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Abstract

The importance of implementing new methodologies to study the ever-increasing amount of

Covid-19 data is apparent. The aftermath analysis of these data could inform us on how spe-

cific political decisions influenced the dynamics of the pandemic outbreak. In this paper we

use the Italian outbreak as a case study, to study six different Covid indicators collected in

twenty Italian regions. We define a new object, the Covidome, to investigate the network of

functional Covid interactions between regions. We analyzed the Italian Covidome over the

course of 2020, and found that Covid connectivity between regions follows a sharp North-

South community gradient. Furthermore, we explored the Covidome dynamics and individu-

ated differences in regional Covid connectivity between the first and second waves of the

pandemic. These differences can be associated to the two different lockdown strategies

adopted for the first and the second wave from the Italian government. Finally, we explored

to what extent Covid connectivity was associated with the Italian geographical network, and

found that Central regions were more tied to the structural constraints than Northern or

Southern regions in the spread of the virus. We hope that this approach will be useful in

gaining new insights on how political choices shaped Covid dynamics across nations.

Introduction

The Covid-19 pandemic has produced an impressive amount of epidemiological data, col-

lected all over the world [1]. Each country collected their data following different protocols

depending on its respective national health service, [2–4]. In Italy, with twenty administrative

regions independent on Health, Covid-19 data were made available at regional and national

level trough the Italian Department of Civil Protection, [5]. The Italian Covid-19 collected

data consists of time series or Covid indicators, such as: the number of hospitalized individuals

in intensive care units (ICU), hospitalized individuals with symptoms, individuals in home iso-

lation, new positives, discharged healed and deceased individuals. All of them are available for

all twenty italian regions [5]. In the aftermath of the pandemic, these data provide a bench-

mark to investigate the effects of two distinct political decisions that were taken during the
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first and second wave of the Sars-Cov-2 spread, one at the beginning and the other at the end

of 2020, respectively [6]. Specifically, the first Italian lockdown was a quite severe nationwide

lockdown, whereas the second one was region-wide, tailored on each specific regional health

situation [7].

The first Covid-19 pandemic wave took most countries and their leaders by surprise. The

immediate reaction resulted in more severe policy interventions such as: travel bans, self-isola-

tion, quarantines and stay-at-home orders; public-gathering and event restrictions; school, res-

taurant, and non-essential business closures; up to complete lockdowns [8]. The adopted

restrictions were different between countries, but also, at a smaller scale, between regions and/

or provinces/states. This differentiation eventually led to different results depending on the

political decisions made [9]. Apart from improving the current epidemiological models for the

SARS-CoV-2 transmission, researchers also focused on proposing alternative solutions to

severe lockdown choices, in view of a potiental second (and third) wave, [10–12] by reducing

some restrictions. These “soft lockdown” measures were also adopted by the Italian govern-

ment, during the second wave of the pandemic.

In this work we tap into the link between these policy decisions and the network dynamics

of the Sars-Cov-2 spread in Italy. In order to do so, inspired by methodology commonly used

in brain network analysis [13], we introduce and analyze the “Covid functional connectome”,

i.e. the Covidome, which is closely related to the covariance matrix of a specific Covid indica-

tor. For instance, two italian regions that share a similar trend in the number of hospitalized in

ICU will have high values in its correspondent Covidome values, and viceversa. In essence, the

Covidome provides a summary picture of the pairwise “Covid connectivity” between nodes

(the regions) of the Italian network, during the pandemic.

We use this representation to explore the Covidome community structure, in order to learn

more about the hidden interactions between italian regions during the spread of the Covid-19

pandemic [14–16]. We found a specific North-South separation in two distinct “Covid func-

tional” community, across almost all Covid indicators. Furthermore, using sliding window

analysis, we found that Covid connectivity changed consistently across Northern, Central and

Southern Italy, with major differences spiked by the regionwide lockdown for the second

wave, on 4th of November 2020, and the more severe first lockdown, on 10th of March 2020.

Notably, the measures introduced short before the second differentiated lockdown, i.e. the

obligation to wear masks in open and closed public spaces (on 13th of October 2020), the clo-

sure of major non essential activities (on 24th of October 2020), etc., have led to evident con-

crete results, [17, 18]. In fact, Covid connectivity started decreasing already before the effective

date of the second lockdown for all the time series considered, differently from the first lock-

down where the correlation values started decreasing after the effective date. Finally, we inves-

tigate whether Covidomes related to the structural network of Italy (i.e. its geography). We

found that Covid connectivity relates strongly to the structure more to central areas of Italy

than to the Northern and Southern regions.

We believe that the innovation of analyzing Covid-19 time series as a complex structure of

networked systems might help in the interpretation of the key political decisions in the after-

math. We hope that this approach will be useful in analyzing epidemiological data in general,

and that this study might open up new research avenues able to gain new insights on how

political choices can shape pandemic outbreaks.

Materials and methods

In this section we will first introduce the time series (i.e., Covid indicators) used for this study,

and detail the Italian outbreak and political decisions made to prevent it. Secondly, we will
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introduce the Covid connectivity matrix (”Covidome”) and give an overview of the network

approaches employed.

Data and outbreak details

The data used in this paper was collected by the Italian Department of Civil Protection and is

freely available on a Github directory [5]. We analyzed different time series starting from 24

February 2020 until 7 January 2021 (few days after vaccine campaign started). All the consid-

ered time series are available for each Italian region. We focused on 6 different Covid indica-

tors, such as: 1) the number of hospitalized individuals in ICU; 2) number of hospitalized

individuals with symptoms; 3) number of individuals in home isolation; 4) number of new

positives; 5) number of discharged healed; and 6) number of deceased individuals.

On February 20, 2020 the first severe patient was tested positive for SARS-Cov-2 at hospital

of Codogno, Italy. Since this first episode a rapidly increasing number of patients have been

identified, especially in the Northern part of the country. Italy was one of the most affected

European country and was the first to implement drastic measures in the attempt to contain

the disease. Below we list the most relevant dates for Italy (see [7] for more details):

• Lockdown of the Northern regions on March 8, 2020, which was followed by complete lock-

down of Italy within a few days (10 March), including travel restrictions and a ban on public

gatherings, [19].

• On March 22, the Italian government closed all non-essential businesses and industries, and

restricted movement of people unless was strictly necessary, [20].

• On March 31, the president of the Italian National Institute of Health announced that the

pandemic had reached its peak in the country, which corresponded to the start of the out-

break plateau. The news was confirmed also by the head of the Civil Protection Department.

• On April 20, Italy saw the first fall in the number of active cases.

• Covid-19 cases started to decline in May 2020, thanks to the two-months lockdown. Free-

dom of movements was re-established on May 4 and other not essential activities re-opened

later that month, [21].

• On October 13 the obligation to wear masks, in both open and closed spaces, returns, [22],

and on October 14, cases of Covid-19 positives exceeded the peak of the March infections.

• On October 18 new restrictions were applied with the possibility of distance learning for

both high schools and universities depending on the regional epidemiological situation, [23].

• On October 24, major non essential activities were closed and distance learning political

decisions were reapplied, [24].

• On November 4, the Italian Prime Minister announced a new lockdown, dividing the coun-

try into three zones depending on the severity of the pandemic, corresponding to red, orange

and yellow regions. Moreover, a national curfew from 10 PM to 5 AM was implemented, as

well as compulsory weekend closing for shopping malls, and online education in high

schools, [25].

• From December 21 to January 6 further movement restrictions were implemented in order

to prevent an increase in cases during the Christmas holidays period, and to block move-

ment between regions, [26].
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Introducing the Covidome

We here define a “Covid connectivity network” (or Covidome). This network consists of 20

nodes, which corresponds to the Italian regions. For each of the six different aforementioned

Covid indicators, the edge between region pairs is defined by its Pearson’s correlation coeffi-

cient (referred in the figures as Covid connectivity). Specifically, for two Covid time series X
and Y, and n time points, this coefficient is defined as:

rX;Y ¼

Xn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � �xÞ2

Pn
i¼1
ðyi � �yÞ2

q : ð1Þ

Once computed all the edges values we get six Covid-19 adjacency matrices, of dimension

20 × 20, that, for simplicity, will be referred to as Covidome throughout the text. In a nutshell,

the Covidome represents a second-order statistic of the regional Covid trend reported by the

time series evolution. In fact, it is closely related to the covariance matrix of the Covid indica-

tors across Italian regions. Therefore, for each time series, high values in the Covidome will

inform on two regions following the same trend in Covid dynamics, and viceversa. We will see

in this paper how this information is tightly linked to the political decision made during 2020

to fight the pandemic spread. Please also see Fig 1B for an example of Covidome correspond-

ing to the hospitalized individuals with symptoms time series (Fig 1A).

Covidome modularity

We used the Newman and Girvan modularity score [14] to investigate the community struc-

ture of the Covidome. Given a network and a partition (modularity solution), the modularity

score Q introduced in [14] is:

Qscore ¼
1

2E

X

ij

Aij � g
kikj
2E

� �

dðmi;mjÞ; ð2Þ

where E is the number of edges in the network, Aij is the adjacency matrix of the network (in

this case binary undirected obtained from the Covidome), ki and kj are the degree of nodes i
and j respectively, γ the resolution parameter and δ(mi, mj) is the Kronecker delta between

community mi and mj. We used the Louvain algorithm [16] to obtain the optimal partition of

the Covidome. To improve the robustness of the Louvain solution, we used the consensus clus-

tering procedure introduced by Lancichinetti and Fortunato [15], by running Louvain 100

times and finding the optimal community solution obtained from the consensus matrix [13]

over the 100 runs. Please see Fig 1C for an example of the community structure of the Covi-

dome computed from the hospitalized individuals with symptoms time series. Finally, we also

computed a Covid “allegiance matrix”, that is the probability that each region pair belonged to

the same module across all Covid indicators. This matrix provides quantitative insights on

whether two regions had similar Covid outbreaks (as reported by the six aforementioned indi-

cators or time series) during the pandemic.

Dynamic Covidome analysis

In order to better understand the link between the Covid-19 dynamics and the political deci-

sions made, we performed sliding window analysis on the Covid indicators, inspired by tech-

niques commonly used in Network Neuroscienc [13]. In a nutshell, we computed Covidome

“snaposhots” (or dynamic Covidomes, where the Covidome was computed, as aforemen-

tioned, by using Pearson’s correlation coefficients as defined in (1)) at shorter time intervals
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within a sliding window of fixed length. We chose a three week window with a step (slide) of

one day, to explore the Covidome dynamics at different time interval across 2020 (please see

also the videos in Supplementary material). In order to investigate local differences in the

dynamic Covidomes we first subdivided the Italian map in three main areas corresponding to

Northern, Central and Southern Italy (see S1 Fig in S1 File for the geographical subdivision of

the Italian regions), and then we evaluated the fluctuation of the mean value of the dynamic

Covidomes (i.e., by considering the correlations with all the other regions (not necessarily in

the same area), and then by computing the average correlation within area) across sliding win-

dows (see Fig 1D).

Results

The results reported in the next section are related to two complementary Covid indicators,

such as the number of hospitalized individuals with symptoms and the number of new

Fig 1. Workflow of the Covid connectivity analysis for hospitalized individuals with symptoms in Italy, during 2020. A. The time series of hospitalized individuals

with symptoms for all the 20 Italian regions. B. The Covidome (the adjacency matrix of the network) obtained by computing the Pearson’s correlation coefficients

associated to data reported in panel A. C. Communities of the Covidome for the considered time series, represented both on the Italian map (left panel) and on the

graph (right panel), respectively. D. Average Covid connectivity obtained using sliding window correlation. The three different curves represent three different areas

corresponding to Northern, Central and Southern Italy.

https://doi.org/10.1371/journal.pone.0261041.g001
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positives (with the exception of the Covid allegiance matrix, computed across all six time

series, see Methods for details). For the results related to the remaining four Covid indicators

(i.e., hospitalized individuals in intensive care units, individuals in home isolation, discharged

healed and deceased individuals, respectively) please see the Supplementary material.

Consensus modularity and allegiance matrix

The modularity analysis on the Covidome for the hospitalized with symptoms and new posi-

tives (Fig 2A and 2B) subdivided Italy into two different modules, with a prominent North-

South gradient, for both the hospitalized with symptoms and new positives indicators. The

results for the remaining four time series are reported in S4 Fig of S1 File. Starting from the six

Fig 2. Community structure of the Italian Covidome. A. The Covidome partition, after consensus clustering, for the hospitalized with symptoms time series,

represented on the map (left panel) and on the Covidome graph (right panel). B. The Covidome partition, after consensus clustering, for the new positives time series,

on the map (left panel) and on the Covidome graph (right panel). C. The Covidome allegiance matrix (left panel) across the six different Covid indicators (i.e., number

of hospitalized individuals in ICU, number of hospitalized individuals with symptoms, number of individuals in home isolation, new positives, discharged healed and

deceased individuals, respectively). The representation of the Northern (blue) and Southern (red) modules from the allegiance matrix and of the swing regions (green),

respectively, on the Italian map (central panel) and on the graph (right panel). Notice that we have chosen the interval [0, 1] for the Covidome because all the values are

positive.

https://doi.org/10.1371/journal.pone.0261041.g002
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different consensus matrices, obtained for each time series, we can compute the Covid “alle-

giance matrix” (Fig 2C, first panel). That is, the probability for two regions of being in the

same community across all Covid indicators. For both within-indicator modularity, as well as

for the allegiance matrix, the Covidome network is mainly split into a North-South commu-

nity pattern, with some exceptions: specifically, FVG (Friuli Venezia Giulia) and Veneto are

included in the “Southern” module for the hospitalized with symptoms, whereas for new posi-

tives the “Northern” community spreads over to Abruzzo and Campania, and then “Southern”

incorporates Emilia Romagna and Marche in its community. Note that the allegiant commu-

nity structure preserve the North-South gradient (with the exception of FVG). Interestingly,

two regions had the lowest within-module allegiant score: Veneto and Umbria. That is, these

regions swing between community affiliations depending on the considered Covid indicator.

Note that the division of the Italian Covidome into two different modules is robust with dif-

ferent values of the resolution parameter γ in (2) in the [0.95, 1] range, as well as when choos-

ing different threshold values on the Covidome matrix in the percentiles between 40% and

10% (S3 Fig in S1 File).

Dynamic Covidome via sliding window analysis

The modularity analysis refers to the Covidomes computed over the pandemic period ranging

from the 24th of February, 2020 to the 7th of January, 2021. In order to better investigate the

associations between Covid connectivity and political decisions, we decided to perform a slid-

ing window analysis, by computing Covidome snapshots in overlapping time windows of 21

days (see Methods for details). The results for the hospitalized individual with symptoms and

the new positives Covid time series are reported in Fig 3, whereas the dynamic Covidome

changes in time are represented in S1 and S2 Videos (see Supplementary material). We ana-

lyzed the dynamic Covidomes evolution for these two time series, with respect to four impor-

tant dates in the pandemic policy changes: 10th of March (first national lockdown); 4th of May

(restoration of freedom of movement); 14th of October (new Covid-19 positives exceeded the

peak of the March infections); 4th of November (lockdown differentiated by regions). It is

worth noting that a day before the third date, the 13th of October, the obligation to wear

masks in open and closed public spaces was introduced. This is a key date in terms of the polit-

ical decisions made (see S1 File). The mean value of the dynamic Covidome is depicted in

Fig 3A, for three different Italian areas corresponding to Northern, Center and Southern Italy;

Fig 3B shows the nodal eigenvector centrality of the dynamic Covidomes averaged across

Northern, Central and Southern Italy.

In order to compare the two different political choices made during the first and second

wave respectively, we consider the time series introduced in Fig 3 on two different time inter-

vals. The first one considering 10 days before and 30 days after 10th of March, called W1, while

the second one corresponding to 4th of November, called W2; W1 and W2 are time intervals.

For both W1 and W2 we compute the minimum and maximum values for Northern, Central

and Southern areas, respectively. In Table 1 we represented this values for all the mean

dynamic Covidome time series introduced in Fig 3. Note that the maximum values for the

new positives time series for W2 does not correspond to the absolute maximum values of the

second wave, due to the fact that this values fall short before the considered range. This could

be due to the wearing mask measure introduced on 13th of October, as well as the measures

taken on 18th and 24th of October, before the second lockdown started. Analyzing the results

related to hospitalized individuals with symptoms indicator we can see how the minimum

value of the Northern time series in W2 is much lower, and negative, than the one of W1. The

three minimum values in W2 correspond to 14–19 days after the second lockdown, differently
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form 18–30 days in W1. Another important difference between the first and second lockdown

is the clear difference in between the time windows shortly after W1 and W2, respectively. In

fact, for the differentiated lockdown, corresponding to the second wave, we have that the cor-

relation between Northern regions (max = 0.3585) increase less than Southern (max = 0.7548)

and Central (max = 0.9824) regions, respectively (values not reported in Table 1 but can be

Fig 3. Dynamic Covidome via sliding time window analysis. A. First row, four different dynamic Covidomes corresponding to 10th of March, 4th of May, 14th of

October and 4th of November, respectively (dashed lines). Second row, time series for the mean of the upper triangular dynamic Covidomes for three different Italian

areas (first column: hospitalized individual with symptoms time series; second column: new positives; note that the dynamic Covid connectivity snapshots have

different colorbar range for the two time series). B. Nodal Eigenvector centrality of the Dynamic Covidomes, averaged across the three Italian areas (first column:

hospitalized individual with symptoms time series; second column: new positives).

https://doi.org/10.1371/journal.pone.0261041.g003
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read from Fig 3A, the max values shortly after W2). This result cannot be seen for the first

lockdown where all three the time series in the time window short after W1 reach values close

to 1. Analyzing the results related to new positives time series, in the same ranges of time intro-

duced before, we can see that only the minimum values stays in W1 and W2 respectively, more-

over these values are reached from 5 to 10 days after the first lockdown while from −5 to 4

days before and after the second lockdown, respectively. From the eigenvector centrality time

series Fig 3B we can see how for a short interval of time before and after the lockdown days all

three Northern, Central and Southern regions remain almost constants for the hospitalized

individuals with symptoms while there is a higher variability in the interval of time shortly

after the first and second lockdown respectively.

In Supplementary material are reported the results about mean dynamic Covidomes and

eigenvector centrality for the remaining time series, see S5 Fig in S1 File. From Fig 3A we see

that the four important dates correspond to moments of high correlation between regions,

while from Fig 3B they seem to correspond to moments of temporal stability of the eigenvector

centrality. We observe a similar behavior for hospitalized in ICU, home isolations, discharged

healers and decesead, but we do not see the same behavior for new positives. This difference

might be due to the fact that correlation values for new positives are fluctuating more with

respect to the other time series considered.

Covidome and structural connectome

As our last result we analyzed the dynamic correlation between Covidome and structural con-

nectome of Italy, in order to understand if and how Covid-19 data trend and the geographical

distribution of the Italian regions were related. To this aim, we decided to correlate the

dynamic Covidome snapshots (top row of Fig 4A and 4C) with the structural connectome

obtained by computing the arclength of the geographical coordinates (latitude and longitude)

between two different Italian regions (bottom row of Fig 4A and 4C). Fig 4B and 4D depict

the temporal correlation between dynamic Covidomes and structural connectome for North-

ern, Center and Southern Italy areas. Please see S1 File for the results on the remaining time

series (S6 Fig in S1 File).

We once more consider W1 and W2 introduced before in order to quantify the results from

Fig 4B and 4D and analyze if two different lockdowns resulted in different functional-struc-

tural Covid correlation. Furthermore, there is also an evident change between the three time

series fluctuation in time. As can be seen in Table 2 (for hospitalized with symptoms) the

Northern regions, in both W1 and W2, are negative correlated in mean that remain negative

also considering the corresponding standard deviation (std), while Central regions passes

from a negative mean in W1 with lower std in absolute value to a positive one in W2, with

higher std. For Southern regions there is a positive mean value in W1 and a negative one for

Table 1. Maximum and minimum values for the time windows W1 = 1th March-9th April and W2 = 26th October-4th December corresponding to a range of 10

days before the first and second lockdowns and 30 days after, respectively, for mean dynamic Covidome time series (Fig 3). HS–hospitalized with symptoms, NP–new

positives.

W1 (HS) W2 (HS) W1 (NP) W2 (NP)

min max min max min max min max

Northern 0.1595 0.9551 −0.0283 0.9305 0.0789 0.8141 0.2934 0.4296

Central 0.0063 0.9795 −0.0072 0.9803 0.2834 0.8805 0.3714 0.7378

Southern 0.0811 0.9522 0.1358 0.9650 0.1596 0.7824 0.1867 0.5443

https://doi.org/10.1371/journal.pone.0261041.t001
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W2. Moreover for new positives both Northern and Southern has negative mean correlation

values, while Central regions, positive in the first wave and negative in the second one, respec-

tively. The higher variability (std = 0.437) can be seen in W1 for new positives in Central

regions while the lower one (std = 0.078) for Northern regions, for the same time interval.

Fig 4. Covidome and structural connectome. A. Dynamic Covidomes (top row) and structural connectome for the geographical distance between Italian regions for

hospitalized individual with symptoms. B. Time series correlation between three different sub-matrices of dynamic Covidome and structural connectome, respectively,

corresponding to Northern, Central and Southern Italy for the Covid indicator introduced in A. C. Dynamic Covidomes (top row) and structural connectome for the

geographical distance between Italian regions for new positives. D. Time series correlation between three different sub-matrices of dynamic Covidome and structural

connectome, respectively, corresponding to Northern, Central and Southern Italy for the Covid indicator introduced in C. Notice the different range in the Covid

connectivity between the tow indicators.

https://doi.org/10.1371/journal.pone.0261041.g004
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Discussion

In this study we employed network science tools [13, 27] to study Covid-19 pandemic data

one year after the Italian outbreak. Specifically, we decided to compute and study Covid con-

nectivity (i.e., the Covidome), that is, the covariance matrix of the Covid pandemic network,

across six different indicators (number of hospitalized in ICU, hospitalized with symptoms,

individuals in home isolation, new positives, discharged healed and deceased). The aim was to

study whether its dynamics was related to the political choices made. We have found that: (i)

the Covidome community structure shows a well defined North-South pattern; (ii) dynamic

Covidome fluctuations stem from the effects of the two different preventive measures during

the first and the second waves, in the early and towards the end of 2020, respectively; (iii) the

association between Covidome and structural constraints for mobility depends on the differ-

ences between the two different lockdowns: one nationwide, the other more localized region-

ally. Below follows the in-depth analysis of these findings.

Geographical gradients of the Covidome community structure

We observed a sharp subdivision between North and South of Italy, persistent across time

series and corresponding Covidomes (Fig 2A–2C and S4 Fig in S1 File). It is worth noting that

this geographical pattern is obtained purely from the community structure of the Covidome,

hence without considering any explicit geographical information. Nonetheless, there are few

regions that do not participate to the North-South gradient: Friuli Venezia Giulia (FVG), a

Northern region that gets assigned to the Southern module (Fig 2A–2C); Veneto and Umbria,

respectively a Northern and a Central region, oscillate between the Norther and Southern

module across Covid indicators, therefore denominated as “swing regions” (Fig 2C). The fact

that FVG Covidome behavior is more related to the one of the Southern regions is not surpris-

ing. In fact, the regional administration imposed severe restrictions, such as banning public

gathering, schools closure, mandatory quarantine for people from epidemiological risk areas,

etc., valid already from 1st of March when the virus wasn’t circulating yet in this region [28].

Such severe regulations were adopted as well in the South of Italy. Moreover, Umbria being a

swing region might be linked to two main political decisions: the first is that the first official

document on the restrictions due to Covid-19 was already introduced on 26th of February, a

couple of days after the Codogno case, [29]; the second, that on 4th of March more severe

restrictions were introduced, since in the second wave Umbria was more affected than in the

first one. Furthermore, its central position between Northern and Southern modules might

also be related to its “swing region” behavior. In fact, from the Fig 2A and 2B and S4 Fig in S1

File one can notice that Umbria region is in the “Northern” module for new positives, home

isolation and discharged healed individuals and in the “Southern” module for the remaining

three time series. Similarly, the oscillation of Veneto across community may be due to the fact

that one of the first Italian outbreaks happened in Vo’ which was, quickly, completely isolated

Table 2. Mean and standard deviation values for the time windows W1 = 1th March-9th April and W2 = 26th October-4th December corresponding to a range of 10

days before the first and second lockdowns and 30 days after, respectively, for functional-structural correlation (Fig 4B and 4C). HS–hospitalized with symptoms,

NP–new positives.

W1 (HS) W2 (HS) W1 (NP) W2 (NP)

mean std mean std mean std mean std

Northern −0.328 0.244 −0.380 0.182 −0.209 0.078 −0.263 0.146

Central −0.328 0.282 0.2019 0.303 0.225 0.437 −0.257 0.205

Southern 0.317 0.094 −0.086 0.296 −0.056 0.156 −0.016 0.279

https://doi.org/10.1371/journal.pone.0261041.t002

PLOS ONE How political choices shaped Covid connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0261041 December 10, 2021 11 / 16

https://doi.org/10.1371/journal.pone.0261041.t002
https://doi.org/10.1371/journal.pone.0261041


form the rest of the region when the first cases appeared [30, 31], and on the other side, to the

massive control of the people, [30–33], that might have helped in identifying people infected

with Sars-Cov-2 before reaching the hospitals with more severe symptoms. In fact from Fig 2A

and 2B and S4 Fig in S1 File it can be seen that Veneto region is in the “Northern” module for

hospitalized in ICU and deceased individuals time series, while it falls in the “Southern” mod-

ule for the remaining four indicators. We further tapped into the link between policy regula-

tions and Covidomes, by analyzing the dynamics of the Covidomes and its relationship with

the italian structural network.

Nationwide versus region-wide lockdown impact on Covid connectivity

The Italian region mostly affected by Covid-19 was Lombardia, followed by other Northern

regions, especially in the first wave of the pandemic, at the beginning of 2020. In the second

wave, at the end of 2020, the pandemic spread over the entire country. The political decisions

made during that year were different between the two pandemic waves, with a more severe

national lockdown at the beginning of 2020, followed by a region-specific lockdown for the

second wave. These two different political approaches propagate into the Italian Covidome

dynamics. Fig 3 shows that the average minimum values for dynamic Covidomes of the hospi-

talized individuals with symptoms appear at distance of 18, 30 and 23 days after 10th of March

(first lockdown) for Northern, Central and Southern areas. In contrast, during the second

lockdown the decrease happens at 17, 19 and 14 days after the 4th of November. Interestingly,

the mean value of dynamic Covidome increases after the second lockdown, and it is higher for

the Central Italian regions, followed by Southern and Northern Italy, respectively. It is evident

from these findings that a lockdown leads to low Covidome values between regions across all

Covid indicators, with the exception of discharged healed and deceased individuals: this might

be due to the fact that these time series represent the cumulative numbers in time, hence there

is no first and second wave trend as the time series are only increasing. In fact we did the simu-

lations by using daily values and we noticed that for both discharged healed and deceased indi-

viduals time series we have more variation in the mean dynamic Covidome values than for the

case where cumulative numbers were used, with the exception of the last one that leads in any

case to high values of the mean dynamic Covidome. Furthermore, the difference between first

and second wave may be due to the fact that during the first lockdown most of the cases were

concentrated in the Northern regions and hence the situation was more heterogeneous, while

in the second wave different regions were experiencing similar lockdown scenarios (values of

Covidome are indeed not as low as in the first wave). For all six time series we observed

another correlation drop during summer, when there were less Covid cases, and in all the

cases but home isolation the lower values were localized in this time interval. Notably, the

drop in the dynamic Covidome values soon after the lockdowns appears with a certain delay

with respect to the effective dates of the hospitalized individuals with symptoms, and no delay

for new cases. The reason for this different behavior is two-fold: first, the information at each

time point in Fig 3 represents a window of three weeks; second, it was shown that there is an

intrinsic delay of 3 and 10.4 days, depending on the age of the patient, from the day a person

shows symptoms to Sars-Cov-2 and needs to be hospitalized [34].

Note that the dynamic Covidome fluctuations should always be interpreted together with

the historical process of the pandemic spread. For instance, we observed three characteristic

drops in the average Covidome value in most of the time series considered, specifically hospi-

talized with symptoms, new positives, hospitalized in ICU and home isolation: two, shortly

after the lockdowns, when the virus slowed down due to the prevention measurements taken;
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the third one, during the summer, when no restriction traveling was imposed. The summer

drop might have a trivial explanation, intrinsic to the pandemic evolution in time: it can be

related to a trend towards zero of the aforementioned indicators, which will consequently

bring the average Covidome value to zero as well. This is probably due to the fact that people

gathered outside, diminishing the probability of getting infected. Recent studies also found a

negative correlation between the external temperature and the spreading of the virus [35, 36].

The two drops after the lockdown measures were taken, however, leave room for more inter-

esting speculations. These decreases suggest that the covariance between pairs of Italian

regions break off. That is, the regional indicators’ trends get decoupled with each other, after

the two lockdown measures were introduced (see also S1 and S2 Videos of Supplementary

material). Hence, we can conclude that the decrease in the average Covidome value after the

first and second wave (see S2A1-S2F1 Fig in S1 File) might be a consequence of how each

region has dealt with the two policy measurements, which in turn has brought the synchrony

in the pandemic indicators to fade. Hence, two similar drops might have different meanings,

depending on the political choices adopted and the level of diffusion of the pandemic.

Dynamic Covidome and structural connectome correlation

From the functional-structural correlation results (Fig 4B) one can notice that the Covid connec-

tivity of the Northern regions is generally poorly correlated to the structure, whereas the Central

regions change from high to low correlation (’[−1, 1]) during the pandemic outbreak, and

finally the Southern regions vary their structure-function correlation in smaller interval than the

Central regions (’[−0.5, 0.5]). During the first wave the dynamic Covidomes of the hospitalized

with symptoms (Fig 4B) of the Southern regions are positively correlated with the structural con-

nectome. Northern and Central regions, however, both show little or no correlation with the

geographical Italian network during the first wave. The scenario changes completely when one

analyzes the hospitalized with symptoms during the second wave. The Covid connectivity of the

Central regions co-varies with interregional distance in a larger range, as opposed to the North-

ern regions where the functional-structural correlation is always negative.

For what concerns the structure-function associations between dynamic Covidomes of new

positive cases (Fig 4D), it is noticeable a larger variability (’[−1, 1]) for the Central regions,

whereas this range gets smaller for Northern and Southern areas. The variability for central

regions decrease in the second differentiated lockdown. These results also confirm the score of

the Central regions in the Covid allegiance matrix. As can be seen in Table 2, for new positives,

in the first wave there is a negative functional-structural correlation average for the Northern

and Southern regions, respectively, which is maintained across the second wave.

Two hypothesis can be postulated to explain the structure-function differences across lock-

downs: one relates to the fact that the virus outbreak originated in the North and hit the South-

ern region with a larger delay, due to the closure of the borders; the second is that, during the

second wave, the political decisions aimed at reducing the mobility from and to the “at risk”

regions helped in “disconnecting” the Covidome dynamics from the Italian geographical net-

work, hence keeping the functional-structural correlation mean negative.

Limitations and future directions

This study has some limitations. The use of the Pearson’s correlation coefficient as a metric to

compute the Covidomes might be limited. Further studies should explore more advanced

methods or directed measurements, based on information theory and time series analysis, or

even, for a deeper analysis, on Graph Signal Processing tools [37, 38]. Another limitation, that

can also bring to further analysis, is the computation of the structural connectome based on
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the geographical arclength between regions. It will be interesting to see how the Covidome

relates to the structural connectome based on mobility data [39], or even the one extracted

from the Italian public transportation network data.

Furthermore, in our work, the community detection was performed over the entire 2020

time-series. Assuming that regions behaved similarly during the first lockdown and differently

during the second, due to the different lockdown policies, it could be interesting to separate

the two periods of analyses. Future studies might use the first lockdown as a “null model” (no

regional differentiation on the containment policy), and use it as a benchmark for the analysis

of second lockdown (where effective differentiation happens).

Here we have used the eigenvector centrality of a correlation matrix in order to test the

functional “prominence” or relevance of a specific region/area in the Covid functional connec-

tivity, and how that is related to the political policies. Future work should also explore other

centrality measures.

The Covidome methodology presented here and applied to the Italian case study can be eas-

ily adapted to other countries with a federal state organization, or more generally at the Euro-

pean level, depending on the granularity detail of study. The analysis on the second lockdown

could also be performed using data at Italian provincial level, similarly to [40]. Besides the

aforementioned limitations, we believe that the use of these network-scientific tools might

inform on the link between the temporal information inherent to Covid time series and the

efficiency of the political decisions of each nation’s governments.

Conclusions

We here presented a first investigation of the functional network of Covid-19 pandemic (Covi-

dome), across different indicators. We show that dynamics and structure of the Covidomes is

dependent of the political choice made by the Italian government, suggesting that the Covi-

dome might serve as a good indicator to infer region-to-region spreading during the pan-

demic. This approach seems promising based on these preliminary findings, and we hope that

it can help in shedding light on the complex system generated by Covid-19.

Supporting information

S1 File. Supplementary material. In this file we report the results for the remaining four time

series, hospitalized in ICU, home isolation, discharged healed and deceased individuals,

respectively. Moreover the robustness of the modularity solutions on different parameters is

introduced.

(ZIP)

S1 Video. Hospitalized with symptoms dynamic Covidome. On the top row we have repre-

sented the dynamic Covidome (left panel) and the Italian regions map (right panel) containing

the normalized (to [0, 1] interval) regional average connectivity of the dynamic Covidome in

time. On the bottom row we have plotted the three time series corresponding to the mean

dynamic Covidomes for the aforementioned Italian areas. The green sliding window depicts

the 21 days time window.

(AVI)

S2 Video. New positives dynamic Covidome. On the top row we have represented the

dynamic Covidome (left panel) and the Italian regions map (right panel) containing the nor-

malized (to [0, 1] interval) regional average connectivity of the dynamic Covidome in time.

On the bottom row we have plotted the three time series corresponding to the mean dynamic
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Covidomes for the aforementioned Italian areas. The green sliding window depicts the 21 days

time window.

(AVI)
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