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ABSTRACT

Evolution underpins the survival of a population under environmental pressure. Resistance to treatment commonly arises as
a result of such evolution. We analytically examine the addition of frequency-dependent effects on evolutionary outcomes.
Through the lens of experimental biology, we frame these interactions as cell-extrinsic, growth rate-modifying, ecological
interactions. Additionally, we show the extent to which the presence of these ecological interactions can modify evolutionary
trajectories predicted from cell-intrinsic properties alone and show that these interactions can modify evolution in such ways as
to mask or mimic or maintain the results of cell-intrinsic fitness advantages. This work has implications for the interpretation
and understanding of evolution, a result which may explain an abundance of apparently neutral evolution in cancer systems
and similarly heterogeneous populations. In addition, the derivation of an analytical result for stochastic, ecologically dependent
evolution paves the way for treatment approaches involving genetic and ecological control.

Author Summary
Through analytical and simulation methods we focus on decomposing the cell-intrinsic and cell-extrinsic interactions in a
game-theoretic framework for interacting subpopulations in a genetic system. We highlight the ability of extrinsic contributions
to arbitrarily alter the evolution of a population of interacting agents. We derive an exact solution to the 1-dimensional
Fokker-Planck equation for a two-player genetic system including mutation, selection, drift and games. Examining how the
strength of the specific game interactions alters our analytical solution, we validate these theoretical predictions in simulations.
We derive expressions for the conditions on the game interactions in this one-dimensional case that mask the cell-intrinsic
monoculture landscape dynamics.

Conflict of Interest Statement: The authors have no conflicts of interest to disclose.1

Introduction2

It has been observed across many systems that populations of cells, especially under heavy selection pressure, must adapt3

to survive. This Darwinian survival of the fittest results in the selection of mutations and a changing frequency of observed4

genotypes in a population1. Sufficiently strong evolutionary pressure can alter the genotypes of the entire population over5

subsequent generations. Traditionally, this has been considered a result of the intrinsic fitness of each genotype under the6

external evolutionary pressure of the environment, whether that is drug, temperature or other. In this regard, the genetic fitness7

landscape has been one method of understanding this cell-intrinsic fitness, selection and evolution. Fitness landscapes map8

out the fitness or reproductive potential of an individual based on its particular genotype location in genotype space. Peaks9

in this landscape correspond to high fitness or reproductive potential. Over time, populations migrate to local peaks in the10

landscape where they reproduce more quickly than at their initial location. The initial location, thereby, corresponds to a less11

“fit" genotype. Landscapes also allow for an understanding of neutral evolution; in this formalism flat regions of a fitness12

landscape are equally fit and thus all movement is through diffusive neutral evolution, increasing evolutionary stochasticity2.13

It is a frequent assumption that intrinsic cell fitness determines selection and evolutionary progression3. This assumption14

also means that it is common to predict evolution of a population based upon observed fitnesses of cells under treatment in15

mono-culture4. This assumption also extends to the belief that genotypic fitness is the explanatory variable when we analyse16
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Figure 1. Illustration of game dynamics between two populations (wildtype and mutant cells). Evolutionary game
theory between two players results in four types of dynamics. In the biological case, both the cell-intrinsic and cell-extrinsic
influences on growth rate come together in co-culture to produce novel dynamics. The observed dynamics rely not only on the
isolated behavior of cells, but also on the precise balance between intrinsic and extrinsic factors. In the top left quadrant, the
wildtype cell type dominates. In the top right quadrant, a heterogeneous mixture is promoted. In the bottom right quadrant, the
resistant mutant cell type dominates. Lastly, in the bottom left quadrant, coexistence is unstable and the populations are driven
to the nearest stable fixed point (all wildtype or all mutant).

the evolutionary trajectory of genotypes in experiments. In spite of the development of many effective targeted drugs, it is often17

the case that personalized treatment and drug development techniques eventually encounter failure. One possible explanation18

for this discrepancy lies in the problem of tumor heterogeneity and that in addition to the genetic selection of genotypes, the19

interactions between cell populations can also impact the fitness of a population5, 6. Game theoretic interactions are added20

to a model to reflect the presence of population frequency dependence in the fitness of an individual. When these ideas are21

incorporated into evolutionary models, the result is frequency-dependent selection(Figure 1).22

The presence of frequency-dependent selection has been observed to be a mechanism for maintaining diversity, including23

observations within experimental bacterial systems7–12. Theoretical studies have also shown the potential of frequency-24

dependent selection to promote high mutation rates and to accelerate evolution13, 14. Frequency-dependent selection has also25

been observed in cancer cell lines and in varying microenvironments; Kaznatcheev et al.15 demonstrated how alectinib-resistant26

and parental non-small cell lung cancer cells have different fitnesses in different relative population frequencies and how the27

presence of fibroblasts or changing treatment results in different evolutionary games. Many papers have also used game theory28

to model tumour growth and composition with the presence of game interactions between cells including the interaction of29

competing tumor and stromal cells and the production of growth factors as a strategy16–22. An underlying assumption of many30

of these models, including ours, is that the strategy of a cell is set by its genotype and therefore by its parent. Under this31

assumption, the "payoff" of the evolutionary game is reflected in a cell’s ability to replicate, i.e. producing another player of the32

same type.33

Frequency-dependent selection has been modelled in multiple ways, one of which is a frequency-dependent Moran34

process23. We focus on the more common Wright-Fisher formulation, expanding upon multiple works that have formalised35

the frequency-dependent Wright-Fisher model in multiple dimensions24, 25. The fixation time of the Wright-Fisher model and36

associated conservation laws have also been derived26, 27.37

We hypothesise that in the frequency-dependent Wright-Fisher model, game interactions can even fully mask or mimic38

genetic fitness, producing population dynamics that are not reflective of the ranking of cell-intrinsic fitnesses within the genetic39

landscape alone(Figure 1). Using a stochastic, agent-based model, we simulate a frequency-dependent Wright-Fisher model in40

1-dimension. We derive and validate expressions for the conditions on the game interactions in the 1-dimensional case that41

cause the resultant evolution to maintain, mimic or mask the dynamics of an initial genetic fitness landscape. The conclusion of42

such a hypothesis is that when ecological factors and interactions change the fitness of cells, the evolution of the population can43

only be modelled using game theory and population genetics in tandem. Our work emphasises that knowledge of cell-extrinsic44

interaction strengths is essential in accurately predicting evolution in co-culture.45
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Results46

Whilst monoculture growth rates of various cell lines are frequently measured, particularly under various selective pressures47

such as drugs, the properties of these same cell types whilst interacting in co-cultures are less frequently measured and48

understood. We develop both deterministic and stochastic mathematical approaches to study the evolutionary games in a49

genetic population under the assumption that the cell-intrinsic growth rates are modified by interaction with another population,50

also using computational approaches to model the impact of varying only interaction terms. We examine, predominantly, the51

dynamics of a two-player system, with strategies we term wildtype and mutant to reflect resistance evolution and consider the52

evolutionary dynamics of this type of interacting population both with and without noise.53

Deterministic evolutionary game theory54

Game theory is the study of the dynamics which result from the interaction of different strategies played against each other.
Specific strategies result in expected payoffs for the players and thus the average payoff depends upon the frequency of strategies
in the system. Differential game theory can describe deterministic solutions for these dynamics by means of differential
equations. In a symmetric game, the time ordering of played strategies does not effect the payoffs for the players involved. The
payoffs in a 2-strategy symmetric differential game can be presented as a payoff matrix in the following way:

P =

(
a b
c d

)
(1)

where a is the payoff for a player with strategy 1 playing against another player of type 1, b is the payoff for a player with55

strategy 1 playing against a player of type 2, c is the payoff for a player with strategy 2 playing against a player of type 1, and d56

is the payoff for a player with strategy 2 playing against a player of type 2. These values determine the expected payoffs or57

“fitness" for each player when the frequencies of strategies in the population is known.58

Within biology, available “strategies" are the growth rates of the populations under study. In this case, a cell, for example,
may not have the ability to actively choose a strategy. Under the assumption that a cell’s genome determines its strategy we use
an abstract model of the genome comprising a single site of interest, two alleles are possible, the wildtype with no mutation in
the relevant gene and the mutant, harbouring a resistance mutation at the site of interest. In genetic population models, strategy
proportions change when cells undergo self-replication, with fitter strategies reproducing at a faster rate. In this type of model,
the cells are called replicators; players with strategies that are determined by the strategy of their parent. The fitness of a cell’s
strategy determines its rate of replication and this formalism and accompanying equations are referred to as replicator dynamics.
The replicator equation describes the dynamics of the ith population fraction xi as a function of the payoff matrix P (Eq. 12)
where the payoff matrix, P contains the fitness information of each cell type (strategy). In the 2-dimensional case with payoff
matrix (Eq. 1), this reduces to the following form;

ẋ = x(1− x)((1− x)(b−d)− x(c−a)), (2)

where the proportion of type 2 is 1− x. Without the addition of noise, the replicator equation gives us deterministic solutions59

for the evolutionary stable strategies present. Without mutation in the population, this equation has solutions at x = 0, x = 160

and x = (b− d)/((b− d)+ (c− a)). As such different conditions on a, b, c and d result in different types of evolutionary61

stable solutions. These different conditions are often labelled as different types of games (hawk-dove, snowdrift etc.). One can62

construct the 2-dimensional “game space”, which has the axes c−a and b−d as shown in Figure 1. A game’s position in63

game space categorizes it into a certain universality class, for example in the 2-dimensional “game space” multiple games in64

the same quadrant may generate similar dynamics.65

Cell-intrinsic and cell-extrinsic components can be logically separated within the payoff matrix66

In the payoff matrix for two genetically distinct cell populations, the diagonal terms, a and d represent the monoculture growth
rates of each population. To illustrate and examine this, we modify the traditional payoff matrix, P, and decompose the
cell-intrinsic growth rates from the co-culture effects as follows;

P =

(
a b
c d

)
= a

(
1 1+αmw

1+ sm +αwm 1+ sm

)
, (3)

where sm is the selective advantage of the mutant cell and ai j is the growth-normalised interaction effect of population j on67

population i. The value of a experimentally is the replication rate of the wildtype cell, where the replication rate of the mutant68

can be represented by d or a(1+ sm).69

When there are no interactions (αwm, αmw→ 0), there is no frequency dependence, the rows of the payoff matrix become70

constant and the differential equations become uncoupled. In this case the deterministic non-interacting evolutionary dynamics71
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are recapitulated. We denoted the normalized game modifications to the growth rates in this system with mutant and wildtype72

cells as αwm and αmw. Thus any relative dynamics in a two-player system can be defined by game coefficients αwm, αmw and73

selection coefficient sm.74

Transformation reveals interaction dependency of the selection coefficient75

Game dynamics between wildtype and mutant alleles result in frequency-dependent selection with a dependence on both
the intrinsic growth rates of the cells and the interactions αwm and αmw. As the presence of interactions alters the resultant
dynamics, we introduce the idea of the effective selection coefficient σm. In the absence of stochastic effects, the resultant
fitness advantage of the mutant, σm(x), over the wildtype becomes

σm(x) =
sm−αwm +(αwm +αmw)x

1+αwm−αwmx
(4)

, where sm is the intrinsic growth advantage of the mutant, x is the proportion of wildtype cells in the population, φm(x) is the76

fitness of the mutant and φw(x) is the frequency dependent fitness of the wildtype.77

Figure 2. When viewed in interaction space, the classical quadrants are transformed by the magnitude of the mutant
selection advantage Under the transformation to interaction space under a given selection advantage sm the axes are the
interaction term αmw,αwm and the boundaries between the dynamics in the game space quadrants are translated by the mutant
selection advantage such that the critical point occurs at (−sm,sm). The color of the quadrants and subsequent regions in the
transformed resultant dynamics plot refer to the different types of evolutionary game dynamics illustrated in Figure 1

.

The traditional quadrants in the game space for a two-player game correspond to different dynamical outcomes. We ask78

what these quadrant boundaries correspond to in terms of interaction strengths, and whether we can obtain their analytical forms.79

In this new basis the traditional game plot axes c−a and b−d become a(αmw− sm) and a(sm +αwm) and the quadrants can be80

defined by conditions on αmw and αwm relative to the homogeneous mutant population selection coefficient sm (Figure 2). The81

state space is shifted upwards and left by the selection coefficient sm. As we move across the game-phase-space, the magnitudes82

of αwm and αmw relative to sm and to each other can mean that the evolutionary outcome, the equilibrium distribution, can be83

modified, maintained or conversely the independent selection advantage masked.84

Non-deterministic evolutionary dynamics85

Although deterministic approaches to evolution can be useful, in real physical and biological systems stochastic fluctuations are
present. In physical atomic systems, these fluctuations are typically due to heat, whereas within biological systems random
genetic mutation and the inherently stochastic nature of replication both introduce biological noise. The Fokker-Planck
equation28, 29 was originally derived to describe the time evolution of a particle undergoing both drag and brownian motion;

∂ρ(x, t)
∂ t

=− ∂

∂x

[
v(x)ρ(x, t)

]
+

∂ 2

∂x2

[
D(x)ρ(x, t)

]
(5)

where ρ(x, t) is the probability, at time t for a sub-population to make up fraction x of the population, v(x) is the drift coefficient,86

and D(x) is the diffusion coefficient. In general, the first term of this equation describes the evolution of a system under drift-like87

forces and the second term incorporates the random fluctuations. Versions of the Fokker-Planck equation, as a description88
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of evolution in time of a stochastic system, have been used successfully across physical and biological systems, including89

in descriptions of protein folding and gene expression stability30–33 Kimura derived the appropriate form of the equation for90

genetic selection and diffusion via mutation and a general Gaussian solution to this equation34.91

Dynamics of an interacting population with noise92

In order to find analytical solutions for this two-player genetic system with interactions and noise we look to find a solution to93

the Fokker-Planck formalism that includes the game interactions. As above we now understand how to write the wildtype and94

mutant fitness and thereby the payoff matrix in terms of interactions and selection coefficient sm. One form of the steady-state95

solution of the Fokker-Planck equation is a Gaussian ansatz34. To use this method in the game context we assume that the96

selection coefficient in the potential function of the original ansatz is no longer smx and is now a generic function f (x) of the97

proportion, x, of the wildtype. We modify the potential, Φ, from the original Kimura solution and propose the population98

density function in the case of frequency dependence to be a normalised gaussian with modified potential.99

Whilst the selection coefficient in the non-interacting version of the Fokker-Planck solution is just smx, we find that for the100

stationary distribution of the one-dimensional Fokker-Planck equation with noise from mutation and drift, a solution for the101

selection coefficient, f (x) is given by:102

f (x) =−2N

[
(sm−αwm)αwm +(αwm +αmw)(1+αwm)

α2
wm

ln(1+αwm−αwmx)+
αwm +αmw

αwm
x

]
(6)

Therefore for any two-player system defined by game coefficients αmw, αwm, and selection coefficient sm, we derive an103

analytic expression for an equilibrium solution for the population distribution ρ(x) (Figure 3). We observe that at low mutation104

rates, this solution space is similar to the deterministic case in the absence of noise, whilst the values of both αmw and αwm105

and µN alter the width of the peaks in the probability distributions. The "snowdrift" game from the lower left quadrant in106

traditional game space is represented by the presence of two peaks in the Fokker-Planck distribution, the height of these peaks107

becomes more uneven with distance away from the line αwm = αmw−2s and the width of the peaks in all sections increase108

with mutation rate, µ .109

Modification of the apparent selection coefficient110

The result of these dynamics is such that the interaction terms can modify the dynamics that would be expected from monoculture
information on growth rates alone. We consider the generic biological situation whereby the selective advantage of the mutant
is modified. In this most general case of mapping, the independent original selection advantage of the mutant, sm, is mapped in
the interacting population to an effective selection σm, where both of the selection coefficients are greater than zero we equate
the terms that determine the equilibrium distributions to find that αmw must be equal to the following function of αwm:

αmw =
αwm(2µ +σm−

√
4µ2 +σ2

m)−σm(−2µ−2sm +σm +
√

4µ2 +σ2
m)

4µ2 +(1+σm)(σm +
√

4µ2 +σ2
m)−2µ(1+σm +

√
4µ2 +σ2

m)
. (7)

Extrinsic interactions can mimic or mask cell-intrinsic selection advantages111

It is possible that adding interaction to a neutral landscape mimics cell-intrinsic selection forces, with effective selection
coefficient σm. We find that for added game interactions to create the appearance of such a landscape, we expand to examine
higher order terms as sm −→ 0 and find that αwm and αmw in the off-diagonal terms must fulfil the criteria such that in the small
mutation rate limit, this becomes

αmw =− σm

1+σm
, (8)

recovering the equivalent region of the deterministic game space that encapsulates this behavior.112

Within cancer biology, we are particularly interested in the prevalence of neutral evolution, particularly in its ability to
promote heterogeneity within a population5. Under neutral evolution, genetic sub-populations are interpreted to have no
selective advantage. We ask under what conditions the presence of both cell-intrinsic selection advantages combined with
game interactions can cause the evolutionary outcome of populations with non-zero intrinsic selection coefficients sm to appear
neutral5. In this case, intrinsic selection must be neutralized by interaction terms such that there is the absence of net selective
effects (σm = 0). We find that added game interactions αwm and αmw must fulfil the following criteria in the small mutation rate
limit;

αmw = αwm +2sm. (9)
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Figure 3. Fokker-Planck solution space for evolving population with stochastic fluctuation constant selection
coefficient and varying interactions terms The central plot displays the mean value of the Fokker-Planck population
probability distribution for varying interaction, with mutant selection advantage sm = 0.05, N = 1000, µ = 0.005. The
average(mean) proportion of wildtype was plotted for each pair of interaction coefficients. 100% wildtype is dark purple, 0%
wildtype population in cream. 10,000 random values of αmw, αwm in the interval [−0.2,0,2] were sampled to populate the
phase plot. Six specific examples of the analytical Fokker-Planck equilibrium solution are highlighted. The upper right
quadrant shows a stable co-existence, with solutions in the bottom left quadrant representing probability distributions with two
peaks, one at 100% wildtype and one at 0% wildtype.

In the game space, this is a line of possible solutions, meaning that there are technically infinitely many interaction113

possibilities that will appear neutral. We thus find conditions on our game coefficients such that we observe specific effects114

on our population distribution. These differ in high mutation limits from the boundaries in the deterministic results shown in115

Figure 2.116

Maintaining the same evolutionary outcome under the presence of interactions117

Biologically, whilst modification of selection may alter outcomes entirely, some cells, such as tumor cells, have evolved in
such a way as to outgrow the healthy population fraction, whereas healthy cells optimise homeostatic development. Under
evolution, successful malignant mutant cells must evolve to interact in such a way that the mutant cells are not extinguished
under interactions and their selective advantage is maintained. Thus another key question of interest is to find the conditions
under which a game with interaction strengths αmw, αwm and monoculture selection coefficient sm maintain the same selective
advantage and thus leave the evolutionary outcome unchanged, producing the same equilibrium distribution as if there were no
interactions, σm = sm. In the case that sm > 0 we find that αwm and αmw must be related such that in the small mutation rate
limit, µ2 << 1, when µ =⇒ 0 we regain the same restriction as from the deterministic form;

αmw =
(αwm +σm)

σm(1+σm)
. (10)
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Figure 4. Fokker-Planck (FP) distribution compared to stochastic simulation results. The mean of the FP solution for
100,000 different interaction strengths is shown (100% wildtype is dark purple and cream is 100% mutant allele fraction).
Simulations are carried out and the results averaged for a subset of 1,000 game coordinate pairs. We also look at the shape of
the population density distribution in a specific Fokker-Planck solution compared to simulation. A histogram of 4,900
simulations, at 1,000 generations for specific game coordinates, is shown. We contrast also the analytical probability
distribution in a specific game case, αwm = 0.16, αmw = 0.14, with a sampled distribution of the population fraction at
t = 1000 generations from 1000 simulations under these conditions.

Stochastic simulations match Fokker-Planck under varying sm,αmw, αwm118

We wrote a stochastic, individual-based model to simulate a genetic population undergoing mutation and selection and to119

validate our equilibrium solutions of the genetic Fokker-Planck equation with interactions. For details see methods (code120

available at ...).121

The Wright-Fisher model predicts that with mutation and selection, the population will move to the peak of the landscape122

in a single peaked landscape and in a flat landscape, will fluctuate stochastically around equal proportions of all genotypes.123

Traditionally, the results of the Wright-Fisher model depend strongly on the genetic fitness landscape it is based upon, in124

particular, whether the landscape is neutral or peaked. To explore the effect of games on evolutionary simulation models we125

added game interactions to a Wright-Fisher model on both single-peaked and flat landscapes. We simulated populations for126

4,900 random pairs of interaction coefficients (αmw, αwm) from a uniform distribution in the interval [−2sm,+2sm] for each of127

several different selection coefficients, sm (Figure 5). In the case of sm = 0, we regain the typical game plot, representing the128

different classical games and their outcomes. Without game interactions, the evolutionary simulation will result purely in the129

fittest genotype. In the case of sm = 0 the population is a heterogeneous mixture.130

The equilibrium distribution of a system with known monoculture fitnesses and no game interactions is well defined and131

understood in population genetics. As a result, the equilibrium distributions/evolutionary outcomes measured in experiments132

are often assumed to be the result of such pure genetic fitness differences. This assumption does not account for potential game133

interactions between populations. As seen in Figure 1, the survival of the fittest (under which the ‘fittest’ genotype prevails),134

can result in multiple populations co-occurring and becomes population and interaction dependent.135

Simulating modification, maintenance, masking and mimicry136

In order to validate the theoretical restrictions (on αwm and αmw) that would result in the modification, masking or maintenance137

discussed above we simulated the dynamics of an evolving population with and without the interaction terms (Figure 5). We138

demonstrate several examples of added interaction terms and the modified evolutionary dynamics on a single allele landscape.139

We simulate the evolution of an initial population that is entirely made up of the 0 genotype (wildtype) on both a flat and peaked140

landscape, the model consists of a population of 1,000 individuals undergoing mutation and selection. Without initial selection141

differences, neutral evolution occurs on the flat genetic landscape, whilst specific selection of the mutant is recapitulated with142
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Figure 5. Maintenance, Masking and Mimicry Simulations with and without games are carried out for the one genotype
case. An initial wildtype (0) population is evolved on a flat two genotype landscape and on the same genetic landscape but with
added ecological epistasis. The evolution of the new system with game interactions can be the same or different depending on
the game. Even in the maintenance case we observe alterations in the trajectory over time.

interaction terms added. Conversely, a mixed population is observed when game interactions of appropriate strengths are added143

that mask the underlying selective landscape.144

Discussion145

It is already understood in experimental biology that the presence of game interactions in addition to the underlying genotypic146

fitness can modify the evolutionary outcome of an evolving population. The extent to which this can happen, its parameterization147

and the incorporation of this effect into treatment plans is much less understood. One reason is that in traditional game theory,148

the notion of the game does not exist when there exists only one type of strategy present. This is in stark contrast to biology,149

where the survival and proliferation of an individual are of critical interest. In fact, in population dynamics, biology and in150

laboratory experiments where cell lines are isolated and grown, monoculture fitnesses of cells are typically the most well151

studied property. By reframing the game matrix such that the game interactions and monoculture fitnesses are separate terms,152

we come to a form that can both be interpreted within Fokker-Planck formalisms but also better understood from the perspective153

of evolutionary population dynamics.154

We derive a general expression for the equilibrium distribution of a population obeying the Fokker-Planck equation with155

added game interactions. We reveal using mathematics and simulations the potential impact of game interactions to completely156

alter evolutionary dynamics. We find the critical boundaries at which these game dynamics either maintain a population at the157

originally fitter genotype (maintain), move a population from the fixation of the fitter genotype in monoculture to the fixation158

of the other (mimic), or even promote the heterogeneity of a population by levelling the playing field (masking). This result159

means that the measured outcome of any mixed population, such as tumor cells, must be interpreted with caution. Critically,160

the (observed) fitness of the cells in question may be significantly altered by cell-cell interactions. As such it may be that161

growth dynamics in mixed populations may bear little resemblance to monoculture growth rates and that initial experimental or162

metastatic seeding ratios may have strong impacts on resultant dynamics. Without specific techniques designed to robustly163

assay frequency-dependent game interactions6, 35, the magnitude of cell-extrinsic interactions cannot be quantified. These164

effects have widespread potential ramifications, for example when assaying chemotherapeutic drugs in isolated cell lines, when165
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developing cancer cell lines ex vivo, and when interpreting evidence for neutral evolution in tumors36–40.166

Whilst the first part of our work focused on the equilibrium distribution at long time periods, we also observed that systems167

with games present often have altered forms of evolutionary dynamics over time. This has been noted in previous work14, where168

Kaznatcheev demonstrated that evolution is in some cases accelerated by game interactions. We observed that the magnitude of169

stochastic fluctuations in population size appeared distinct between game and non-game cases. In order to explore this property170

further, we suggest future work has the potential to derive explicit signatures of game dynamics encapsulated in the shape of the171

equilibrium solutions. Identifying these factors may be critical in interpreting the existence and strength of cell-cell interactions172

in experimental populations. Decomposition of the payoff matrix provides a biologically meaningful formulation of the payoff173

matrix and the ability to independently modify the cell-intrinsic and cell-extrinsic contributions to growth rate. In addition to174

supplying a new modelling paradigm and analytical solution in the case of added noise, this formalism provides an ideal starting175

point for the integration of existing pharmacokinetic understanding into game theoretical models. This model framework also176

more readily permits the integrated modelling of evolution, treatment and control in the presence of experimentally motivated177

drug and micro-environmental-dependent cell-cell interactions35.178

Methods179

Mathematics180

Deterministic formulation The payoff matrix P in a 2 strategy differential game and its subsequent decomposed form can be181

written as follows;182

P =

(
a b
c d

)
=

(
gw gw +βwm

gm +βmw gm

)
= gw

(
1 1+αmw

1+ sm +αwm 1+ sm

)
(11)

where sm is the selective advantage of the mutant cell, a = gw is the growth rate of the wildtype cell, d = gm = (1+ sm)gw183

represents the growth rate of the mutant cell , βi j is the modifying effect on growth rate of population j on population i and184

αi j is the growth-normalised interaction effect of population j on population i. The payoff matrix without interaction A0, can185

therefore be written as follows;186

A0 =

(
gw gw
gm gm

)
,

The replicator equation which describes the evolutionary dynamics of replicators with M possible strategies in general has the
following form;

ẋ = xi((Px)i− xT Px), (12)

where xi is the ith population fraction and i ∈ [1,M].187

Stochastic formulation One method for describing the temporal evolution of a system with drift and diffusion is the
Fokker-Planck equation as follows;

∂ρ(x, t)
∂ t

=− ∂

∂x

[
v(x)ρ(x, t)

]
+

∂ 2

∂x2

[
D(x)ρ(x, t)

]
(13)

where ρ(x, t) is the probability, at time t for a sub-population to make up fraction x of the population, v(x) is the drift coefficient,188

and D(x) is the diffusion coefficient.189

The Kimura solution34 to the Fokker-Planck equation is a Gaussian with the following potential;190

Φ =−2N(µ log(x)+µ log(1− x)+ smx+ log(x(1− x))). (14)

where x is the wildtype proportion, 1− x the mutant proportion, µ the mutation rate, sm the selective advantage of the mutant
and N the population size. We alter the selection to become frequency dependent by introducing a generic selection function,
f (x) with the aim to find a possible form;

Φ =−2N(µ log(x)+µ log(1− x)+ f (x)+ log(x(1− x))). (15)
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Maintenance The general dependence of the relationship between interaction coefficients in the case where the effective
selection is maintained after interactions are added (sm = σm);

αwm =
(αmw +σm)(2µ +σm−

√
4µ2 +σ2

m)

4µ2 +(1+σm)(σm +
√

4µ2 +σ2
m)−2µ(1+σm +

√
4µ2 +σ2

m)
. (16)

Mimicking The general dependence of the relationship between interaction coefficients in the case where the effective
selection is created by interactions alone (sm = 0);

αwm =
αmw(2µ +σm−

√
4µ2 +σ2

m)−σm(−2µ +σm +
√

4µ2 +σ2
m)

4µ2 +(1+σm)(σm +
√

4µ2 +σ2
m)−2µ(1+σm +

√
4µ2 + s2

m)
(17)

Masking The general dependence of the relationship between interaction coefficients in the case where the effective selection191

is neutralised by interactions (σm = 0);192

Simulations193

We used our Python based ABM/CA model to observe the evolutionary trajectories before and after the addition of games, in194

particular asking whether our simulation results are consistent with game interactions designed to mask, mimic or maintain an195

evolutionary outcome.196

The simulation involved a constant population of size N comprised of two species, denoted wildtype (‘0’) and mutant (‘1’),197

undergoing mutation (rate µ) and selection at each generation. The sampling frequency of each population was based upon198

frequency-dependent fitness calculated at each generation. The constant population size N, mutation rate µ , mutant advantage199

sm were all predetermined and a set of random payoff matrices were used. Simulated populations evolved from initial fraction x200

for 1000 generations, at which point the population fraction from each simulation was extracted.201
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Supplemental287

0.1 Derivations288

We describe a system of interacting wild-type cells and mutant cells in the framework of the Wright-Fisher model. Each289

genotype follows stochastic replicator dynamics (a form of geometric Brownian motion) with fixed carrying capacity. In section290

0.1.1, we write our model in a reduced form such that we use the minimum number of parameters to describe our system. In291

what follows, we describe the states of the model, how fitnesses and selection coefficients are calculated, and how interactions292

modify these fitnesses and selection coefficients.293

In section 0.1.2 we derive the Fokker-Planck equation for a Wright-Fisher model of a haploid population, including the294

effects of mutation, and interaction dependent selection.295

0.1.1 Interaction Selection Coefficient296

The state of our system is given by a vector of frequencies:297

~x =
(

xw
xm

)
=

(
xw

1− xw

)
=

(
x

1− x

) (18)

The second component is justified by the requirement that the components of the state vector must sum to 1. The fitnesses298

of the wild-type and mutant without interactions are given by fw and fm respectively. Additionally, we have made the notational299

simplification xw→ x. We define a selection coefficient (sm) which reflects the relative fitnesses between the mutant and the300

wild-type without interactions:301

sm =
fm

fw
−1 (19)

In our model we allow for interactions, whose strengths are modulated by the parameters αwm and αmw. Addition of302

interactions modifies the selection coefficient by modifying the fitnesses of each genotype. These fitnesses may be calculated if303

one knows the form of a payoff matrix as well as the state vector. In the language of game theory, the genotypes are “strategies”,304

and the payoff matrix defines a “game”. Here we assume the genotypes are playing a symmetric game. In this case, the305

distinction between a genotype being “player 1” or “player 2” does not matter. The payoff matrix may be written (in a reduced306

form) as follows:307

P =

(
Pww Pwm
Pmw Pmm

)
= Pww

(
1 Pwm/Pww

Pmw/Pww Pmm/Pww

)
= Pww

(
1 1+αwm

1+ sm +αmw 1+ sm

)
Pww→1
=

(
1 1+αwm

1+ sm +αmw 1+ sm

)
(20)

Here Pww is a scaling factor, which we set to 1. In the presence of interactions our fitnesses are now φw and φm, and the308

selection coefficient (sm) is now:309

σm(~x) =
φm

φw
−1 (21)
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The interaction fitnesses are given by the expected payoff:310

~φ = P~x

=

(
1 1+αwm

1+ sm +αmw 1+ sm

)(
x

1− x

)
=

(
1+αwm−αwmx
1+ sm +αmwx

) (22)

Plugging the interaction fitnesses, we now have the interaction selection coefficient:311

σm(~x) =
φm

φw
−1

=
1+ sm +αmwx

1+αwm−αwmx
−1

=
sm−αwm +(αwm +αmw)x

1+αwm−αwmx

(23)

Plugging in αwm = αmw = 0 returns the selection coefficient without games, i.e. σm(~x) = sm. Additionally σw(~x) = sw = 0312

in both the interacting case, and the non-interacting case.313

0.1.2 Fokker-Planck Equation for a Modified Wright Fisher Model314

The standard Wright-Fisher Model describes the change in frequency of alleles in a population. Parents are chosen randomly315

in a uniform way with replacements. These parents have offspring, which form the next generation of parents. In a parental316

population of N organisms and G possible alleles, we define the frequency of each allele (Ai) as xi
t . The full set of frequencies317

is a state vector given by~xt = (x1
t , . . . ,x

G
t ). Addition of selection and mutation modifies the probability that a certain allele is318

chosen34. Instead of choosing parents based on the frequency vector~xt , we choose parents based on the frequency vector ~ψ(~xt).319

For the population described in section 0.1.1, we assume a constant mutation rate (µ). In order to obtain the Fokker-Planck320

equation, we must consider infinitesimally small time increments ( δ t� 1) and how, at these time scales, ~ψ(~xt) drifts. The321

specific equations for ψ i(~xt) are similar to the standard modification to~xt , except we include an interaction-selection coefficient322

σm instead of sm:323

ψ
i(~xt)≈ xi

t +((1−2xi
t)µ + xi

t(σi(~xt)−σm(~xt)(1− xt)))δ t

= xi
t + vi(~xt)δ t

(24)

where vi(~xt) is a drift coefficient to be used in the Fokker-Planck equation. Here, we are interested in the time dependence324

over multiple generations. Instead of simply writing~x, we now have~xt .325

Since xm
t = 1− xw

t = 1− xt , we may directly consider a 1-dimensional system. In this case, we consider:326

ψ(xt)≈ xt +((1−2xt)µ + xt(σw(xt)−σm(xt)(1− xt)))δ t

= xt +((1−2xt)µ−σm(xt)xt(1− xt))δ t

= xt + v(xt)δ t
(25)

where v(xt) is a drift coefficient to be used in the 1-dimensional Fokker-Planck equation. The drift coefficient can327

alternatively be written as:328

v(xt) = (1−2xt)µ−σm(xt)xt(1− xt)

= (1−2xt)µ−σm(xt)g(xt)
(26)

Here, g(xt) = xt(1− xt). We define the diffusion coefficient as:329

D(xt) =
g(xt)

2N
(27)
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Taking the continuum limit in space and time, we have the following drift and diffusion coefficients:330

v(x) = (1−2x)µ−σm(x)g(x)

D(x) =
g(x)
2N

(28)

And the 1-dimensional Fokker-Planck equation is given by:331

∂ρ(x, t)
∂ t

=− ∂

∂x

[
v(x)ρ(x, t)

]
+

∂ 2

∂x2

[
D(x)ρ(x, t)

]
(29)

We are interested in the equilibrium solution ρeq(x), which is the value of ρ(x, t) at which the time derivative is zero. We332

now make an Ansatz that v(x) =−D(x) ∂Φ(x)
∂x for some function Φ(x). In this case ρeq(x) = Rexp(−U(x)), which is the form333

of a Boltzmann-like distribution. Here U(x) = Φ(x)+ ln(D(x)) and R is a normalization constant. We solve for Φ(x) in the334

following way:335

v(x) =−D(x)
∂Φ(x)

∂x
∂Φ(x)

∂x
=− v(x)

D(x)∫
∂Φ(x)

∂x
dx =−

∫ v(x)
D(x)

dx

Φ(x) =−
∫ v(x)

D(x)
dx

(30)

Here, we do not need to worry about the constant of integration since it can be absorbed into the normalization constant R.336

Plugging in the expressions for v(x) and D(x), we have:337

Φ(x) =−
∫ v(x)

D(x)
dx

=−
∫

(1−2x)µ−σm(x)g(x)
g(x)/(2N)

dx

=−2Nµ

∫ 1−2x
g(x)

dx+2N
∫

σm(x)dx

=−2Nµ

∫ 1−2x
x(1− x)

dx+2N
∫ sm−αwm +(αwm +αmw)x

1+αwm−αwmx
dx

=−2N

[
µ ln(x(1− x))+

(sm−αwm)αwm +(αwm +αmw)(1+αwm)

α2
wm

ln(1+αwm−αwmx)+
αwm +αmw

αwm
x

]
(31)

For the potential (U(x)) we have:338

U(x) = Φ(x)+ ln(D(x))

=−2N

[
µ ln(x(1− x))+

(sm−αwm)αwm +(αwm +αmw)(1+αwm)

α2
wm

ln(1+αwm−αwmx)+
αwm +αmw

αwm
x

]
+ ln(x(1− x)/2N)

=−2N

[(
µ− 1

2N

)
ln(x(1− x))

+
(sm−αwm)αwm +(αwm +αmw)(1+αwm)

α2
wm

ln(1+αwm−αwmx)+
αwm +αmw

αwm
x

]
− ln(2N)
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We can move the factor of − ln(2N) into the normalization constant R to obtain:339

U(x) =−2N

[(
µ− 1

2N

)
ln(x(1− x))

+
(sm−αwm)αwm +(αwm +αmw)(1+αwm)

α2
wm

ln(1+αwm−αwmx)+
αwm +αmw

αwm
x

]
= (1−2Nµ) ln(x(1− x))+ f (x)

Where we have defined the “selection function” f (x):340

f (x) =−2N

[
(sm−αwm)αwm +(αwm +αmw)(1+αwm)

α2
wm

ln(1+αwm−αwmx)+
αwm +αmw

αwm
x

]
(32)

For the equilibrium distribution we have:341

ρ
eq(x) = Rexp(−U(x)) (33)

and the normalization constant (R) can be found in the following way:342

R =

( 1∫
0

exp(−U(x))dx

)−1

(34)

In this case, R is difficult to solve analytically for arbitrary coefficients sm, µ , αwm, and αmw, but it can be computed343

numerically.344

16/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532871doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532871
http://creativecommons.org/licenses/by-nc-nd/4.0/

	References
	Derivations
	Interaction Selection Coefficient
	Fokker-Planck Equation for a Modified Wright Fisher Model



