receptor-mediated endocytosis and subsequent release of RNPs from
endosomes. Considering Gc-mediated fusion of viral and endosomal membranes generates
a pore for RNP release from the endosome into the cytoplasm, it remains intriguing how
NSvc2-C fusogenic activity leads to release of tenuivirus RNPs into the cytoplasm, knowing
these viruses lack a viral membrane. In agreement with a functional homology of NSvc2
with the tospovirus Gc glycoprotein, similar to that observed with the feeding experiment
of TSWV Gn to thrips, the RSV NSvc2-N protein is able to block RSV entry/infection of
midgut cells from the small brown planthopper vector [67].

Recently, RSV p3 was found to interact with alpha-tubulin2 of the insect vector,
mediating the passage of RSV through the midgut and salivary glands [238]. Moreover,
NS4 (p4) appears to be involved in virus movement in its vector [230]. During viral
infection, NS4 forms fibrillary cytoplasmic inclusions in various tissues of viruliferous
planthoppers. Viral RNPs directly interact with these inclusions, and knock-down of RSV
NS4 was found to slow virus spread in the insect body without affecting virus replication
in cell cultures [230,233].

As in plants, tenuivirus proteins interact with the host components involved in insect
defense mechanisms. The angiotensin-converting enzyme of the small brown planthop-
per (SBPH) appears to play a role in the immune response against RSV transmission by
planthoppers, although the mechanism is not well elucidated [239]. RSV N binds the
planthopper G protein pathway suppressor 2, resulting in the activation of the c-Jun N-
terminal kinase (JNK) pathway, involved in multiple physiological processes; activation
of the JNK pathway leads to increased replication of RSV [240]. RSV p3 interacts with the
RPN3 subunit of its planthopper vector 26S proteasome, and repression of RPN3 results in
higher virus accumulation and transmission. This suggests that the proteasome plays a
role in defense against its vectored plant virus, and that a virus component can subvert this
defense through interaction with the 26S proteasome subunit RPN3 [241]. RSV infection
also reduces the activity of phenoloxidase in the SBPH by 60%. Phenoloxidase is involved
in the melanization pathway, one of the major innate immune responses of insects. RSV p3
binds cleavage sites of prephenoloxidase, preventing phenoloxidase activation by a cascade
of clip-domain serine proteases and ensuring viral stability in the hemolymph [242].

RSV reduces the fecundity of its vector by changing the expression of developmental
genes in embryos [243]. The presence of RSV leads to changes in vector physiology and
behavior: nymph development is accelerated, and adult body weight is increased, which
may be related to the increased abundance of yeast-like endosymbionts that provide nutri-
tional benefits and changes in feeding behavior, including the increase of saliva secretion
time. These changes could counter the negative effects of the reduced fecundity [244]. RSV
infection was also shown to stimulate the expression of an olfactory receptor co-receptor
(Orco) in infected SBPH, affecting host seeking behavior of the insects [245] and virus



Viruses 2021, 13, 842 21 of 35

spread as a consequence. Moreover, accumulation of jasmonic acid in RSV-infected plants,
activating plant defense against the virus, is attractive for the planthopper vector [246],
which can contribute to the horizontal spread of virus. Although only partially elucidated,
the changes in vector behavior and plant attractivity mediated by tenuivirus infection show
the complexity of virus–host–vector interactions.

4.3. Emaraviruses

Unlike orthotospoviruses or tenuiviruses, there is little known about the transmission
attributes of emaraviruses. This is because the vast majority of the more than 25 emaravirus
species or tentative species have been discovered in the past decade and vectors have been
identified for less than half of these species. Emaravirids are transmitted by eriophyoid
mites, arthropods that are indiscernible to the naked eye as they average 0.2mm in length,
and transmission studies are highly recalcitrant [19].

Eriophyoids are largely monophagous, preferring to feed on one type of plant [247],
which may explain the seemingly narrow host range for the majority of emaraviruses.
Given the recent discovery of emaravirus species and their vectors, only single eriophyid
species are associated with a single virus species. Notably, reports indicate that vectoring
mites transmit multiple viruses to the same host species, such as PPSMV-1 and PPSMV-
2/Aceria cajani [248,249]. The wheat curl mite can simultaneously transmit HPWMV and
the tritimovirus wheat streak mosaic virus to wheat [250]. As knowledge expands, we
may see more cases of multiple eriophyoid species transmitting the same virus or multiple
viruses [251]. It is worth noting that emaravirus-infected plants sustain significantly
larger numbers of mites compared to emaravirus-free material [252,253], suggesting that
emaravirus infection alters host physiology to encourage vector feeding and improve their
fecundity.

The transmission mode of emaraviruses is largely unknown. Some emaraviruses are
readily transmissible with short acquisition access periods of ≈15 min whereas others re-
quire significantly more time, sometimes several days [248]. Once the mites are viruliferous,
the inoculation access period varies from minutes to hours. One example is HPWMV, for
which the vector can only acquire the virus in the nymph stages, but not as an adult [254].
Given the microscopic size of mites and the difficulty in identifying their developmental
stages, it may be that some transmission studies were performed primarily with nymphs
whereas others with adults. Once acquired, the virus is retained between molts and can
be transmitted for days and possibly the life of the individual, yet it is not present in the
mite eggs [254]. These attributes resemble the attributes of orthotospovirus transmission
by thrips, except for the short acquisition access period. Phytoptus pyri, a common pest
of mountain ash, was tested positive for both the genomic and complimentary strands of
EMARaV, a possible indicator of virus replication or part of the narrative that emaraviruses
encapsidate both v and vc RNAs in their particle. Notwithstanding, a large amount of virus
N protein was found to be present in the mite body, altogether leading to the hypothesis
that emaraviruses replicate in their vector [255]. In addition, amplification of emaraviruses
in individual mites is only possible in vector species, another indication that emaraviruses
replicate in their vectors. Still, such observations need to be validated with controlled
experiments that follow the timeline of virus accumulation in the mite.

5. Evolution

There are recent excellent articles on the phylogeny of the Bunyavirales [23,256], and
for this reason, this section focuses on the evolutionary forces that shape the plant-infecting
members of the order.

The last common ancestor of the Bunyavirales is most probably an invertebrate,
possibly insect-infecting virus [257,258], with none of the plant-infecting taxa being basal to
the order [259]. The plant-infecting taxa emerged at different time points, yet they all code
for a 30K-like movement protein, possibly obtained from other viruses or hosts [260]. There
are clear distinct emergence timepoints with coguviruses and rubodviruses, two recently
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proposed genera (Table 1), being ancestral to tenuiviruses, whereas orthospoviruses and
emaraviruses are present in a different clade of NSV viruses [259].

There are no studies that address how microevolution affects any of the aforemen-
tioned taxa, largely because reverse genetics platforms have only recently become avail-
able [75,95,261]. On the other hand, there are investigations on how recombination, reas-
sortment, and genome plasticity affect virus macroevolution. These events provide viruses
with major fitness gains—acquisition of additional hosts or vectors, but also allowing
viruses to evade genetic resistance when it is employed to prevent disease.

Orthotospoviruses, the better studied group of the cohort, have identical genome
organization, composed of three RNAs and five proteins expressed using an ambisense
strategy (Figure 3). Thrips vectors can be a driving evolutionary force of orthotospoviruses.
They feed on many plants, and viruses replicate in their body, providing fertile ground
for recombination and reassortment between strains and species [6]. Butkovic et al. [256]
identified several recombination signals across the orthotospovirus genome, and along
with Oliver and Whitfield [5] have pointed to the diversity of a genus that warrants
reclassification to possibly five new genera. Reassortments have also been identified with
clear evolutionary implications as shown for a resistance-breaking TSWV isolate as well
as the hybrid of Groundnut ringspot and Tomato chlorotic spot orthotospoviruses that
can infect tomato [262,263]. There are other studies that indirectly show the advantages
presented by reassortment as viruses could expand their host range or acquire additional
vectors [117,142].

Tenuiviruses have obvious genome plasticity, with members having genomes ranging
from four to eight segments. Whereas the function of the core viral protein has been
determined [63,67,90], the roles of the auxilliary proteins in several members is to be
examined. Genome segments may be subject to different selection pressures, as nicely
observed with EWSMV RNA2. This segment was lost during viral infection after serial
mechanical passaging on N. benthamiana [17], suggesting that this segment is likely required
for vector transmission and dispensable from the plant host. In the case of the better-studied
virus in the group, RSV, population structure analysis point to strong purification selection
and evidence of recombination [264].

Emaraviruses are the most diverse of the group of the plant-infecting bunyavirids,
given that their genome has between 5 and 10 segments and some proteins have no
orthologs in the databases. This diversity has led to deliberation on the exact number
of segments carried by each virus, and there are cases where emaravirus genomes have
been revisited and expanded [22,109]. Emaraviruses with more than seven segments
may encapsidate fragments that are products of duplication. As an example, a wheat
isolate of HPWMV from Nebraska (HPWMV-NE) was sequenced using partially purified
virions and therefore represents the complete genome of the virus. HPWMV-NE has nine
segments with two variants of RNA3 present in the same virus preparation [105]. Stewart
et al. [265] investigated the diversity of the virus in different hosts and geographic area
and determined that those variants were not an artifact of HPWMoV-NE as they were also
present in isolates from other geographic areas and hosts.

On the other hand, there are cases where one of the coding regions of the RNA variants
has accumulated enough mutations that the duplicated genes become paralogs. PerMV
presents an excellent example for both duplication and diversification. The N proteins
encoded by the RNA3 variants are homologs sharing over 80% aa identities. The proteins
encoded by the RNA6 variants have diversified to the point where these two share about
65% aa identity, whereas the third is much more diverse (<25% aa identity with the other
two), presenting a possible paralog [104]. The duplication and diversification events are
common and stable, as judged by the sequence of over 90 RRV genomes, all of which had
both RNA5 and 7 that code for putative orthologs or paralogs [21].

In addition to the genome plasticity, there is ample evidence that recombination and
reassortment are important in the evolution of emaraviruses. In the case of blackberry leaf
mottle-associated virus, there is evidence of both recombination and reassortment within
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the species [266]. In PPSMV-1 and PPSMV-2, two viruses infecting pigeon pea, the reas-
sortment involves segment exchange between viruses [267], illustrating that emaraviruses
can evolve fast and possibly combine the attributes of the parent species, as seen in the
example of Groundnut ringspot and Tomato chlorotic spot orthotospoviruses [263].

6. Conclusions and Perspectives

Although orthotospoviruses and tenuiviruses have already been known for many
decades, and emaraviruses seemingly emerged only recently, the use of HTS/meta-genomics/
transcriptomics to resolve plant viromes is boosting the discovery of new isolates/species
belonging to the NSVs with segmented genomes. While tenuiviruses and emaraviruses were
initially thought to be limited to monocots and perennial plants, respectively, recent HTS
efforts have enabled the discovery of tenuiviruses and tenuivirus-like viruses (phenuivirids)
in tulip, melon, a plant parasitic nematode, and a fungus [14,268–272], as well as the first
emaravirus in an ornamental plant, chrysanthemum [273]. HTS has also led to the discovery
of viruses in citrus, with a phylogenetic relation to the Phenuiviridae. Due to their unique
features, i.e., these viruses have a bisegmented RNA genome of negative and ambisense
polarity; encode for the RdRp, N, and MP (but not glycoproteins); and do not contain a viral
membrane envelope, they have been classified into a newly proposed Coguvirus genus within
the Phenuiviridae [259,274]. Although studies on woody plants are often more elaborate, the
recent discovery of a coguvirus from Brassica [275] could boost research efforts to study on
these viruses. Likewise, viruses have recently been discovered in apple and grapevine, with
a tripartite genome of negative polarity, encoding the RdRp, MP and N proteins, that have
been classified into a tentative new genus, Rubodvirus [276]. The (global) impact of all these
new viruses is yet to be determined.

Thus far, fundamental research on the viruses described in this review has been ham-
pered by the lack of a reverse genetics system, whereas for many animal-infecting NSVs,
these have been available for quite some time. Only recently have the first reverse genetics
systems been established for TSWV and RRV. The first one was established for TSWV [261],
soon followed by the establishment of one for RRV [95]. For both viruses, particles and
a systemic infection could be rescued entirely from cDNA clones. However, in contrast
to RRV, rescue of TSWV relies on a codon-optimized RdRp and occurs in the presence of
various viral suppressors of RNAi, but in which ectopic expression TSWV NSs seemed to
interfere negatively. Very recently, a minireplicon system has been established for the RSV
tenuivirus in human cells and in planta [75,277,278]. Moreover, with RSV, mini-replicon re-
porter gene expression was only achieved with a codon-optimized RdRp and was critically
dependent on the presence of a viral suppressor of RNAi, but wherein the RSV p3/NSs
drastically reduced reporter gene expression. These reverse genetics and replicon systems
are expected to boost fundamental research on these viruses, help in the understanding of
their disease cycle, and identify targets for future disease management strategies. Until
then, one strategy commonly applied by breeders and growers to combat these viruses
is to deploy dominant resistance genes. This strategy is problematic, as the number of
resistance genes that are available for commercial resistance breeding to combat these
viruses is limited, and resistance breaking virus strains emerge [9,12,279]. Consequently,
efforts in the past two decades have been aimed toward engineering transgenic resistance
strategies on the basis of the exploitation of RNAi or the overexpression of interfering
proteins factors [141,280,281]. Due to societal reluctance, the attention has slowly moved to
investigate possibilities on topical application of dsRNA molecules [282,283] or to search
for alternative strategies to combat virus transmission, e.g., interfere in the transmission
cycle of the virus by the insect vector, as exemplified by the use of a soluble Gn or Gn-
derived peptides for TSWV and soybean vein necrosis orthotospovirus to inhibit thrips
transmission [196,197]. For the above reasons, virus vectors receive growing attention,
in which arthropod-infecting viruses could also become tools to control arthropod-borne
plant diseases [271]. One topic that has received only a little consideration is the role of
microbiota (such as Wolbachia) in modulating virus infection and/or vector-mediated
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transmission. Understanding the interactions between viruses and the microbiome of
the vectoring insect [284] could potentially create new opportunities to combat insect
transmitted viral diseases.

Considering the importance of arthropods for virus transmission, we must expand in-
vestigations to discover the virome of arthropod species (thrips, aphids, mites, mosquitoes,
etc.) [285–288]. One of the first papers describing viromes in arthropods was reported
by Li et al. [284]. This study demonstrated an enormous viral genetic diversity by high-
throughput RNA sequencing of 70 arthropod species. Such analyses of the expansive
viromes in arthropods has the potential to strengthen the idea of horizontal virus transfer,
a concept based on gene module reshuffling between various viruses in (herbivorous)
arthropods that contribute to virus evolution and subsequent host speciation (animal vs.
plant) [259,289], also indicating the importance of arthropods in viral evolution. It is clear
that with the increasing complexity of host viromes, the issue of virus evolution and their
role as drivers of evolution becomes more and more interesting, but the multitude of
interactions between viruses and their host and vector (and its microbiome) make many of
these questions not only increasingly challenging but also more difficult to tackle.
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