
Genome analysis

Novel approach for parallelizing pairwise comparison

problems as applied to detecting segments identical by

decent in whole-genome data

Emmanuel Sapin 1,* and Matthew C. Keller1,2,*

1Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA and 2Psychology & Neuroscience

Department, University of Colorado Boulder, Boulder, CO, USA

*To whom correspondence should be addressed.

Associate Editor: Peter Robinson

Received on July 1, 2020; revised on November 9, 2020; editorial decision on January 31, 2021; accepted on March 9, 2021

Abstract

Motivation: Pairwise comparison problems arise in many areas of science. In genomics, datasets are already large
and getting larger, and so operations that require pairwise comparisons—either on pairs of SNPs or pairs of individ-
uals—are extremely computationally challenging. We propose a generic algorithm for addressing pairwise compari-
son problems that breaks a large problem (of order n2 comparisons) into multiple smaller ones (each of order n com-
parisons), allowing for massive parallelization.

Results: We demonstrated that this approach is very efficient for calling identical by descent (IBD) segments be-
tween all pairs of individuals in the UK Biobank dataset, with a 250-fold savings in time and 750-fold savings in mem-
ory over the standard approach to detecting such segments across the full dataset. This efficiency should extend to
other methods of IBD calling and, more generally, to other pairwise comparison tasks in genomics or other areas of
science.

Availability and Implementation: A GitHub page is available at https://github.com/emmanuelsapin with the code to
generate data needed for the implementation

Contact: emmanuel.sapin@colorado.edu or matthew.c.keller@gmail.com

1 Introduction

Situations where all pairs of observations in a dataset must be com-
pared arise in many areas of science. For example, in protein studies,
forming the graphs used in protein clustering relies on finding a pro-
tein’s likeness to every other protein (Chapman and Kalyanaraman,
2011; Sapin et al., 2016), and in physics, calculating the total force
each body has on every other body is required in order to predict the
position and motion of all bodies in the n-body problem (Leimanis
and Minorsky, 1958). Such pairwise comparison problems are ex-
tremely computationally challenging with large datasets because
they grow at the square of the sample size [are of order Oðn2Þ].

Because genomics datasets are growing quickly in both numbers
of samples and numbers of measured variants, the computational
challenge inherent in comparing all pairs of observations is particu-
larly acute in several types of genomic analyses, such as the detection
of epistasis (Fang et al., 2012; Sapin et al., 2014) and the construc-
tion of gene regulatory networks (Chang et al., 2008; Qiu et al.,
2009). Another such example in modern genomics, and the motiv-
ation for the approach introduced in this manuscript, is the detection

of identical by descent (IBD) segments between all pairs of individu-
als using whole-genome single nucleotide polymorphism (SNP) data
(Browning and Browning, 2012). Two haplotypes (homologous
chromosomal segments of DNA) are IBD if they descend from a
common ancestor without either haplotype experiencing an inter-
vening recombination (Powell et al., 2010). IBD segments can be
used for a number of downstream analyses in genetics, including im-
putation, phasing, inference of the degree of relatedness, IBD map-
ping to detect the effects of rare variants on phenotypes, estimation
of the effective population sizes, and detection of signatures of recent
positive selection (Gusev, 2011; Loh, 2016 ; Browning and
Browning, 2012). IBD detection requires that each pair of individu-
als in a dataset is compared at each location across the genome, typ-
ically in phased data (where the homologous chromosomes inherited
from the father and mother have been computationally distinguished
from each other). Segments that match for a stretch that is too long
to have arisen by chance are deemed ‘IBD,’ although both false posi-
tive (calling a segment IBD when it is not) and false negative (failing
to detect an IBD segment) can occur, especially for shorter segments.
This approach is usually parallelized by splitting the genome into 22

VC The Author(s) 2021. Published by Oxford University Press. 2121

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(15), 2021, 2121–2125

doi: 10.1093/bioinformatics/btab084

Advance Access Publication Date: 11 March 2021

Original Paper

https://orcid.org/0000-0002-7188-3715
https://academic.oup.com/


subsets corresponding to the 22 (non-sex) chromosomes, but further
subsetting by smaller genomic (sub-chromosomal) windows is prob-
lematic because it increases the miss rate of IBD segments that span
two or more windows, because it adds a computationally expensive
post-processing step (stitching together IBD segments that span
across windows) (Browning and Browning, 2012), and because each
window still requires Oðn2Þ comparisons, which can become too
computationally expensive in large datasets even if the windows are
small.

Several methods have been proposed to compare all pairs in a
dataset in efficient ways, although none of these have been applied
to IBD detection to our knowledge. While some are applicable only
to specific problems (Cormen et al., 1990; Krej�cı́, 2018; Parikshit
et al., 2009; Wauthier et al., 2013), a general strategy that can be
applied across multiple applications is to parallelize the compari-
sons, hopefully in some kind of efficient manner. Kiefer et al. (Kiefer
et al., 2010) reviewed three general approaches to accomplish this.
The first (‘broadcast’) approach consists solely in having multiple
processes performing comparisons each on a subset of pairs. The se-
cond (‘block’) approach subsets pairs that are more likely to have
elements in common, which limits data replication [see also
(Kleinheksel and Somani, 2016)]. The final (‘design’) approach uses
a projective plane (Lee et al., 2004) or symmetric balanced incom-
plete block design to create subsets of elements such that any pair of
elements is observed exactly once across all the subsets.

In the current manuscript, we introduce an approach for paral-
lelizing the pairwise comparison problem, similarly to the ‘design’
approach in (Kiefer et al., 2010), by subsetting the set of individuals
such that each pair is observed exactly once across all the subsets.
Here an affine plane (Hughes and Piper, 1973) is used for this pur-
pose, creating slightly more subsets (�nþ

ffiffiffi

n
p

) than the n individuals
in the set. The sample size for each subset (�

ffiffiffi

n
p

) is roughly midway
between the naive approach (2 individuals in each of nðn� 1Þ=2
subsets) and the brute force approach (a single set of n individuals
entailing nðn� 1Þ=2 comparisons, excluding self-comparisons),
which is an excellent middle ground for massive and efficient paral-
lelization for many applications.

Applying our approach to the detection of IBD segments on
genome-wide SNP data from 435, 187 individuals from the UK
Biobank dataset (Bycroft et al., 2018), we show that our approach
resulted in a large saving in time over alternative approaches. Our
approach should allow for efficient parallelization of IBD detection
in much larger datasets than this one, and the general approach is
easily extendable to other applications outside of IBD detection and
genomics.

2 Parallelization methodology

We describe here how to create subsets for samples of any size made
up of individuals, xi, i 2 f1 . . .ng with n� 4, such that all pairs of
individuals, fxi, xjg, are observed exactly once across all subsets. Let
p be the lowest prime number such that p2 � n. To create the sub-
sets, the numbers from 1 to p2 are placed column-wise in a p-by-p
matrix P as shown in Figure 1.Numbers 1 . . .n index an individual
in the sample, and numbers nþ 1 . . .p2, if any, are unassociated

(null), which can lead to some subsets having fewer individuals than
others.

Our approach leads to a total of p2 þ p (�nþ
ffiffiffi

n
p

) unique sub-
sets of individuals. The first p subsets are defined by each of the col-
umns of matrix P and the next p subsets are defined by each of the
rows of matrix P, for a total of 2p subsets drawn from matrix P. For
example, the final subset based on the rows of P contains individuals
xp, x2p; x3p; . . . xp2 .

The p2 þ p� 2p ¼ p2 � p remaining subsets are defined by new
matrices, Pk. Each matrix Pk (k 2 f1 . . .p� 1g) is created via shifting
operations on the elements in the columns of P. Unlike the original
2p subsets based on P, subsets based on Pk are defined only by each
of the rows (not columns) of Pk, and thus each Pk matrix contributes
p additional subsets. To create the p—1 Pk matrices, the elements of
each column i of Pk are shifted up relative to the elements in the cor-
responding column i of P by r(i, k) rows, where

rði; kÞ ¼ ðði� 1Þ � kÞ mod p (1)

and mod is the modulo operation. For example, for k¼1, rði ¼
1; k ¼ 1Þ ¼ 0 and so the first column of P1 is identical to the first
column of P, rði ¼ 2; k ¼ 1Þ ¼ 1 and so the second column of P1 is
shifted by one element relative to column 2 of P, and rði ¼ 3; k ¼
1Þ ¼ 2 and so the third column of P1 is shifted by two elements rela-
tive to column 3 of P, and so forth. This shifting is defined such that
the elements of column i in P are shifted ‘downward’, in a conveyor
belt type of motion, in the same column i in Pk, as shown Figure 1.
For example, the last element of the second column of P1 is the first
element of the second column of P (P1½p; 2� ¼ P½1;2�), and the last
two elements of the third column of P1 are the first two elements of
the third column of P. Thus, the total number of subsets is p2 þ p
(of which 2p are created from the original matrix P and the remain-
der are created from shifted matrices Pk), each individual is in pþ1
different subsets, and the number of individuals per subset is p (or
fewer for some subsets when p2 > n). Figure 2 shows the matrices P,
P1, P2, P3 and P4 for an example where n ¼ p2 ¼ 25.

To assess this approach works as intended across a range of n,
we counted the number of times t each pair of individuals was in the
same subset across all subsets. As any pair should be in one and only
one subset, t should be equal to 1 for all pairs, and this is what we
observed for all n < 5M. Although we have found no formal proof
that this algorithm works to always define p2 þ p subsets such that
each pair of individuals is in exactly one subset, we have computa-
tionally demonstrated that the algorithm works in this way for any
n < 5M and have no reason to suspect it would behave differently
for n > 5M. Therefore the collection of these subsets forms an affine
plan where subsets are lines and individuals in a subset are points on
the line.

Excluding self-comparisons, the total number of comparisons
made under our approach is p4�p2

2 , the product of the p2 þ p subsets
and the p2�p

2 comparisons per subset. The total number of compari-
sons under the naive approach, where all pairs are compared in the
entire dataset, is n2�n

2 . Thus, under the optimal scenario where
p2 ¼ n, our approach requires exactly the same number of pairwise
comparison computations as the naive approach but with the benefit
of massive parallelization. Similarly, if self-comparisons are
included, performing them only on the first p subsets would avoid
multiple self-comparisons, again leading to the same number of

Fig. 1. Matrix P, P1 and Pp�1

2122 E.Sapin and M.C.Keller



comparisons as the naive approach. A GitHub page is available at
https://github.com/emmanuelsapin with the code to generate lists of
IDs of individuals composing each subset.

3 Computational performance of an

implementation of the novel approach

Assuming no limits to number of tasks that can be run at the same
time in parallel and that user time scales directly (1-to-1) with num-
ber of comparisons, our approach should reduce the time a pairwise

comparison problem takes by a factor of n. This is because the novel
approach makes � p2

2 � n
2 comparisons in a given subsample whereas

the standard approach makes � n2

2 comparisons in the full sample.
Thus, with unlimited computing resources, calling IBD segments in
the UKB would be > 435K times faster using our approach than
calling segments on the entire sample. However, the actual amount
of time saved using our approach will rarely come close to this best-
case scenario, and several real-world considerations will impact it.
For one, there are overhead costs to parallelizing itself; for example,
job schedulers can take time to allocate resources to a job, and start
times for multiple jobs can be delayed compared to those for a single
job. Because these costs do not typically scale directly with n,

Fig. 2. Matrices P, P1, P2, P3 and P4 for n ¼ p2 ¼ 25

Fig. 3. Comparison of time (A) and RAM (B) performance of the standard versus novel approach for calling IBD segments using GERMLINE (with parameters -min_m 3.5 -

bits 75 -err-het 1 -err-hom 1 -w_extend) as a function of different sized subsamples of the UK Biobank. We assume all 22 chromosomes could be run in parallel using the stand-

ard approach, and so RAM and time results for this approach are for the longest (2nd) chromosome. The red points are linear extrapolations of the standard approach results

on the log-log scale for n¼ 435, 187

Parallelizing pairwise comparison problems 2123

https://github.com/emmanuelsapin


parallelizing can actually cause performance to be slower when n is
small. For larger samples, when overhead is likely to be a small frac-
tion of overall compute time, the degree to which our approach
saves time depends heavily upon the type of tasks being performed
and the computational architecture employed. For tasks that are
CPU-bound, our approach is likely to result in a time savings pro-
portionate to the number of cores that can be used in parallel at a
given time. For tasks that are input/output (I/O)-bound, on the other
hand, massive parallelization using this approach can generate a
large number of competing I/O requests, which can slow down per-
formance per job and lead to increasingly diminished returns (Ali
et al., 2009). The degree to which this occurs is a function of the I/O
scheduling algorithm used by the operating system, the RAID con-
figuration of the hard drives where the data is read/written, and per-
formance attributes of the hard drive, such as solid-state (better)
versus magnetic spinning, read/write speeds, and cache size. As we
demonstrate below, depending on the task at hand and the computa-
tional architecture being used, it may be necessary for users to mod-
ify the code of existing pairwise comparison programs, especially
with respect to I/O operations, in order to capitalize on the potential
benefits of the novel approach described here.

To quantify the performance of our approach with respect to a
particular pairwise comparison problem, we took subsamples of the
UK Biobank data (Bycroft et al., 2018), from n¼100 up to the en-
tire dataset (n¼435, 187) and compared the time and RAM usage
of the novel approach to the ‘standard’ approach for calling IBD seg-
ments across a dataset. We defined IBD segments as being >3.5 cen-
timorgans in length, and called them using GERMLINE software (
Gusev et al., 2009), which is among the most efficient and accurate
estimators of IBD (Bjelland et al., 2017). The standard approach ran
GERMLINE on the entire sample but in parallel across the 22 chro-
mosomes. Assuming that all 22 jobs could be run simultaneously,
only the time and RAM usage for the largest (second) chromosome
need be considered for calculating the performance of the standard
approach. However, because the standard approach would have
required more memory (2.4 TB of RAM) and time (nearly a year)
than was possible on our system, we had to estimate its performance
for the entire n¼435, 187 sample via extrapolation from its per-
formance in smaller subsamples.

To implement the novel parallelization approach for the purpose
of detecting IBD segments, we split samples of different sizes into
subsets of size p as described in Section 2 above and ran jobs of
1000 subsets each in parallel, with each job assigned to a single
node. For example, on the full sample, the lowest prime number, p,
such that p2 � 435; 187 is 661, and thus p¼661, resulting in
6612 þ 661 ¼ 437;582 subsets. Overall, therefore, this required
437, 582�22 � 9:6M runs of GERMLINE for all pairs to be com-
pared on all 22 chromosomes. We assigned 1000 of these instances
of GERMLINE to each of 9627 jobs. Jobs, in turn, were assigned
via the Slurm workload manager to one of 140 nodes in the Blanca
Condo Cluster at the University of Colorado at Boulder (https://
www.colorado.edu/rc/res-ources/blanca) and were run in parallel.
Because we had GERMLINE extract the p¼661 individuals defin-
ing each subset from the full n�mk genotype file (where mk is the
number of markers on chromosome k), unmodified GERMLINE
would have attempted to access this large n�mk file 1000 times per
job, leading to �9:6M read operations overall. This large number of
competing read requests would have dramatically slowed down
each job and the overall performance of the novel approach. To
avoid this, we modified GERMLINE to utilize shared memory seg-
ments. The n�mk genotype file was read from the hard drive by a
process only once per job and the memory segment this process gen-
erated was accessible to the 1000 instances of GERMLINE running
on a given node thanks to a key number generated by commands in
the C language using the sysipc library. This minor modification of
GERMLINE reduced the total number of file read operations
required by three orders of magnitude.

Figure 3 compares the time and RAM performance of the stand-
ard versus novel approaches to calling IBD segments as a function of
sample sizes of random subsets drawn from the larger UK Biobank
sample. Due to overhead costs to parallelization discussed above,

the novel approach actually took longer than the standard approach
when n � 1K. With increasing sample size, however, the novel ap-
proach led to an increasingly large speed advantage. For the full

n¼435, 187 sample, the final job using the novel approach ended
28.5 h after the first one was submitted (though 34/1000 jobs failed

for technical reasons and were re-run) as compared to the estimated
7252 h (� 302 days) for the typical approach, a 254-fold savings in
user time. Perhaps equally important, the novel approach required

much less memory than the standard approach at larger sample
sizes. For the full n¼435, 187 sample, the novel approach used a

maximum of �3.2 GB of RAM, whereas we predict that the stand-
ard approach would have used a maximum of 2.4 TB of RAM, a 750-
fold savings in memory. Thus, using a novel approach, we were able

to complete a large pairwise comparison problem that would have
been impossible to run on our computational architecture using a

standard approach. These results serve to illustrate the kind of per-
formance improvements that can be achieved for pairwise comparison
problems using this novel approach. The actual degree of improve-

ment will, of course, depend on the specific problem at hand, but
should be largely governed by the factors we have highlighted here.

4 Conclusion

We developed a novel parallelization strategy that subsets individu-
als from a larger sample in order to break a large pairwise compari-

son problem (of Oðn2Þ) into multiple smaller pairwise comparisons
problems (each of OðnÞ). Each pair of individuals is compared exact-
ly once across all subsets and the total number of comparisons that

must be made under our algorithm is the same as the number that
must be made if all pairs were compared in the entire dataset with-

out subsetting.
We demonstrated that this approach is very efficient for calling

IBD segments using GERMLINE in the large UK Biobank dataset,
with a 254-fold savings in time and 750-fold savings in memory
over running GERMLINE on the entire sample in our particular in-

stance. The IBD segments we obtained will be used to infer the de-
gree of relatedness between all pairs of individuals in our dataset,
which is another pairwise comparison problem that can be opti-

mized using the same approach introduced here. The amount of
time saved using our approach will depend on the particular algo-

rithms being used and on the computational architecture, but to the
degree that the algorithms scale over OðnÞ, and especially as they ap-
proach Oðn2Þ, as many algorithms that work at the unit of pairs

should, our approach should offer substantial savings in user-end
time and RAM. While our approach was highly efficient for calling

IBD segments using GERMLINE, there are good reasons to believe
that this efficiency will extend to other methods of IBD calling and,
more generally, to other pairwise comparison tasks in genomics or

other areas of science.

Acknowledgements

This research was conducted using the UK Biobank Resource under applica-

tion numbers 16651. This work utilized resources from the University of

Colorado Boulder Research Computing Group, which is supported by the

National Science Foundation (awards ACI-1532235 and ACI-1532236), the

University of Colorado Boulder and Colorado State University. The authors

thank Mr. Jared Balbona and Drs. Luke Evans, Jeff Lessem and Richard

Border for their extensive help throughout this project.

Funding

This publication and the work reported in it were supported in part by the

National Institute of Mental Health Grant 2R01 MH100141 (PI: M.C.K.).

Conflict of Interest: none declared.

2124 E.Sapin and M.C.Keller

https://www.colorado.edu/rc/res-ources/blanca
https://www.colorado.edu/rc/res-ources/blanca


References

Ali,N. et al. (2009) Scalable I/O forwarding framework for high-performance

computing systems. In: 2009 IEEE International Conference on Cluster

Computing and Workshops, New Orleans, LA, pp. 1–10.

Bjelland,D. et al. (2017) A fast and accurate method for detection of IBD

shared haplotypes in genome-wide SNP data. Eur. J. Hum. Genet., 25,

617–624.

Browning,S.R. and Browning,B.L. (2012) Identity by descent between distant

relatives: detection and applications. Annu. Rev. Genet., 46, 617–633.

Bycroft,C. et al. (2018) The UK Biobank resource with deep phenotyping and

genomic data. Nature, 562, 203–209.

Chang,D. et al. (2008) Compute pairwise Euclidean distances of data points

withGPUs. In Proceedings of the IASTED International Symposium

Computational Biology and Bioinformatics(CBB2008) November 16-18,

2008 Orlando, Florida, USA, pp. 278–283.

Chapman,T. and Kalyanaraman,A. (2011) An OpenMP algorithm and imple-

mentation for clustering biological graphs. In Proceedings of the 1st

Workshop on Irregular Applications: Architectures and Algorithms (IA3

’11). Association for Computing Machinery, New York, NY, USA, 3–10.

Cormen,T.H. et al. (1990) Introduction to Algorithms, 1st edn. MIT Press and

McGraw-Hill. ISBN 0-262-03141-8. See in particular Section 26.2, “The

Floyd–Warshall algorithm”, pp. 558–565 and Section 26.4, “A general

framework for solving path problems in directed graphs”, pp. 570–576.

Fang,G. et al. (2012) High-order SNP combinations associated with complex

diseases: efficient discovery, statistical power and functional interactions.

PLoS One, 7, e33531.

Gusev,A. et al. (2009) Whole population, genome-wide mapping of hidden re-

latedness. Genome Res., 19, 318–326.

Gusev,A. et al. (2011) DASH: a method for identical-by-descent haplotype

mapping uncovers association with recent variation. Am. J. Hum. Genet.,

88, 706–717.

Hughes,D. and Piper,F. (1973) Projective Planes, Springer-Verlag, Berlin.

Kiefer,T. et al. (2010) Pairwise Element Computation with MapReduce. In

Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing (HPDC ’10). Association for

Computing Machinery, New York, NY, USA, 826–833.

Kleinheksel,C.J. and Somani A.K. (2016) Scaling Distributed All-Pairs

Algorithms. In: Kim,K. and Joukov,N. (eds) Information Science and

Applications (ICISA) 2016. Lecture Notes in Electrical Engineering, vol

376. Springer, Singapore.

Krej�cı́,J. (2018) Pairwise Comparison Matrices and Their Fuzzy Extension:

Multi-Criteria Decision Making with a New Fuzzy Approach. Springer, 235 pp.

Lee,J. et al. (2004) A Fast Construction Algorithm for the Incidence Matrices of

a Class of Symmetric Balanced Incomplete Block Designs. In: Laganá A. et al.

(eds) Computational Science and Its Applications – ICCSA 2004. ICCSA

2004. Lecture Notes in Computer Science, vol 3046.

Leimanis,E. and Minorsky,N. (1958) Part I: “Some Recent Advances in the

Dynamics of Rigid Bodies and Celestial Mechanics (Leimanis)”; Part II:

“The Theory of Oscillations” (Minorsky). Dynamics and Nonlinear

Mechanics. John Wiley & Sons.

Loh,P.-R. et al. (2016) Fast and accurate long-range phasing in a UK Biobank

cohort. Nature Genetics, 48, 811–816. 10.1038/ng.3571

Parikshit,R. et al. (2009) Linear-time Algorithms for Pairwise Statistical

Problems. In: Bengio,Y. et al. (eds.) Advances in Neural Information

Processing Systems 22, pp. 1527–1535.

Powell,J.E. et al. (2010) Reconciling the analysis of IBD and IBS in 702 com-

plex trait studies. Nat. Rev. Genet., 11, 800–805.

Qiu,P. et al. (2009) Fast calculation of pairwise mutual information for gene

regulatory network reconstruction. Comput. Methods Programs Biomed.,

94, 177–180.

Sapin,E. et al. (2014) Ant colony optimisation of decision trees for the detec-

tion of gene–gene interactions. In: 2014 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), Belfast, pp. 57–61.

Sapin,E. et al. (2016) A novel EA-based memetic approach for efficiently map-

ping complex fitness landscapes. In: Proceedings of the Genetic and

Evolutionary Computation Conference, pp. 85–92.

Wauthier,L.F. et al. (2013) Efficient ranking from pairwise comparisons. 2013

(modified: 16 Jul 2019). In: ICML (3).

Parallelizing pairwise comparison problems 2125


