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Abstract 

Bac kgr ound: Sc hizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale 
brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential 
diagnostic markers for schizophrenia. 

Objective: We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia 
classification models. 

Methods: We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and 

gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and func- 
tional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learn- 
ing inte gr ation fr amew ork, together with sever al conventional mac hine learning methods and neur al netw orks for patient classifica- 
tion. 

Results: We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ∼0.76–
0.92) in contrast to the single-modality models, with AUC impr ov ements of 8.88 to 22.64%. Similar findings were observed for the 
neur al netw ork, showing an incr ease of 16.57% for the m ultimodal classification model (accuracy 71.43%) compar ed to the single- 
modal av era ge. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major 
contribution to disease classification. 

Conclusion: We provide empirical evidence for the increased accuracy achie ved b y imaging genetic data inte gr ation in schizophrenia 
classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing 
tr eatment r e gimens in sc hizophrenia. 

Ke yw or ds: sc hizophrenia; mac hine learning; multi-omics; genomics; tr anscriptomics 
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Introduction 

Sc hizophr enia (SZ) is a pr e v alent neur opsyc hiatric condition c har- 
acterized by symptoms of hallucinations , delusions , cognitive 
deficits, and emotional disturbances (McCutcheon et al., 2020 ). Us- 
ing multimodal neuroimaging data, patients with SZ have been 

observed to display a wide range of abnormalities in brain mor- 
phology (Hulshoff Pol et al., 2002 ; Liu et al., 2020 ) as well as the 
structural and functional connectome (Cui et al., 2019 ; Griffa et 
al., 2019 ; Gao et al., 2023 ). Given such observed brain abnormali- 
ties, emer ging r esearc h implements conv entional mac hine learn- 
ing (ML) or deep learning (DL) fr ame works to distinguish SZ pa- 
tients from healthy individuals, aiming to build up an objective,
valid model that augments diagnosis or prognosis of the disorder 
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n clinical practice (Gao et al., 2018 ; Sadeghi et al., 2022 ; Chen et
l., 2023 ; Sui et al., 2023 ). Despite these efforts, the extant meth-
ds have yet to achieve clinical applicability. Possible reasons that
inder clinical translation include the high heterogeneity among 
atients and the highly complex etiology across multiple scales 

Guggenmos et al., 2020 ; Sadeghi et al., 2022 ). 
Integr ating neur oima ging data with genetic data might im-

r ov e our understanding of the complex heterogeneity in SZ
athophysiology and further enhance the performance of ML/DL 
odels. SZ is known to be a polygenic disorder determined by
 ultiple genetic v ariants (Trubetsk oy et al., 2022 ). Mor e intrigu-

ngl y, SZ pol ygenic risk scores have been observed to be associ-
ted with the macroscale connectomic changes in the brain (Cao
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Table 1: Scanning parameters. 

T1 DWI rsfMRI 

TR (ms) 8.2 10 000 2000 
TE (ms) 3.2 82.4 30 
Flip angle ( ◦) 12 NA 90 
Field of view (mm 

2 ) 256 × 256 240 × 240 240 × 240 
Matrix 256 × 256 128 × 128 64 × 64 
Slice thickness (mm) 1 2 3.5 
Slice gap (mm) 0 0 0 
Number of slices 196 70 45 

NA, not applicable; TE, echo time; TR, repetition time. 
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t al., 2020 ; Wei et al., 2023 ), suggesting that connectivity deficits in
Z patients might be related to specific genetic variants. Further-
or e, tr anscriptional pr ofiles of SZ risk genes wer e found to be as-

ociated with brain volume changes and disconnectivity profiles
n SZ (Romme et al., 2017 ; Ji et al., 2021 ), pointing to the multi-scale
ssociation of SZ etiology. These results also implicated the poten-
ial of fusing m ulti-scale, m ulti-omics data to explain the disorder

or e accur atel y. A study has indeed found an incr eased explained
ariance when classifying SZ from healthy controls (HCs) using
r ain c har acteristics to fine-tune pol ygenic scor es of SZ (v an der
eer et al., 2022 ). Ho w e v er, it r emains unknown whether combin-

ng transcriptomic and neuroimaging data could improve ML/DL
odels for SZ classification, and if so, how different types of data

usion method beha ve . 
To this end, the current study collected blood transcriptomic

nd neur oima ging data and extr acted m ulti-omics featur es to
 v aluate the impact of multi-scale data fusion in SZ classifica-
ion. Thr ee ML integr ation fr ame w orks w er e e v aluated, together
ith se v er al conv entional ML methods and DL neural networks.
e also emplo y ed systematic ablation experiments to assess the

ontributions of each dataset, which enhanced the interpretabil-
ty of the models. We hypothesize that integrating transcription
ata with neur oima ging will incr ease classification accur acy in
ifferent settings of SZ classifiers. 

aterials and methods 

articipants 

he current study includes 43 patients with SZ and 60 age- and
ex-matched HC. All participants were right-handed and of Han
hinese ethnicity. Patients were recruited from the Department
f Psychiatry at Xijing Hospital and controls were enrolled from
ocal comm unities thr ough adv ertising. P atients wer e dia gnosed
ased on the Diagnostic and Statistical Manual of Mental Disorders,
ifth Edition (DSM-5), with consensus diagnoses made by two expe-
ienced clinical psychiatrists using all the available information.
his study was a ppr ov ed by the institutional ethics committee,
irst Affiliated Hospital of Fourth Military Medical University and
ll participants provided written informed consent of participa-
ion. 

NA-seq acquisition and preprocessing 

N A sequencing (RN A-seq) data from intravenous blood were
sed in this study. The data collection protocol has been described

n detail in our pr e vious study (Cui et al., 2023 ). Briefly, blood sam-
les (2.5 ml) were collected in a PAXgene Blood RNA Tube and were

mmediatel y fr ozen at −80 ◦C. RNA sequencing was performed
sing Illumina Novaseq 6000 (Rothberg et al., 2011 ). Low-quality
 eads wer e filter ed out by Fastp (v.0.18.0) (Chen et al., 2018 ) and fil-
er ed r eads wer e ma pped to human r efer ence genome hg19 using
ISAT2.2.4 (Kim et al., 2015 ). The count data of 20 313 genes r epr e-

enting the number of sequence reads were obtained. Count data
ere further normalized using DESeq2 (Love et al., 2014 ), resulting

n normalized gene expression of 17 999 genes. 
We then selected SZ risk genes using summary statistics from

he largest genome-wide association study (GWAS) on SZ from
ast Asian populations (including 22 778 patients with SZ and 35
62 control participants) (Lam et al., 2019 ). The SNP-based statis-
ics wer e ma pped to 346 genes using three gene ma pping a p-
r oac hes, including positional ma pping, eQTL ma pping, and c hr o-
atin interaction mapping, which were performed using FUMA

Watanabe et al., 2017 ). A total of 346 genes were then obtained and
efined as SZ risk genes, and their corresponding gene expression
ata were used in the following analysis ( Supplementary Table 1 ).

eur oima ging data acquisition and 

reprocessing 

1-weighted magnetic resonance imaging (MRI), diffusion-
eighted imaging (DWI), and resting-state functional MRI

rsfMRI) data were collected using a GE Discovery MR750 3.0 T
canner. Scanning par ameters wer e described in our pr e vious
tudy (Cui et al., 2019 ) and are tabulated in Table 1 . 

T1-weighted MRI data wer e pr epr ocessed using FreeSurfer
v.6.0) (Fischl, 2012 ) to segment brain tissue and to reconstruct cor-
ical mantle. Using the Desikan–Killiany (Desikan et al., 2006 ) atlas,
he reconstructed cortical ribbon and subcortex were divided into
2 br ain r egions [68 cortical r egions (34 in eac h hemispher e) and
4 subcortical regions] (Desikan et al., 2006 ). 

Connectome reconstruction was conducted using DWI data
nd rsfMRI data through FSL (v.6.0) (Jenkinson et al., 2012 ) and
 AT O (v.3.1.2) (de Lange et al., 2021 ). Briefly, DWI data process-

ng includes: (i) volume realignment and corrections; (ii) diffu-
ion peaks reconstruction via CSD (Morez et al., 2021 ); and (iii)
ber tract reconstruction using FACT and streamlined tractogra-
hy (Mori et al., 1999 ). For each participant, an 82 × 82 structural
onnectivity (SC) matrix was r econstructed. The str eamline den-
ity (i.e. the number of streamlines betw een tw o regions divided
 y region v olume) w as used as SC weight. To exclude false-positive
onnections (de Reus and van den Heuvel, 2013 ), connections that
resent in > 60% of the entire sample were selected in the current
tudies. Missing values (i.e. unknown clinical features or connec-
ions that could not be detected in patients) in the sample were
upplemented with the mean value of this feature across all par-
icipants. 

RsfMRI data processing includes: (i) slice timing, realignment
nd co-r egistr ation with T1-weighted image; (ii) linear trends cor-
ection of the blood oxygenation le v el-dependent (BOLD) time se-
ies, as well as global nuisance covariance, including head motion
arameters and mean signals of white matter and ventricles; and

iii) band-pass filtering and motion scrubbing with FD and DVARS
hresholds (FD > 0.25, DVARS > 1.5). The functional connectivity

atrix describes correlations of the extracted BOLD time series
etween e v ery two r egions. 

ea ture extr action 

fter pr epr ocessing tr anscriptomic and neur oima ging data, 38 SZ
nd 48 HC were included (5 SZ and 12 HC were excluded due to
issing data). Specifically, 4 SZ and 11 HC were excluded due to
issing FC data; 1 SZ and 1 HC were excluded due to the absence

f cortical thickness data. For each of the remaining participants,
v e featur e matrices wer e obtained, including brain volume,

https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
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Figure 1: Scheme of feature fusion evaluation. ( A ) The first ML integration framework. The framework integrates five features into a multi-omics 
classification scheme and employs ML algorithms to classify SZ patients and HC controls after feature selection using the LASSO model in each fold 
cr oss-v alidation. ( B ) Majority voting rules . T he second ML integration framework trains separate SVM classifiers on each modality and employs the 
LASSO model and 5-fold cr oss-v alidation for feature selection. 
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cortical thickness, RNA-seq, structural connectivity, and func- 
tional connectivity. These five feature matrices were scaled by 
subtracting the mean of each feature and were divided by the 
standard de viation, suc h that all featur es had a mean of zer o and 

a standard deviation of one . F eature selection was performed us- 
ing the least absolute shrinkage and selection operator (LASSO) 
model (Tibshirani, 1996 ) based on penalty terms in the embed- 
ding method. LASSO allows the selection of c har acteristics that 
are most important for the prediction of the tar get v ariable by 
constraining the regression coefficients given the predictor vari- 
ables . T he LASSO model is implemented by optimizing the loss 
function while minimizing the sum of the residual sum of squares 
and the penalty term. The loss function can be expressed as: 

∣
∣| y − Xβ

∣
∣ | 2 + λ| | β| | 1 

where y denotes the labels for SZ and HC, X is the macro brain 

ima ge featur es or micr o genetic data, β is the corr elation coeffi- 
ients, || .|| 1 denotes the L1 paradigm, and λ is the regularization
arameter. 

ross v alida tion 

iv e-fold cr oss-v alidation was used, dividing the dataset into five
ubdivisions and taking four subdivisions each time as the train-
ng set and the remaining one sub-division as the test set. Strati-
ed KFold (Widodo et al., 2022 ) was used to perform 5-fold cross-
alidation in this study. To avoid feature leakage, feature selection
as only applied to the training dataset. The trained classifier was

ested on pr e viousl y unseen test data samples. 

eature fusion in conventional ML 

o examine whether integr ating tr anscription and neur oima g-
ng data boosts the performance in SZ classification, we e v al-
ated two ML integration frameworks . T he first ML framework
ir ectl y concatenates the fiv e featur es by splicing the features
t input superposition. We implemented se v er al ML a ppr oac hes,
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F igure 2: Neural netw ork. The input nodes are based on the number of features, and the output nodes are based on the number of categories (HC, SZ). 
The sixth network used the output vectors of the first five networks as input. 
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ncluding support vector machine (SVM), k -nearest neighbor algo-
ithm (KNN), decision tree, and random forest, to identify SZ pa-
ients from HC (Fig. 1 a). The parameters of the conventional ML

odel are described in the Supplementary Methods . T he perfor-
ance of these methods was assessed through the r eceiv er op-

r ating c har acteristic curv e, accur acy, pr ecision, r ecall, specificity,
nd F1-score. We additionally assessed the effectiveness of the
lassification methodology by conducting 100 permutation tests
n various multi-omics datasets, in which the labeled data were
 andoml y perm uted to show the robustness and dependability of
he classification a ppr oac h. 

For the second ML fr ame w ork, w e trained a separate classifier
n each modality and determined the final classification results
ased on the output of all classifiers . T his fr ame work also uses
he LASSO model for feature selection and 5-fold cr oss-v alidation.
ajority voting rules were used, which means a decision can only

e made when more than half of classifiers agree (Fig. 1 b). 

eature fusion in neural network 

e also examined multi-omics data fusion using a neural net-
ork. A total of six DL networks were constructed based on corti-

al volume , cortical thickness , RNA-seq, SC , FC , and output of the
rst five DL networks . T he output vector consists of the probability
hat the sample is classified as HC and SZ. The construction, train-
ng, and e v aluation of the six deep-learning networks are shown in
ig. 2 . The number of input nodes is based on the number of fea-
ures, and the number of output nodes is based on the number
f categories (i.e. HC, SZ). The connectivity matrix was r esha ped
nto a one-dimensional vector with the upper triangles r emov ed,
nd was stacked along the participants, resulting in a matrix with
he dimensions of n subjects × n connections {i.e. 86 × [(82 × 81)/2]}. The
nput of the sixth network consists of the output vectors of the
rst five networks . F eeding each training data point through the
etwork produces the output vector of weights . T his output vec-
or was compared to the target values, with any difference in the
redicted outcome and the real outcome (i.e. HC, SZ) defined as
n error using the cr oss-entr opy err or function. To simplify the
odel, the same number of knots was used for the hidden lay-

rs (second and third la yers). T he hidden layer nodes were cho-
en as 128 and 64, following the convention of using po w ers of 2.
he result of setting the number of nodes in the hidden layer de-
endent on the input nodes is shown in Supplementary Table 5 ,
hich shows similar results compared to the original network. Er-
 ors wer e calculated after eac h tr aining iter ation. The tr aining was
topped when the validation error ceased to decrease. After the
r aining sta ge, the performance of the obtained neur al network
as assessed in the e v aluation phase using the test dataset. The

oftmax activation function was used for the output nodes and
he output node with the highest probability was selected as the
redicted class label using a winner-take-all approach. 

esults 

v alua tion of multi-scale data fusion 

e first illustrate the classification performance (i.e. AUC) of the
ntegr ated featur e fusion in contrast to the performance ac hie v ed
y each single modality (Fig. 3 ). The number of features in the
lassifier are 17, 19, 74, 150, 45, and 156, separ atel y. Corr espond-
ng outcomes across these varying feature sets are detailed in
upplementary Figs. 2 –4 and Supplementary Tables 4 –6 , show-
ng similar performance to what we report in the main text.
or all classifiers, the first multi-omics fusion model in conven-
ional ML ac hie v ed an av er a ged AUC of 0.76–0.92, which outper-
ormed any single-modality model (AUC 0.64–0.84) (Table 2 ). This
esult suggests that integrating multi-omics features enhances
erformance in SZ classification, with the AUC increased by 8.88–
2.64%. Permutation testing (100 permutations) for the four ML
ethods sho w ed the original AUC ac hie v ed in the m ulti-omics

eature fusion model to significantly exceed random permuta-
ions ( P < 0.01; mean AUC area of 0.50–0.52 and a variance of
.01–0.02). 

In addition to AUC, accur acy, pr ecision, r ecall, specificity, and
1-scor e ar e pr esented in Table 3 . For SVM and KNN, the accur acy,
r ecision, r ecall, specificity, and F1-scor e of the first m ulti-omics
usion method in conventional ML sho w ed better performance
ompared to any single modality. For the decision tree model,
he accuracy achieved through multi-omics integration demon-
trated superior performance. For the random forest model, the

https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
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Figur e 3: T he first ML integr ation fr ame work. ( A ) Multi-omics fusion in conv entional ML. The first m ulti-omics model in conv entional ML outperforms 
any single-omics model in terms of AUC, with an increase of 0.06–0.17. ( B ) Permutation test. Permutation testing (100 permutations) in four ML 
methods shows a significant difference between the original AUC and random permutations ( P < 0.05). The mean AUC area is 0.50–0.52, and the 
variance is 0.01–0.02. ( C ) Single-omics model in conventional ML. DT, decision tree; RF, random forest. 

Table 2: AUC of the first ML integration framework. 

SVM KNN DT RF 

Cortical volume 0.72 0.75 0.73 0.70 
Cortical thickness 0.70 0.65 0.64 0.74 
RNA-seq 0.83 0.83 0.75 0.84 
Structural connectivity 0.77 0.72 0.64 0.75 
Functional connectivity 0.78 0.76 0.73 0.79 
Multi-omics fusion 0.92 0.91 0.76 0.87 

DT, decision tree; RF, random forest. 
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accurac y w as slightly lo w er than models solely based on RNA-seq 

data (Table 3 ). 
Note that the performance of the first ML integration frame- 

w ork w as better than the second ML integr ation fr ame work. For 
the second ML integration framew ork, the accurac y, precision, re- 
all, specificity, and F1-scor e wer e 65.10, 61.89, 97.78, 23.57, and
5.71%, r espectiv el y. Mor eov er, using the mean output from each
lassifier (pr edicted positiv e pr obability) for decision-making r e-
ealed similar results ( Supplementary Table 7 ). 

ontributions of different brain features 

e further examined the contributions of differ ent br ain featur es
n the first m ulti-omics integr ation fr ame work using conv entional

L. Correlation coefficients calculated by the LASSO model in 5-
old cr oss-v alidation wer e superimposed, whic h yielded 15 br ain
egions with high correlations (Fig. 4 ) (Scholtens et al., 2021 ). These
egions, including for example the right pallidum, left posterior 
ingulate , right frontal pole , and right temporal pole, were k e y re-
ions that could identify SZ patients in our first multi-omics fu-
ion model using conventional ML. The top 10 abnormal brain re-

https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
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Ta ble 3: Accurac y, precision, recall, specificity, and F1-score of the first ML integration framework. 

Cortical volume 
(%) 

Cortical thickness 
(%) RNA-seq (%) SC (%) FC (%) 

Multi-omics fusion 
(%) 

SVM Accuracy 72.09 67.45 79.15 77.97 73.14 80.20 
Precision 75.51 70.61 78.62 76.32 76.34 80.81 

Recall 79.11 73.33 87.56 89.56 76.22 84.89 
Specificity 63.93 60.36 68.57 63.21 67.50 73.21 
F1-score 75.59 71.21 82.36 82.17 74.65 82.23 

KNN Accuracy 61.63 66.21 82.55 69.74 73.20 75.62 
Precision 62.56 66.49 77.62 67.18 74.00 72.41 

Recall 81.33 81.56 98.00 93.78 82.67 91.78 
Specificity 37.86 47.50 62.86 40.00 60.00 55.71 
F1-score 70.18 72.87 86.46 77.70 76.72 80.65 

DT Accuracy 65.23 62.88 73.33 64.05 74.51 82.68 
Precision 69.01 68.77 79.81 69.22 77.40 85.59 

Recall 70.67 65.11 70.67 67.11 78.67 83.33 
Specificity 58.93 61.07 76.43 60.36 67.50 81.79 
F1-score 69.39 65.64 74.13 67.65 76.85 83.76 

RF Accuracy 66.34 60.59 79.02 76.80 73.20 75.56 
Precision 70.73 64.82 81.13 74.60 75.29 78.05 

Recall 74.89 65.11 83.33 89.56 78.44 78.44 
Specificity 56.43 55.71 73.57 61.07 65.00 70.71 
F1-score 71.50 64.08 81.35 81.27 75.70 77.21 

Figure 4: Contributions of features. ( A ) Abnormal brain regions of cortical volume. ( B ) Abnormal brain tegions of cortical thickness. ( C ) Abnormal brain 
regions of structural connectivity. ( D ) Abnormal brain regions of functional connectivity. 
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Table 4: AUC of the leav e-one-featur e-out fr ame work. 

SVM KNN DT RF 

Multi-omics fusion 0.92 0.91 0.76 0.87 
Leave cortical volume 0.90 0.87 0.77 0.90 
Leave cortical thickness 0.92 0.86 0.80 0.91 
Leave RNA-seq 0.81 0.80 0.75 0.82 
Leav e structur al connectivity 0.90 0.90 0.67 0.90 
Leave functional connectivity 0.87 0.86 0.79 0.91 

0  

r
0  

d

ions found in the pr e vious four modalities and their correlation
oefficients are shown in Supplementary Table 2 . 

eave-one-fea ture-out fr ame w ork.
e first illustrate the classification performance (i.e. AUC) of the

eav e-one-featur e-out fr ame work ( Supplementary Fig. 1 ). For all
lassifiers , the lea v e one featur e out fr ame work model ac hie v ed
n av er a ge AUC of 0.67–0.92 (Table 4 ), which was comparable to
he first multi-omics integration framework using conventional
L (AUC 0.76–0.92) (Table 4 ). 
Also note that when the RNA-seq data were removed, the per-

ormance of the model declined r emarkabl y (e.g. AUC dr opped to
.75–0.82) (Table 4 ). This decline was consistent with the supe-
ior performance observed with RNA-seq data alone (AUC 0.75–
.84) (Table 2 ), underscoring the importance of transcriptome
ata. 

https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
https://academic.oup.com/psyrad/article-lookup/doi/10.1093/psyrad/kkae005#supplementary-data
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Table 5: Neural network results. 

AUC Accuracy (%) 
Precision 

(%) Recall (%) Specificity (%) 
F1-score 

(%) 

Cortical volume 0.58 57.14 63.64 38.89 76.47 48.28 
Cortical thickness 0.58 57.14 53.57 88.24 27.78 66.67 
RNA-seq 0.56 57.14 61.90 65.00 46.67 63.41 
Structural connectivity 0.54 51.43 48.28 87.50 21.05 62.22 
Functional connectivity 0.72 68.57 86.67 59.09 84.62 70.27 
Multi-omics fusion 0.71 71.43 73.33 64.71 77.78 68.75 
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Ev alua tion of DL neural network 

We also examined the performance of the DL neural network.
The accuracy achieved for multi-omics feature fusion using neu- 
ral network was 80.00%, which outperformed that of single 
modality DL networks (Table 5 ). This again confirms that the in- 
tegration of imaging and transcriptomic data could improve the 
accuracy of SZ classification, regardless of the choice of the clas- 
sification methodology. 

Discussion 

In the current study, we evaluated whether ML ensemble methods 
that combine transcriptomic and neuroimaging data could im- 
pr ov e the accur acy of identifying patients with SZ. Specifically, the 
ML integr ation fr ame work demonstr ated a r emarkable incr ease in 

av er a ge accur acy for m ulti-omics data. This incr ease r anges be- 
tween 4.64 and 13.91% when compared to the single-omics aver- 
age, accompanied by AUC improvements of 8.88 to 22.64%. More- 
over, the DL network revealed a substantial enhancement in the 
av er a ge accur acy of m ulti-omics, whic h was 16.57% higher than 

that of the single-omics av er a ge. In summary, our findings pro- 
vide empirical evidence for the choice of data fusion strategies 
when integr ating m ulti-omics and tr ans-scale data to dia gnose 
SZ. 

P articularl y in the first ML integration framework, our research 

pr ovides methodological r efer ences for studies of SZ classifica- 
tion models, using algorithms such as SVM, decision tr ee, r an- 
dom forest, and KNN. The majority voting rule could not effec- 
tiv el y impr ov e the decision-making ability of the model. The r ea- 
son might be that information is still learned from the single- 
omics features during classifier training, and the adv anta ge of 
m ulti-omics featur e learning is not taken into account. In the DL 
neural network, hidden layers could learn complex nonlinear re- 
lationships, demonstr ating excellent r ecognition performance for 
HC and SZ. For all these methods, the addition of transcriptional 
data impr ov ed the pr edictability of SZ in contrast to simply using 
neur oima ging data, confirming that integrating transcriptomic 
data and neur oima ging enhances the effectiv eness of ML/DL 
models. 

T he a v er a ge AUC of the leave one feature out fr ame work closel y 
matches that of the multi-omics fusion model in conventional ML.
Despite similar results between the two models, the study pre- 
serves all five features due to their unique contributory insights 
and the broader objective of pinpointing abnormal br ain r egions 
in patients with SZ beyond mere classification. Notably, the exclu- 
sion of RNA-seq data led to a remarkable decrease in model per- 
formance, reinforcing the critical role of integrating micro-omics 
data for a more comprehensive understanding of the disease. 

Abnormal br ain r egions in patients with SZ wer e also found by 
the LASSO model. These findings were consistent with pr e vious 
studies, demonstrating the abnormalities of the right pallidum,
eft isthmus cingulate, right frontal pole, and right temporal pole
n individuals with SZ (van den Heuvel et al., 2010 ; Schijven et al.,
023 ). These results together guided feature selection for future
tudies that de v elop ML/DL diagnostic models for SZ. 

Se v er al consider ations hav e to be dr awn in the curr ent study.
irst, the sample size is small, consisting of only 38 SZ and 48
C participants . T his limited sample size may hinder the com-
rehension of disease heterogeneity and the translation of mod- 
ls to new, unseen datasets. Future research on SZ would benefit
rom expanded samples. Second, the RNA-seq data derived from 

lood samples were used in the current study. Although gene ex-
r essions wer e corr elated between blood and br ain samples, our
ata still could not accur atel y r eflect gene expression in specific
r ain ar eas that might be dir ectl y underlined alter ations in the
entral nervous system. Third, the models we used for e v alua-
ion ar e r elativ el y basic owing to the limitations inherent in the
ataset. Futur e r esearc h could potentiall y explor e mor e sophisti-
ated and advanced models to improve the accuracy of disease
r ogr ession pr ediction (Zhao et al. , 2020 ; Lei et al. , 2023 ; Yue et al. ,
023 ). 

In conclusion, by combining macroscale brain imaging data 
nd microscale gene transcriptome data, this study demonstrates 
he great potential and prospect of the application of multi-omics

odeling in assisting and optimizing the diagnosis of SZ. 
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