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Small populations with limited range are often threatened by inbreeding
and reduced genetic diversity, which can reduce fitness and exacerbate popu-
lation decline. One of the most extreme natural examples is the Devils Hole
pupfish (Cyprinodon diabolis), an iconic and critically endangered species
with the smallest known range of any vertebrate. This species has experienced
severe declines in population size over the last 30 years and suffered major
bottlenecks in 2007 and 2013, when the population shrunk to 38 and 35 indi-
viduals, respectively. Here, we analysed 30 resequenced genomes of desert
pupfishes fromDeathValley, AshMeadows and surrounding areas to examine
the genomic consequences of small population size. We found extremely high
levels of inbreeding (FROH= 0.34–0.81) and an increased amount of potentially
deleterious genetic variation in the Devils Hole pupfish as compared to other
species, including unique, fixed loss-of-function alleles and deletions in genes
associated with sperm motility and hypoxia. Additionally, we successfully
resequenced a formalin-fixed museum specimen from 1980 and found that
the population was already highly inbred prior to recent known bottlenecks.
We thus document severe inbreeding and increased mutation load in the
Devils Hole pupfish and identify candidate deleterious variants to inform
management of this conservation icon.

1. Introduction
Due to declining population sizes and increasing isolation of many species from
anthropogenic habitat fragmentation and climate change, understanding the
extent and nature of genetic threats in small populations is essential for predict-
ing and increasing population persistence and resiliency [1]. Small and isolated
populations often suffer from inbreeding depression, the reduction in fitness
caused by increased homozygosity of deleterious recessive alleles or overdomi-
nant loci that occurs when closely related individuals breed together [2,3].
Prolonged population decline can result in increased long-term extinction risk
due to stochastic demographic events [4], reduced genetic variation for adap-
tation [5], and decreased efficacy of purifying selection to overpower drift
and purge deleterious variants [6]. This reduced efficacy of purifying selection
leads deleterious mutations to accumulate more readily in small populations.
The burden of accumulated deleterious mutations is known as the mutation
load, and can reduce individual fitness [7,8].

Many examples of reduced genetic diversity and inbreeding depression have
been documented in the wild [9,10], including Florida panthers (Puma concolor)
[11], Isle Royale wolves (Canis lupus) [12] and mountain gorillas (Gorilla beringei)
[13]. Severe inbreeding in natural populations is increasingly being documented
across a wide range of temporal scales, from ancient bottlenecks [14,15] to recent
timescales [12]. Recently, historical museum specimens have been successfully
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leveraged to investigate temporal changes in inbreeding and
genetic diversity, highlighting their utility for investigating
the historical dynamics of inbreeding and mutation load in
imperilled populations [16,17].

Traditionally, population health and extinction risk was
assessed using putatively neutral molecular markers and ped-
igrees owing to positive correlations between genome-wide
heterozygosity and fitness [18]. Maintaining genome-wide
genetic variation is crucial to preserving adaptive potential
and preventing inbreeding depression in populations of con-
servation interest [19] because populations with higher levels
of genetic diversity tend to have higher mean fitness and
reduced extinction risk [20]. However, several recent studies
have suggested that summary statistics of genetic variation
do not necessarily accurately reflect population size or
extinction risk and that we should also use whole-genome
sampling to assess functional genetic diversity and genetic
load [17,21]. Genomes enable more detailed measurements of
individual inbreeding depression and its genetic basis relative
to pedigree-based approaches [22]. Thus, a comprehensive
understanding of the evolutionary dynamics of small popu-
lations in the wild from a genomic perspective is key to
understanding the fate of endangered populations and to
inform conservation management.

Here, we leverage the unique evolutionary and demo-
graphic history of the iconic Devils Hole pupfish (Cyprinodon
diabolis: figure 1a) to investigate how isolation and recent popu-
lation decline have shaped inbreeding and mutation load.
Death Valley pupfishes evolved from a common ancestor
thousands of years ago when the climate was milder and the
region was connected by large inland seas. Populations are
now relatively isolated in small desert spring systems and sev-
eral species are now considered critically endangered [23].
Devils Hole contains the most extreme conditions, including
a nearly constant temperature of 34°C [24], absence of direct
sunlight during the winter [25] which sharply limits primary
production and nutrient availability [26], and dissolved
oxygen levels near lethal limits for most fishes (2–3 ppm)
[25,27]. Surrounding pupfishes in neighbouring springs
occupy less hypoxic environments, such as Cyprinodon neva-
densis mionectes in Jackrabbit Spring, due to greater water
movement [28].

Cyprinodon diabolis exists at one of the lowest long-term
population sizes of any desert pupfish. The population has
steadily declined since the late 1990s before reaching lows of
38 and 35 individuals in the spring of 2007 and 2013, respect-
ively (figure 1b). Cyprinodon diabolis is restricted to the upper
30 m of Devils Hole, a 3.5 x 22 m water-filled cavern widely
believed to be the smallest range of any vertebrate [29]
(figure 1c). Population viability analyses in 2014 suggested
that the median time to extinction was 26 years [30]. Although
this species was previously believed to be isolated in Devils
Hole for 10–20 ka (Miller [31]), more recent genome-wide esti-
mates indicate that Devils Hole may have most recently
experienced substantial admixture approximately 1–2 ka and
that gene flow among these desert oases is surprisingly
common [23,32,33].

The continued persistence of C. diabolis in the hottest desert
on earth in one of the most inhospitable habitats for fishes is
extraordinary. Despite its status as one of the world’s most
endangered species, genetic analyses have so far been limited
to delineating phylogenetic relationships, assessing population
structure, and measuring genetic diversity with reduced-
representation genetic markers [23]. Here, we resequenced
whole genomes of C. diabolis and several closely related Cypri-
nodon desert pupfishes to investigate how isolation and small
population size influence inbreeding and mutation load on a
genome-wide scale in this conservation icon.
2. Results
(a) Geography and population structure
We sequenced 30 individuals (8C. diabolis, 13C. nevadensis, 4 C.
salinus, and one individual each of C. albivelis, C. eremus,
C. fontinalis, C. macularius and C. radiosus) for our analyses
(figure 1d, electronic supplementary material, tables S1 and
S2). After filtering for quality genotypes and exclusion of
problematic samples, we retained a total of 6 295 414 SNPs
with a mean coverage of 12×. We investigated genome-wide
population genetic differentiation among Death Valley desert
pupfishes using principal component analysis, corroborating
previous results [23] (figure 2a). Devils Hole pupfish were sub-
stantially divergent from the most closely related neighbouring
desert pupfish species for genome-wide mean Fst estimates
(C. diabolis versus C. nevadensis= 0.34). Inference of evolution-
ary relationships among these populations using genome-
wide SNP data under the multi-species coalescent using
SVDquartets [34,35] and concatenated SNP data across all indi-
viduals using IQ-TREE v.1.6.12 [36] confirmed previous
findings; C. diabolis is sister to C. nevadensis and C. salinus is
sister to both [23]. Our expanded sampling of outgroups also
confirmed that the Death Valley clade is most closely related
to the geographically proximate Owens pupfish (C. radiosus)
[37]. ADMIXTURE analyses support C. diabolis, C. nevadensis
andC. salinus as distinct populations. Interestingly, this analysis
infers apparent admixturewithinC. nevadensis fromneighbour-
ing populations as more distantly related desert pupfishes
(figure 2d); this complex history of admixture may help to
explain the lack of phylogenetic resolution within this group.

(b) Severe inbreeding in Devils Hole pupfish
Inbreeding can be identified and quantified through runs-
of-homozygosity (ROHs), which are long contiguous tracts
of identical haplotypes inherited from a common ancestor
[22]. We calculated FROH, an accurate measure of inbreeding,
as the summed lengths of ROHs greater than 100 kb divided
by the total genome size. We found that C. diaboliswas highly
inbred (mean FROH = 0.58), significantly exceeding the degree
of inbreeding observed in C. nevadensis (mean FROH = 0.14:
Tukey’s HSD p = 8.38 × 10−5: figure 3). By contrast, ROHs
made up less than 10% of the genome in the relatively undis-
turbed natural spring populations of C. nevadensis amargosae
and C. nevadensis nevadensis, whereas C. nevadensis shoshone
and C. nevadensis pectoralis tended to have a higher FROH

than other C. nevadensis species (figure 3). These findings
are consistent with small census population sizes and inten-
sive management histories as C. nevadensis shoshone has
experienced extirpation and captive breeding prior to reintro-
duction in the 1990s and the habitat of C. nevadensis pectoralis
has undergone extensive habitat modification [38–40].

We found that the degree of inbreeding in Devils Hole has
remained high, from 1980 (FROH= 0.55; n = 1) to near-present
day (2008–2012: mean FROH = 0.58). This suggests that
C. diabolis was already highly inbred prior to the population
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decline in the mid-1990s and severe bottlenecks in 2007
and 2013, during which the population size plummeted to
38 and 35 fish, respectively [30] (figure 1b).

Shorter ROHs indicate mating between distant relatives
or longer-scale historical processes, whereas longer ROHs
are indicative of recent inbreeding due to reduced opportu-
nity for recombination [41]. We exploited this signature to
estimate the mean number of generations back to the
common ancestor of these homologous sequences using the
length of ROHs and an assumed recombination rate. Popu-
lations with similar high levels of inbreeding can have
ROHs that nearly span entire chromosomes [42]. Surprisingly,
given the recent severe bottlenecks, we did not find many
long ROHs (greater than 10 Mb) in our C. diabolis samples,
barring a single exception (figure 3d ). Instead, much of the
cumulative inbreeding is made up of ROHs that are 0.1–
1 Mb long (figure 3b), which corresponds to shared parental
ancestry from 11 to 109 generations previous. Our results
illustrate that extreme isolation and prolonged small popu-
lation size have driven C. diabolis to become highly inbred
and that much of the inbreeding occurred prior to recent
bottlenecks over the course of the twentieth century.
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(c) Higher mutation load in Devils Hole pupfish
Small, inbred populations are expected to have higher
frequencies and homozygosity of deleterious alleles.
However, once deleterious recessive alleles are unmasked,
purifying selection can also purge portions of the mutation
load [43]. To assess how severe inbreeding in Devils Hole
pupfish has affected mutation load, we calculated the relative
proportions of homozygous ancestral, heterozygous and
homozygous-derived genotypes across synonymous
(SYN), non-synonymous (NSYN) and loss-of-function (LOF)
mutations (figure 4; electronic supplementary material,
figure S1). The number of homozygous-derived genotypes
for LOF variants quantifies load under a recessive model
[8,44]. Because deleterious alleles tend to be recessive
[45,46], LOF homozygous-derived alleles are more likely to
have a phenotypic effect that leads to a reduction in fitness.
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Cyprinodon diabolis had significantly lower proportions
of heterozygous genotypes than C. nevadensis across all
variant types (SYN: p = 1.42 × 10−5, NSYN: p = 1 × 10−5,
LOF: p = 1.87 × 10−5, Tukey’s HSD tests), consistent with
our findings of higher inbreeding in this species. Cyprinodon
diabolis also had significantly higher proportions of
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homozygous-derived LOF genotypes compared to both
C. nevadensis ( p = 6.61 × 10−4) and C. salinus ( p = 0.044). Simi-
larly, C. salinus also had significantly lower proportions of
heterozygous genotypes than pooled C. nevadensis samples
across all variant types (SYN: p = 2.74 × 10−3, NSYN:
p = 3.71 × 10−3, LOF: p = 5.36 × 10−3, Tukey’s HSD tests),
likely reflecting the larger population sizes of C. nevadensis
populations. There were no significant differences in the pro-
portion of homozygous-derived genotypes for SYN and
NSYN mutations among the three species.

We also assessed whether there were allele frequency
differences among the three species across a comparable set
of LOF alleles and found that there were no significant differ-
ences among the three species (ANOVA p = 0.134), although
C. diabolis tended to have a higher mean frequency of LOF
alleles at 0.63, compared to C. nevadensis = 0.54 and
C. salinus = 0.49. Finally, there was no enrichment of LOF
variants in ROHs for most individuals except for three
C. diabolis individuals that had significantly greater pro-
portions of LOF variants in ROHs than their respective
FROH values (DHP54903: p = 1.92 × 10−3, DHP54913: p =
4.29 × 10−3, DHP54918: p = 4.71 × 10−2). One C. nevadensis
amargosae individual had a significantly lower proportion of
LOF variants in ROHs (CNevAma: p = 2.01 × 10−2).
(d) Fixed variants unique to Devils Hole
Devils Hole pupfish clearly harbour a homozygous LOF
mutation load greater than neighbouring desert pupfish.
Thus, we focused on genetic variants most likely to be dele-
terious to help inform future management of this species;
specifically, homozygous-derived LOF variants and deletions
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unique to C. diabolis, which are expected to reduce fitness by
disrupting gene function.

We identified 11 predicted LOF SNPs in the form of pre-
mature stop codons, including several within genes that may
affect fecundity or resistance to disease and stress (electronic
supplementary material, table S3). These include cfap43, a
protein involved in the structure and function of the sperm
flagellum axoneme that has been implicated in male inferti-
lity [47]. Similarly, reduced sperm motility and abnormal
sperm morphology were observed in Florida panthers [11]
and lions [48] due to inbreeding.

We also identified 94 deletions unique to C. diabolis and
focused on the 15 deletions within 2 kb of any annotated
genes. Surprisingly, five of the fifteen deletions were involved
in cellular responses to hypoxia (electronic supplementary
material, table S4), including shifts to anaerobic metabolism,
erythropoiesis, degradation of misfolded proteins and regu-
lation of nutrient use and cell fate [49]. These hypoxia-related
deletions included an 81 bp deletion in the promoter of redd1.
During hypoxia, redd1 inhibits mTORC1 [50,51] through
the TSC1/TSC2 tumour suppressor complex to conserve
energy and prevent the accumulation of misfolded proteins.
Upregulation of a homologue of redd1 (ddit4L/redd2) has
been implicated in adaptation to hypoxia in shortfin mollies
(Poecilia mexicana) [52] and high-altitude deer mice (Peromyscus
maniculatus) (N. R. Rochette 2021, personal communication).
We also found deletions in apeh, an enzyme that destroys
oxidatively damaged proteins [53]; trim39, a tripartite motif
involved in erythropoiesis [54] and slc25a42, a mitochondrial
transporter of coenzyme A [55] associated with mitochondrial
myopathy and lactic acidosis in humans [56].
3. Discussion
We documented extensive inbreeding, gene loss and mutation
load in the critically endangered Devils Hole pupfish and
identified a set of candidate deleterious genetic variants that
can potentially inform future conservation management. We
show that C. diabolis is significantly more inbred than most
neighbouring desert pupfish populations. Cyprinodon diabolis
was not significantly more inbred than C. salinus although
our small sample size and high variability make it difficult to
infer accurate levels of inbreeding in C. salinus. High levels of
inbreeding are associated with elevated extinction risk [57,58]
and the inbreeding in C. diabolis is equal to or more severe
than levels reported so far in other isolated natural populations
such as Isle Royale wolves [12], mountain gorillas [59] and
Indian tigers [60]. Although we were unable to directly
measure fitness, the increased inbreeding in C. diabolis likely
results in a substantial reduction in fitness. Previous studies
have suggested that increases in FROH have strong negative
effects on fitness. For instance, in Soay sheep an increase in
FROH by 10% was correlated with a 60% decline in fitness
[61], whereas in helmeted honeyeaters a 9% increase in homo-
zygosity was associated with a reduced lifetime reproductive
success of 87–90% [62]. Surprisingly, C. salinus also displayed
high levels of inbreeding although increased sampling is
necessary to obtain reliable estimates of inbreeding.

By successfully sequencing a formalin-fixed historical
museum specimen to 10× coverage (out of 8 total attempts)
we discovered that inbreeding was already extensive by
1980, suggesting that C. diabolis may have an extended
history of repeated population bottlenecks. Indeed, the distri-
bution of ROH sizes suggests that a large proportion of
homozygous tracts were due to inbreeding that occurred
many generations prior to the recent population decline. Fur-
thermore, C. diabolis harbours a significantly greater mutation
load than either C. nevadensis or C. salinus (figure 4).

Our mutation load results support previous hypotheses
that C. diabolis harbours a high mutation load due to its
relative isolation and small population size [29,63]. Addition-
ally, they are consistent with the observation of rapid allele
frequency increases of C. nevadensis alleles in a C. diabolis
refuge population after the accidental introduction of a few
individuals [64]. Although recent studies have suggested
that small, bottlenecked populations may harbour a lower
mutation load due to purging [13,65,66], populations that
have experienced recent severe population bottlenecks are
likely to maintain a high load, because deleterious variants
may reach fixation before purifying selection removes them
[67]. Although our measure of mutation load does not
directly measure fitness, there is empirical support that LOF
mutations are on average deleterious [68].

(a) Degradation of hypoxia and reproductive pathways
in Cyprinodon diabolis

We found deleterious variants associated with reproduction
and hypoxia genes. For example, we found a fixed LOF var-
iant unique to C. diabolis in cfap43, a gene associated with
sperm morphology and function. Deletions have thus far
been rarely studied or quantified in conservation genetics.
However, analysis of woolly mammoth genomes from differ-
ent time points found that a sample dated closer to the time
of extinction had accumulated more homozygous deletions
than earlier ones [15], suggesting that deletions may be an
understudied genetic threat to endangered populations [17].

We found numerous deletions that were unique to the
Devils Hole pupfish. Of these, five were associated with
hypoxia, a known environmental stressor in the system,
suggesting that C. diabolis could be poorly equipped to physio-
logically deal with the stressful hypoxic environment in Devils
Hole. Indeed, previous studies have noted that C. diabolis has
low fecundity [24,69], low egg viability and juvenile survivor-
ship [29] and lays more eggs at lower temperatures (28°C)
compared to the higher constant temperature of 33°C in
Devils Hole [70]. At present, we cannot rule out the possibility
that some of these fixed variants are potentially the result of
local adaptation; distinguishing between selection and genetic
drift in small populations is extremely difficult because both
processes leave similar signatures in allele frequencies [71].
One possibility is that these variants are adaptive in the
unique selective environment of Devils Hole and were swept
to fixation during initial colonization. Moving forward, func-
tional genetic and eco-physiological tests will be key to
understanding the full impacts of these variants. Our results
highlight the importance of investigating deletions and struc-
tural variants to better understand unique genetic variation
in endangered populations.

(b) Did severe inbreeding cause the recent population
decline?

The Devils Hole pupfish population began to decline in the
1990s from historical population sizes of 200–500 to less
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than 100 individuals for reasons still unknown (although in
the most recent census the population has rebounded to
175 fish). Ecological hypotheses include declines in ostracod
prey for juvenile pupfish [72,73] and changes in the dominant
primary producers from Spirogyra algae to diatoms and
cyanobacterial mats [74]. Furthermore, climate change may
be shortening the seasonal period of optimal hatching con-
ditions on the shallow shelf where C. diabolis spawns [75].
The stressful environment of present day Devils Hole may
thus have exacerbated inbreeding depression, which typically
increases under environmental stress [76,77].

Alternatively, previous studies speculated that the popu-
lation has a high genetic load which led to ‘mutational
meltdown’ based on the discovery of a dramatic shift towards
predominantlyC. nevadensis ancestry following introduction of
a few C. nevadensis into a C. diabolis refuge population [64]. We
estimated the effective population size of C. diabolis based on
the harmonic mean of biannual census data (NSpring

e ¼ 122,
NAutumn

e ¼ 209) and found that this species has an effective
population size far below the suggested minimum for the
maintenance of sufficient genetic variation for adaptive
capacity [78,79].

(i) Past and future management actions
Initial management of the species involved various attempts
to create wild refuge populations in the 1950s–1970s prior to
the landmark 1976 US Supreme Court decision mandating a
minimum water level, which halted habitat reduction and
population decline caused by groundwater pumping [80].
Subsequent attempts to maintain refuge populations of
C. diabolis in aquaria and semi-natural outdoor pools largely
failed to sustain captive breeding colonies for long periods of
time [29,64]. In response to the severe population bottlenecks
in the early 2000s, Ash Meadows Fish Conservation Facility
was constructed in 2012 to establish a refuge population
that more closely mimicked the Devils Hole habitat and
the refuge colony now outnumbers the wild population.
Although we relied on degraded tissue samples collected
from dead pupfish retrieved from Devils Hole for genetic
analyses in this study, increasing population numbers may
soon allow for tissue samples or functional genetic
approaches in refuge live specimens.
4. Conclusion
Our study adds to a growing number of studies that measure
inbreeding and mutation load in wild populations, with
a novel focus on gene deletions in a wild highly inbred popu-
lation [60,66]. The demographic history and genome-wide
measures of high inbreeding and mutation load in the
Devils Hole pupfish suggest that the population remains in
danger. While successfully sequencing formalin-fixed
samples remains difficult, we were able to do so for a
single C. diabolis specimen from 1980 and found that the
population was likely highly inbred prior to the recent bottle-
neck. The increasing availability of genomic sampling
spanning multiple time points for endangered species such
as the Devils Hole pupfish will better inform our understand-
ing of inbreeding, mutation load, and specific putatively
deleterious variants in this system, ultimately allowing for
conservation management to monitor potentially harmful
variation in wild and captive populations over time. Finally,
we caution that targeted genetic management of deleterious
variants should not be undertaken until candidates have
been verified to have fitness consequences.
5. Methods
(a) Samples and sequencing
We sequenced 44 whole genomes including C. diabolis (n = 23),
C. nevadensis (n = 13) and C. salinus (n = 4) spanning multiple inde-
pendent springs, along with closely related desert pupfish species
from California, Arizona and Mexico (electronic supplementary
material, table S1). Of the 23 C. diabolis genomes, eight were from
historical museum samples, spanning 1937–1980, while the rest
were non-destructively sampled between 2008 and 2012. Given
the critically endangered status of C. diabolis, NPS and USFWS
staff collected andpreserved dead specimens found during routine
checks during this period. All other species were collected in the
early 1990s [81]. Samples were sequenced on 150 PE runs using
an Illumina Novaseq. Historical and several degraded C. diabolis
samples were prepared using Swift 2S Turbo library kits (Swift
Biosciences). All sample metadata are reported in electronic sup-
plementary material, table S1. Fourteen samples were excluded
from downstream analyses due to a low percentage of reads map-
ping to the reference genome (less than 70%), improperly paired
reads (less than 70%), or significant amounts of missing data per
individual following SNP calling (greater than 80%), presumably
due to degradation (electronic supplementary material, table S2:
see electronic supplementary material for additional details). Fol-
lowing the filtering described above to identify high-quality
samples, we retained for all downstream analyses the following
30 samples: 8 C. diabolis, 13 C. nevadensis, 4 C. salinus, and five
closely related desert pupfish species (C. albivelis, C. eremus,
C. fontinalis, C. macularius, C. radiosus) (figure 2).
(b) Alignment and filtering
Raw reads were mapped from all 44 individuals to the Cyprino-
don brontotheroides reference genome (UCB_Cbro_1.0; total
sequence length = 1162 855 435 bp; scaffold N50 = 32 Mbp) [82]
with bwa-mem (v.0.7.12) [83]. Duplicate reads were identified
using MarkDuplicates and BAM indices were created using
BuildBamIndex in the Picard software package (http://picard.
sourceforge.net; v.2.0.1). We followed the best practices guide
recommended in the Genome Analysis Toolkit (v.3.5) [84] to
call and refine our single nucleotide polymorphism (SNP) var-
iant dataset using the program HaplotypeCaller. SNPs were
filtered based on the recommended hard filter criteria (QD <
2.0; FS > 60; MQ< 40; MQRankSum <−12.5; ReadPosRankSum <
−8) because we lacked high-quality known variants. See elec-
tronic supplementary material for additional details. Our final
dataset contained 6 295 414 SNPs.
(c) Population structure
We pruned SNPs in strong linkage disequilibrium using the LD
pruning function (–indep-pairwise 50 5 0.5) in PLINK (v.1.9) [85]
leading to the retention of 1 653 597 variants. We then character-
ized population structure with two approaches. First, we used
PLINK to conduct principal component analysis. Second, we
used ADMIXTURE (v.1.3.0) [86] to assign individuals to variable
numbers of population clusters (K = 1–20). We used the subset
parameter in PLINK to randomly select 100 000 SNPs for analy-
sis. We calculated genome-wide Fst between C. diabolis and
C. nevadensis, based on the 6.3 million SNP dataset using the
weir-fst-pop function in vcftools (v.0.1.15) [87].

http://picard.sourceforge.net
http://picard.sourceforge.net
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(d) Phylogenetic inference
Phylogenies were inferred at the individual and species-level
from 1 653 597 LD-pruned SNPs using IQ-Tree (v.1.6.12) [36]
and SVDquartets [34,35]. Full details are provided in the
electronic supplementary material.

(e) Population size
Census data for 1972–spring 2013 was acquired from Beissinger
[30]. Data for subsequent counts were based on released NPS
news reports. Variance effective population size was calculated
as the harmonic mean of spring (Ne

Spring) and autumn (Ne
Autumn)

population counts over time.

( f ) Runs of homozygosity
Runs of homozygosity (ROHs) were identified in our Death Valley
samples from the full filtered set of 6 295 414 SNPs using the
BCFtools/ROH command (v.1.14) [88], which uses a hidden
Markov model to identify homozygous portions of the genome
from genetic variation data. To calculate the cumulative fraction
of the genome consisting of ROHs (FROH) for each individual,
we summed the lengths of identified ROHs with length
greater than 100 kb and divided by the total size of the genome
(1162 855 435 bp). We also classified ROHs into various lengths
of 0.1–1 Mb, 1–10 Mb, and greater than 10 Mb and calculated the
proportion of the genome that these classes of ROHs comprised
in a similar fashion. Although the amount of missing datawas sig-
nificantly associatedwith our measure of FROH across all samples
(electronic supplementarymaterial, figure S2), we foundno signifi-
cant association between FROH and depth of coverage or missing
data forC. diabolis samples alone. Furthermore,wewere still able to
detect low FROH in two C. nevadensis samples with large amounts
of missing data. The age of ROHs was estimated as g = 100/2 ×
ROH length (cM), where g is the number of generations to the
most recent common ancestor [41]. We assumed a generation
time of 1 year [29], and an average recombination of approximately
4.6 cM/Mb (genetic map length = 5330 cM [89]; C. brontotheroides
genome size = 1.16 Gb [82]).

(g) Measuring mutation load
We categorized variants in coding regions based on their puta-
tive effect on the amino acid sequence (i.e. LOF or NSYN) and
whether the alleles were derived with respect to our reference
(C. brontotheroides) genome using SnpEff [90]. LOF variants
were conservatively defined as SNPs that resulted in a premature
stop codon [65,91], which are expected to be less prone to misan-
notation [92]. Unique, putatively deleterious variants were
defined as being: (i) homozygous derived, (ii) a gained stop
codon and (iii) present in all of our C. diabolis samples for
which genotypic information was available and absent in all
other non-C. diabolis samples in our dataset. See electronic
supplementary material for additional details.

We did not rely on direct counts of variants or derived alleles
as they are significantly positively correlated with coverage (elec-
tronic supplementary material, figure S3) and missing data
(electronic supplementary material, figure S4). Instead, we
measured mutation load in terms of the proportions of SYN,
NSYN and LOF genotypes that were homozygous ancestral, het-
erozygous or homozygous-derived across species (e.g. [91]). This
transformation largely corrected for the confounding effect of
coverage (electronic supplementary material, figure S5) and
missing data (electronic supplementary material, figure S6) on
our estimates of mutation load. We assessed whether mutation
loads differed among the three species using an ANOVA in R
and used Tukey’s HSD tests in R to test for pairwise differences
among species [93]. To compare allele frequencies of LOF alleles
between our three species, we first identified 62 LOF variants for
which there was genotype information for at least four individ-
uals per species and for which the variant was present in at
least two of the three species, to control for differences in
sampling number among species. We then calculated species-
specific allele frequencies for each of these 62 LOF variants.
Differences in the average allele frequency of LOF alleles were
assessed using an ANOVA in R [93]. We assessed whether LOF
variants were enriched in ROHs for each individual by perform-
ing binomial tests where the number of successes was defined as
the number of LOF variants in ROHs, the number of trials was
defined as the total number of LOF variants, and the probability
of success was defined as the individual’s FROH.
(h) Unique deletions
We identified deletions that were unique to C. diabolis using
DELLY (v.0.8.3) [94]. We only characterized deletions that
were present in our five highest quality C. diabolis samples
(DHP1980-5, DHP54903, DHP54913, DHP54917, DIAB54919),
but absent in other species. Deletions that were exceptionally
large and presumably artefacts were checked for accuracy in
IGV and subsequently removed (n = 4). We focused primarily
on deletions within 2 kb of an annotated gene. Deletions were
confirmed to be unique to C. diabolis by aligning BAM files span-
ning the deletion and confirming their presence in C. diabolis and
absence in non-C. diabolis samples. We analysed whether del-
etions spanned exons, introns or regulatory regions by
BLASTing [95] deleted sequences against the C_variegatus-1.0
(GCF_000732505.1) assembly on Ensembl (release 102; [96]).

Ethics. Pupfishes were originally collected in the Death Valley region
with Endangered Species Permit PRT-769851 and Special Use
Permit 56034, US Fish and Wildlife Service; Collecting Permit
A9103, Death Valley National Monument, National Park Service;
6840, California, Desert District Office, Bureau of Land Management;
S9494, Nevada Department of Wildlife and a memorandum of
understanding with the California Department of Fish and Game.
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org/10.6078/D1ND9Q [97]. Scripts are available at https://github.
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