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Abstract

Background: Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale
brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential
diagnostic markers for schizophrenia.

Objective: We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia
classification models.

Methods: We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and
gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and func-
tional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learn-
ing integration framework, together with several conventional machine learning methods and neural networks for patient classifica-
tion.

Results: We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76—
0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the
neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-
modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major
contribution to disease classification.

Conclusion: We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia
classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing
treatment regimens in schizophrenia.
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Introduction in clinical practice (Gao et al.,, 2018; Sadeghi et al., 2022; Chen et

Schizophrenia (SZ) is a prevalent neuropsychiatric condition char-
acterized by symptoms of hallucinations, delusions, cognitive
deficits, and emotional disturbances (McCutcheon et al., 2020). Us-
ing multimodal neuroimaging data, patients with SZ have been
observed to display a wide range of abnormalities in brain mor-
phology (Hulshoff Pol et al., 2002; Liu et al., 2020) as well as the
structural and functional connectome (Cui et al.,, 2019; Griffa et
al., 2019; Gao et al., 2023). Given such observed brain abnormali-
ties, emerging research implements conventional machine learn-
ing (ML) or deep learning (DL) frameworks to distinguish SZ pa-
tients from healthy individuals, aiming to build up an objective,
valid model that augments diagnosis or prognosis of the disorder

al., 2023; Sui et al., 2023). Despite these efforts, the extant meth-
ods have yet to achieve clinical applicability. Possible reasons that
hinder clinical translation include the high heterogeneity among
patients and the highly complex etiology across multiple scales
(Guggenmos et al., 2020; Sadeghi et al., 2022).

Integrating neuroimaging data with genetic data might im-
prove our understanding of the complex heterogeneity in SZ
pathophysiology and further enhance the performance of ML/DL
models. SZ is known to be a polygenic disorder determined by
multiple genetic variants (Trubetskoy et al., 2022). More intrigu-
ingly, SZ polygenic risk scores have been observed to be associ-
ated with the macroscale connectomic changes in the brain (Cao
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et al., 2020; Wei et al., 2023), suggesting that connectivity deficits in
SZ patients might be related to specific genetic variants. Further-
more, transcriptional profiles of SZ risk genes were found to be as-
sociated with brain volume changes and disconnectivity profiles
in SZ (Romme et al., 2017; Jiet al., 2021), pointing to the multi-scale
association of SZ etiology. These results also implicated the poten-
tial of fusing multi-scale, multi-omics data to explain the disorder
more accurately. A study has indeed found an increased explained
variance when classifying SZ from healthy controls (HCs) using
brain characteristics to fine-tune polygenic scores of SZ (van der
Meer et al., 2022). However, it remains unknown whether combin-
ing transcriptomic and neuroimaging data could improve ML/DL
models for SZ classification, and if so, how different types of data
fusion method behave.

To this end, the current study collected blood transcriptomic
and neuroimaging data and extracted multi-omics features to
evaluate the impact of multi-scale data fusion in SZ classifica-
tion. Three ML integration frameworks were evaluated, together
with several conventional ML methods and DL neural networks.
We also employed systematic ablation experiments to assess the
contributions of each dataset, which enhanced the interpretabil-
ity of the models. We hypothesize that integrating transcription
data with neuroimaging will increase classification accuracy in
different settings of SZ classifiers.

Materials and methods

Participants

The current study includes 43 patients with SZ and 60 age- and
sex-matched HC. All participants were right-handed and of Han
Chinese ethnicity. Patients were recruited from the Department
of Psychiatry at Xijing Hospital and controls were enrolled from
local communities through advertising. Patients were diagnosed
based on the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5), with consensus diagnoses made by two expe-
rienced clinical psychiatrists using all the available information.
This study was approved by the institutional ethics committee,
First Affiliated Hospital of Fourth Military Medical University and
all participants provided written informed consent of participa-
tion.

RNA-seq acquisition and preprocessing

RNA sequencing (RNA-seq) data from intravenous blood were
used in this study. The data collection protocol has been described
in detail in our previous study (Cui et al., 2023). Briefly, blood sam-
ples (2.5 ml) were collected in a PAXgene Blood RNA Tube and were
immediately frozen at —80°C. RNA sequencing was performed
using Illumina Novaseq 6000 (Rothberg et al., 2011). Low-quality
reads were filtered out by Fastp (v.0.18.0) (Chen et al., 2018) and fil-
tered reads were mapped to human reference genome hg19 using
HISAT2.2.4 (Kim et al., 2015). The count data of 20 313 genes repre-
senting the number of sequence reads were obtained. Count data
were further normalized using DESeq?2 (Love et al., 2014), resulting
in normalized gene expression of 17 999 genes.

We then selected SZ risk genes using summary statistics from
the largest genome-wide association study (GWAS) on SZ from
East Asian populations (including 22 778 patients with SZ and 35
362 control participants) (Lam et al.,, 2019). The SNP-based statis-
tics were mapped to 346 genes using three gene mapping ap-
proaches, including positional mapping, eQTL mapping, and chro-
matin interaction mapping, which were performed using FUMA
(Watanabe et al., 2017). A total of 346 genes were then obtained and

Table 1: Scanning parameters.

T1 DWI rsfMRI
TR (ms) 8.2 10 000 2000
TE (ms) 3.2 82.4 30
Flip angle (°) 12 NA 90
Field of view (mm?) 256 x 256 240 x 240 240 x 240
Matrix 256 x 256 128 x 128 64 x 64
Slice thickness (mm) 1 2 3.5
Slice gap (mm) 0 0 0
Number of slices 196 70 45

NA, not applicable; TE, echo time; TR, repetition time.

defined as SZ risk genes, and their corresponding gene expression
data were used in the following analysis (Supplementary Table 1).

Neuroimaging data acquisition and
preprocessing

T1-weighted magnetic resonance imaging (MRI), diffusion-
weighted imaging (DWI), and resting-state functional MRI
(rsfMRI) data were collected using a GE Discovery MR750 3.0 T
scanner. Scanning parameters were described in our previous
study (Cui et al., 2019) and are tabulated in Table 1.

T1-weighted MRI data were preprocessed using FreeSurfer
(v.6.0) (Fischl, 2012) to segment brain tissue and to reconstruct cor-
tical mantle. Using the Desikan-Killiany (Desikan et al., 2006) atlas,
the reconstructed cortical ribbon and subcortex were divided into
82 brain regions [68 cortical regions (34 in each hemisphere) and
14 subcortical regions] (Desikan et al., 2006).

Connectome reconstruction was conducted using DWI data
and rsfMRI data through FSL (v.6.0) (Jenkinson et al., 2012) and
CATO (v.3.1.2) (de Lange et al., 2021). Briefly, DWI data process-
ing includes: (i) volume realignment and corrections; (i) diffu-
sion peaks reconstruction via CSD (Morez et al., 2021); and (iii)
fiber tract reconstruction using FACT and streamlined tractogra-
phy (Mori et al., 1999). For each participant, an 82 x 82 structural
connectivity (SC) matrix was reconstructed. The streamline den-
sity (i.e. the number of streamlines between two regions divided
by region volume) was used as SC weight. To exclude false-positive
connections (de Reus and van den Heuvel, 2013), connections that
present in >60% of the entire sample were selected in the current
studies. Missing values (i.e. unknown clinical features or connec-
tions that could not be detected in patients) in the sample were
supplemented with the mean value of this feature across all par-
ticipants.

RsfMRI data processing includes: (i) slice timing, realignment
and co-registration with T1-weighted image; (ii) linear trends cor-
rection of the blood oxygenation level-dependent (BOLD) time se-
ries, as well as global nuisance covariance, including head motion
parameters and mean signals of white matter and ventricles; and
(ii) band-pass filtering and motion scrubbing with FD and DVARS
thresholds (FD > 0.25, DVARS > 1.5). The functional connectivity
matrix describes correlations of the extracted BOLD time series
between every two regions.

Feature extraction

After preprocessing transcriptomic and neuroimaging data, 38 SZ
and 48 HC were included (5 SZ and 12 HC were excluded due to
missing data). Specifically, 4 SZ and 11 HC were excluded due to
missing FC data; 1 SZ and 1 HC were excluded due to the absence
of cortical thickness data. For each of the remaining participants,
five feature matrices were obtained, including brain volume,
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Figure 1: Scheme of feature fusion evaluation. (A) The first ML integration framework. The framework integrates five features into a multi-omics
classification scheme and employs ML algorithms to classify SZ patients and HC controls after feature selection using the LASSO model in each fold
cross-validation. (B) Majority voting rules. The second ML integration framework trains separate SVM classifiers on each modality and employs the

LASSO model and 5-fold cross-validation for feature selection.

cortical thickness, RNA-seq, structural connectivity, and func-
tional connectivity. These five feature matrices were scaled by
subtracting the mean of each feature and were divided by the
standard deviation, such that all features had a mean of zero and
a standard deviation of one. Feature selection was performed us-
ing the least absolute shrinkage and selection operator (LASSO)
model (Tibshirani, 1996) based on penalty terms in the embed-
ding method. LASSO allows the selection of characteristics that
are most important for the prediction of the target variable by
constraining the regression coefficients given the predictor vari-
ables. The LASSO model is implemented by optimizing the loss
function while minimizing the sum of the residual sum of squares
and the penalty term. The loss function can be expressed as:

[ly — XB| 1>+ 2lIBlI;

where y denotes the labels for SZ and HC, X is the macro brain
image features or micro genetic data, B is the correlation coeffi-

cients, ||.||; denotes the L1 paradigm, and A is the regularization
parameter.

Cross validation

Five-fold cross-validation was used, dividing the dataset into five
subdivisions and taking four subdivisions each time as the train-
ing set and the remaining one sub-division as the test set. Strati-
fied KFold (Widodo et al., 2022) was used to perform 5-fold cross-
validation in this study. To avoid feature leakage, feature selection
was only applied to the training dataset. The trained classifier was
tested on previously unseen test data samples.

Feature fusion in conventional ML

To examine whether integrating transcription and neuroimag-
ing data boosts the performance in SZ classification, we eval-
uated two ML integration frameworks. The first ML framework
directly concatenates the five features by splicing the features
at input superposition. We implemented several ML approaches,
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Figure 2: Neural network. The input nodes are based on the number of features, and the output nodes are based on the number of categories (HC, SZ).

The sixth network used the output vectors of the first five networks as input.

including support vector machine (SVM), k-nearest neighbor algo-
rithm (KNN), decision tree, and random forest, to identify SZ pa-
tients from HC (Fig. 1a). The parameters of the conventional ML
model are described in the Supplementary Methods. The perfor-
mance of these methods was assessed through the receiver op-
erating characteristic curve, accuracy, precision, recall, specificity,
and F1-score. We additionally assessed the effectiveness of the
classification methodology by conducting 100 permutation tests
on various multi-omics datasets, in which the labeled data were
randomly permuted to show the robustness and dependability of
the classification approach.

For the second ML framework, we trained a separate classifier
on each modality and determined the final classification results
based on the output of all classifiers. This framework also uses
the LASSO model for feature selection and 5-fold cross-validation.
Majority voting rules were used, which means a decision can only
be made when more than half of classifiers agree (Fig. 1b).

Feature fusion in neural network

We also examined multi-omics data fusion using a neural net-
work. A total of six DL networks were constructed based on corti-
cal volume, cortical thickness, RNA-seq, SC, FC, and output of the
first five DL networks. The output vector consists of the probability
that the sample is classified as HC and SZ. The construction, train-
ing, and evaluation of the six deep-learning networks are shown in
Fig. 2. The number of input nodes is based on the number of fea-
tures, and the number of output nodes is based on the number
of categories (i.e. HC, SZ). The connectivity matrix was reshaped
into a one-dimensional vector with the upper triangles removed,
and was stacked along the participants, resulting in a matrix with
the dimensions of Ngypjects X Neonnections {1.€. 86 x [(82 x 81)/2]}. The
input of the sixth network consists of the output vectors of the
first five networks. Feeding each training data point through the
network produces the output vector of weights. This output vec-
tor was compared to the target values, with any difference in the
predicted outcome and the real outcome (i.e. HC, SZ) defined as
an error using the cross-entropy error function. To simplify the
model, the same number of knots was used for the hidden lay-
ers (second and third layers). The hidden layer nodes were cho-

sen as 128 and 64, following the convention of using powers of 2.
The result of setting the number of nodes in the hidden layer de-
pendent on the input nodes is shown in Supplementary Table 5,
which shows similar results compared to the original network. Er-
rors were calculated after each trainingiteration. The training was
stopped when the validation error ceased to decrease. After the
training stage, the performance of the obtained neural network
was assessed in the evaluation phase using the test dataset. The
softmax activation function was used for the output nodes and
the output node with the highest probability was selected as the
predicted class label using a winner-take-all approach.

Results
Evaluation of multi-scale data fusion

We first illustrate the classification performance (i.e. AUC) of the
integrated feature fusion in contrast to the performance achieved
by each single modality (Fig. 3). The number of features in the
classifier are 17, 19, 74, 150, 45, and 156, separately. Correspond-
ing outcomes across these varying feature sets are detailed in
Supplementary Figs. 2-4 and Supplementary Tables 4-6, show-
ing similar performance to what we report in the main text.
For all classifiers, the first multi-omics fusion model in conven-
tional ML achieved an averaged AUC of 0.76-0.92, which outper-
formed any single-modality model (AUC 0.64-0.84) (Table 2). This
result suggests that integrating multi-omics features enhances
performance in SZ classification, with the AUC increased by 8.88—
22.64%. Permutation testing (100 permutations) for the four ML
methods showed the original AUC achieved in the multi-omics
feature fusion model to significantly exceed random permuta-
tions (P < 0.01; mean AUC area of 0.50-0.52 and a variance of
0.01-0.02).

In addition to AUC, accuracy, precision, recall, specificity, and
Fl-score are presented in Table 3. For SVM and KNN, the accuracy,
precision, recall, specificity, and F1-score of the first multi-omics
fusion method in conventional ML showed better performance
compared to any single modality. For the decision tree model,
the accuracy achieved through multi-omics integration demon-
strated superior performance. For the random forest model, the
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Figure 3: The first ML integration framework. (A) Multi-omics fusion in conventional ML. The first multi-omics model in conventional ML outperforms
any single-omics model in terms of AUC, with an increase of 0.06-0.17. (B) Permutation test. Permutation testing (100 permutations) in four ML
methods shows a significant difference between the original AUC and random permutations (P < 0.05). The mean AUC area is 0.50-0.52, and the
variance is 0.01-0.02. (C) Single-omics model in conventional ML. DT, decision tree; RF, random forest.

Table 2: AUC of the first ML integration framework.

SVM KNN DT RF
Cortical volume 0.72 0.75 0.73 0.70
Cortical thickness 0.70 0.65 0.64 0.74
RNA-seq 0.83 0.83 0.75 0.84
Structural connectivity 0.77 0.72 0.64 0.75
Functional connectivity 0.78 0.76 0.73 0.79
Multi-omics fusion 0.92 0.91 0.76 0.87

DT, decision tree; RF, random forest.

accuracy was slightly lower than models solely based on RNA-seq
data (Table 3).

Note that the performance of the first ML integration frame-
work was better than the second ML integration framework. For
the second ML integration framework, the accuracy, precision, re-

call, specificity, and F1-score were 65.10, 61.89, 97.78, 23.57, and
75.71%, respectively. Moreover, using the mean output from each
classifier (predicted positive probability) for decision-making re-
vealed similar results (Supplementary Table 7).

Contributions of different brain features

We further examined the contributions of different brain features
in the first multi-omics integration framework using conventional
ML. Correlation coefficients calculated by the LASSO model in 5-
fold cross-validation were superimposed, which yielded 15 brain
regions with high correlations (Fig. 4) (Scholtens et al., 2021). These
regions, including for example the right pallidum, left posterior
cingulate, right frontal pole, and right temporal pole, were key re-
gions that could identify SZ patients in our first multi-omics fu-
sion model using conventional ML. The top 10 abnormal brain re-
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Table 3: Accuracy, precision, recall, specificity, and F1-score of the first ML integration framework.

Cortical volume Cortical thickness Multi-omics fusion
(%) (%) RNA-seq (%) SC (%) FC (%) (%)
SVM Accuracy 72.09 67.45 79.15 77.97 73.14 80.20
Precision 75.51 70.61 78.62 76.32 76.34 80.81
Recall 79.11 73.33 87.56 89.56 76.22 84.89
Specificity 63.93 60.36 68.57 63.21 67.50 73.21
F1-score 75.59 71.21 82.36 82.17 74.65 82.23
KNN Accuracy 61.63 66.21 82.55 69.74 73.20 75.62
Precision 62.56 66.49 77.62 67.18 74.00 72.41
Recall 81.33 81.56 98.00 93.78 82.67 91.78
Specificity 37.86 47.50 62.86 40.00 60.00 55.71
Fl-score 70.18 72.87 86.46 77.70 76.72 80.65
DT Accuracy 65.23 62.88 73.33 64.05 7451 82.68
Precision 69.01 68.77 79.81 69.22 77.40 85.59
Recall 70.67 65.11 70.67 67.11 78.67 83.33
Specificity 58.93 61.07 76.43 60.36 67.50 81.79
Fl-score 69.39 65.64 74.13 67.65 76.85 83.76
RF Accuracy 66.34 60.59 79.02 76.80 73.20 75.56
Precision 70.73 64.82 81.13 74.60 75.29 78.05
Recall 74.89 65.11 83.33 89.56 78.44 78.44
Specificity 56.43 55.71 73.57 61.07 65.00 70.71
F1-score 71.50 64.08 81.35 81.27 75.70 77.21

A B Cortical Thickness
. 0.219 . 0.141
B 0219 B 0141
correlation correlation
coefficient coefficient
. 0.151 . 0.201
W 0151 M 0201
correlation correlation
coefficient coefficient

Figure 4: Contributions of features. (A) Abnormal brain regions of cortical volume. (B) Abnormal brain tegions of cortical thickness. (C) Abnormal brain
regions of structural connectivity. (D) Abnormal brain regions of functional connectivity.

gions found in the previous four modalities and their correlation Table 4: AUC of the leave-one-feature-out framework.
coefficients are shown in Supplementary Table 2.

SVM KNN DT RF
Multi-omics fusion 0.92 0.91 0.76 0.87
Leave cortical volume 0.90 0.87 0.77 0.90
Leave-one-feature-out framework. Leave cortical thickness 0.92 0.86 0.80 0.91
. . . . Leave RNA-seq 0.81 0.80 0.75 0.82
;Ne first 1lhflstrate the cflas&ﬁcatll(zn perfTrmance (1.e1 AUC) of thﬁ Leave structural connectivity 0.90 0.90 0.67 0.90
eave-one-feature-out framework (Supplementary Fig. 1). For a Leave functional connectivity 0.87 0.86 0.79 0.91

classifiers, the leave one feature out framework model achieved
an average AUC of 0.67-0.92 (Table 4), which was comparable to
the first multi-omics integration framework using conventional
ML (AUC 0.76-0.92) (Table 4).

Also note that when the RNA-seq data were removed, the per-
formance of the model declined remarkably (e.g. AUC dropped to

0.75-0.82) (Table 4). This decline was consistent with the supe-
rior performance observed with RNA-seq data alone (AUC 0.75-
0.84) (Table 2), underscoring the importance of transcriptome
data.
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Table 5: Neural network results.
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Precision Fl-score
AUC Accuracy (%) (%) Recall (%) Specificity (%) (%)
Cortical volume 0.58 57.14 63.64 38.89 76.47 48.28
Cortical thickness 0.58 57.14 53.57 88.24 27.78 66.67
RNA-seq 0.56 57.14 61.90 65.00 46.67 63.41
Structural connectivity 0.54 51.43 48.28 87.50 21.05 62.22
Functional connectivity 0.72 68.57 86.67 59.09 84.62 70.27
Multi-omics fusion 0.71 71.43 73.33 64.71 77.78 68.75

Evaluation of DL neural network

We also examined the performance of the DL neural network.
The accuracy achieved for multi-omics feature fusion using neu-
ral network was 80.00%, which outperformed that of single
modality DL networks (Table 5). This again confirms that the in-
tegration of imaging and transcriptomic data could improve the
accuracy of SZ classification, regardless of the choice of the clas-
sification methodology.

Discussion

In the current study, we evaluated whether ML ensemble methods
that combine transcriptomic and neuroimaging data could im-
prove the accuracy of identifying patients with SZ. Specifically, the
ML integration framework demonstrated a remarkable increase in
average accuracy for multi-omics data. This increase ranges be-
tween 4.64 and 13.91% when compared to the single-omics aver-
age, accompanied by AUC improvements of 8.88 to 22.64%. More-
over, the DL network revealed a substantial enhancement in the
average accuracy of multi-omics, which was 16.57% higher than
that of the single-omics average. In summary, our findings pro-
vide empirical evidence for the choice of data fusion strategies
when integrating multi-omics and trans-scale data to diagnose
SZ.

Particularly in the first ML integration framework, our research
provides methodological references for studies of SZ classifica-
tion models, using algorithms such as SVM, decision tree, ran-
dom forest, and KNN. The majority voting rule could not effec-
tively improve the decision-making ability of the model. The rea-
son might be that information is still learned from the single-
omics features during classifier training, and the advantage of
multi-omics feature learning is not taken into account. In the DL
neural network, hidden layers could learn complex nonlinear re-
lationships, demonstrating excellent recognition performance for
HC and SZ. For all these methods, the addition of transcriptional
data improved the predictability of SZ in contrast to simply using
neuroimaging data, confirming that integrating transcriptomic
data and neuroimaging enhances the effectiveness of ML/DL
models.

The average AUC of the leave one feature out framework closely
matches that of the multi-omics fusion model in conventional ML.
Despite similar results between the two models, the study pre-
serves all five features due to their unique contributory insights
and the broader objective of pinpointing abnormal brain regions
in patients with SZ beyond mere classification. Notably, the exclu-
sion of RNA-seq data led to a remarkable decrease in model per-
formance, reinforcing the critical role of integrating micro-omics
data for a more comprehensive understanding of the disease.

Abnormal brain regions in patients with SZ were also found by
the LASSO model. These findings were consistent with previous
studies, demonstrating the abnormalities of the right pallidum,

left isthmus cingulate, right frontal pole, and right temporal pole
in individuals with SZ (van den Heuvel et al., 2010; Schijven et al.,
2023). These results together guided feature selection for future
studies that develop ML/DL diagnostic models for SZ.

Several considerations have to be drawn in the current study.
First, the sample size is small, consisting of only 38 SZ and 48
HC participants. This limited sample size may hinder the com-
prehension of disease heterogeneity and the translation of mod-
els to new, unseen datasets. Future research on SZ would benefit
from expanded samples. Second, the RNA-seq data derived from
blood samples were used in the current study. Although gene ex-
pressions were correlated between blood and brain samples, our
data still could not accurately reflect gene expression in specific
brain areas that might be directly underlined alterations in the
central nervous system. Third, the models we used for evalua-
tion are relatively basic owing to the limitations inherent in the
dataset. Future research could potentially explore more sophisti-
cated and advanced models to improve the accuracy of disease
progression prediction (Zhao et al., 2020; Lei et al., 2023; Yue et al.,
2023).

In conclusion, by combining macroscale brain imaging data
and microscale gene transcriptome data, this study demonstrates
the great potential and prospect of the application of multi-omics
modeling in assisting and optimizing the diagnosis of SZ.
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