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Abstract

Background: Failure on Highly Active Anti-Retroviral Treatment is often accompanied with development of
antiviral resistance to one or more drugs included in the treatment. In general, the virus is more likely to develop
resistance to drugs with a lower genetic barrier. Previously, we developed a method to reverse engineer, from
clinical sequence data, a fitness landscape experienced by HIV-1 under nelfinavir (NFV) treatment. By simulation of
evolution over this landscape, the individualized genetic barrier to NFV resistance may be estimated for an isolate.

Results: We investigated the association of estimated genetic barrier with risk of development of NFV resistance at
virological failure, in 201 patients that were predicted fully susceptible to NFV at baseline, and found that a higher
estimated genetic barrier was indeed associated with lower odds for development of resistance at failure (OR 0.62
(0.45 - 0.94), per additional mutation needed, p = .02).

Conclusions: Thus, variation in individualized genetic barrier to NFV resistance may impact effective treatment
options available after treatment failure. If similar results apply for other drugs, then estimated genetic barrier may
be a new clinical tool for choice of treatment regimen, which allows consideration of available treatment options
after virological failure.

Background
Management of antiviral resistance is an important con-
sideration in the treatment of HIV-1 patients with anti-
viral drugs [1]. Facing high viral loads and fast
replication rates, a combination of multiple drugs is
needed to suppress viral replication so that the viral
load in the plasma becomes undetectable. HIV-1 has a
high mutation rate, and in conjunction with the large
intra-host population and fast generation time [2], the
virus is able to develop resistance mutations quickly.
Therefore, a strict adherence to the treatment is
regarded as crucial in the prevention of suboptimal drug
concentrations and subsequent viral replication.
As part of the management of antiviral treatment,

genotypic resistance testing is recommended when start-
ing or switching treatment [3]. When virological failure

is detected timely and a genotypic resistance test per-
formed immediately, in many cases the test shows that
the virus has developed resistance but not to all drugs
in the regimen [4]. Some drugs, such as the currently
used non-nucleoside reverse transcriptase inhibitors,
have a low genetic barrier to resistance since only a sin-
gle nucleotide mutation is required to completely loose
drug activity. By contrast, other drugs (including most
protease inhibitors) require an ordered accumulation of
multiple mutations to confer re
sistance, and thus have a higher genetic barrier
to resistance. At treatment failure, the virus is
more likely to have developed resistance
against the drug with the lower genetic barrier
[4-6]. However, the actual genetic barrier is not
merely the number of mutations needed to con-
fer resistance, since the likelihood of a mutation
is not uniform due to evolutionary restrictions.
A mutation must also be considered in the con-
text of in vivo fitness, reflecting the
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combination of phenotypic resistance and
intrinsic replication capacity. Epistatic fitness
interactions between mutations may alter the
prevalence of a mutation depending on the pre-
sence of another mutation.
Genotypic resistance testing aims at uncovering muta-

tional patterns in the virus and interpreting their impact
on drug resistance. This interpretation is difficult
because of the complexity of resistance patterns, the
existence of cross-resistance and resensitization, and the
high natural variation of HIV-1. Ideally, a genotypic
resistance test not only helps in selecting a treatment
regimen that will immediately inhibit viral replication,
but also in selecting a treatment with a high genetic bar-
rier to resistance, and thus a durable response. There-
fore, not only the contribution to resistance of detected
mutations, but also their impact on lowering the genetic
barrier towards resistance should be considered. Because
there is no readily available measure for the genetic bar-
rier (unlike for the resistance phenotype, which may be
measured using an in vitro assay), the impact of many
mutations and mutational patterns on genetic barrier is
not well understood. With a few exceptions, such as the
so-called revertants at reverse transcriptase position 215
[7], the clinical relevance of a supposedly decreased
genetic barrier has not been shown. A lower genetic
barrier not only poses a higher long-term risk for failure
in case of nonoptimal adherence, but may also impact
treatment options available at failure, under the assump-
tion that development of resistance at treatment failure
is more likely for drugs with a lower genetic barrier, and
because of the extensive cross-resistance within drug
classes.
The extensive natural variation within the HIV-1 main

group (reflected partly in subtype diversification) is not
believed to impact drug susceptibility substantially [8,9].
Still, this variation may affect the genetic barrier to
resistance for some drugs, even in treatment-naive
patients, and this could in principle be predicted from
the genotype [10]. Several studies have indeed suggested
that the presence of polymorphisms, known as minor
mutations, impact virological outcome [11-14]. How-
ever, these studies usually lacked statistical power to
assign the effect on virological outcome to the presence
of particular polymorphisms because of the small preva-
lence of many polymorphisms, and the confounding
effect of adherence.
In previous work, we presented a method to estimate

a fitness landscape experienced by the virus during
treatment, and applied this in the context of the pro-
tease inhibitor nelfinavir (NFV) [15]. Simulated evolu-
tion from a baseline sequence, over such a fitness
landscape, together with a criterion for resistance, allows

the estimation of the individualized genetic barrier to
resistance. In the present study, we investigate the asso-
ciation of the individualized genetic barrier with devel-
opment of resistance at failure, as predicted by an
expert rule-based genotypic interpretation system, in
patients fully susceptible to NFV at baseline. We also
explore genotypic factors that impact this estimated
genetic barrier for viruses predicted to be fully suscepti-
ble to NFV.

Results
Predicting development of NFV resistance at treatment
failure
The final longitudinal data set included 201 protease
sequence pairs with a subtype distribution largely domi-
nated by subtype B (78%). A Neighbor-Joining phylo-
genetic tree constructed from the baseline sequences
revealed no intra-subtype clustering according to data
source (data not shown). At treatment failure, the Rega
algorithm predicted full NFV resistance (R), i.e. with
GSSNFV = 0, in 73 cases (36%) and intermediate NFV
resistance (I), i.e. with GSSNFV = 0.5, in 6 cases (3%).
In these pairs, genotypic susceptibility to NFV treat-

ment as estimated in vivo fitness value and estimates of
the simulated genetic barrier to resistance were com-
puted from the baseline sequence (Table 1). Despite the
fact that each patient was predicted at baseline to be
fully susceptible to NFV by a genotypic interpretation
system (Rega V8.0.1), we observed variation in estimated
fitness under NFV treatment at baseline as well as sub-
stantial variation in estimated genetic barrier to NFV
resistance (Table 1). The genotypic susceptibility of the
virus to the remaining drugs in the combination, pre-
dicted by Rega, was high. For most patients (67%), the
activity score for the combination excluding NFV
(GSSOther) summed up to ≥ 2, which suggests that the
majority of the NFV-based regimens was potent enough
at the time of therapy initiation. The median time to
treatment failure was 12 months.

Table 1 Descriptive characteristics of model variables

Factor Characteristics

log F
∧ 0.36 (0.2 - 0.6)

MR
∧ , mutations 2.7 (2.16 - 3.25)

GR
∧ , generations 114 (84 - 138)

ΔT, months 12 (6 - 23)

GSSOther 2 (1 - 3)

R = true, n (%) 76 (35%)

Sub = B, n (%) 157 (78%)

Description of model variables in a longitudinal data set for 201 patients,
which were fully susceptible to NFV at baseline. Data are median (range) for
log estimated fitness ( F

∧ ), genetic barrier estimates ( MR
∧ and GR

∧ ),
duration between baseline and follow-up sample (ΔT), the backbone activity
(GSSOther) and the subtype distribution (Sub).
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The results of the univariable analysis are shown in
Table 2. A lower estimated genetic barrier, both in
terms of mutations (OR = 0.65 (0.45 - 0.94) per addi-
tional mutation, p = .02) or in terms of generations (OR
= 0.98 (0.97 - 0.99) per 10 more generations, p = .01)
and lower activity of the other drugs in the combination
(OR = 0.53 (0.39 - 0.71), p < 0.001) were associated
with a higher risk of developing NFV resistance at treat-
ment failure. Estimated fitness under NFV selective
pressure, duration on therapy or subtype B virus were
not associated with NFV resistance development.
These significant associations remained in the multi-

variable analysis (Table 3). A lower genetic barrier in
terms of mutations (OR = 0.54 (0.32 - 0.91) per addi-
tional mutation, p = .02) or in terms of generations (OR
= 0.98 (0.97 - 0.99) per 10 more generations, p = .0075)
associated significantly with an increased risk for devel-
oping NFV resistance at treatment failure. Also a lower
backbone activity (OR = 0.49 (0.35 - 0.67), respectively

p < .001 and p = .001) was independently indicative for
acquiring NFV resistance.
The two measures for genetic barrier were highly cor-

related (R2 = 0.97 (0.96 - 0.98), p < 10-16), since each
additional mutation in general requires extra evolution-
ary time to evolve. This also explains why the results
were similar when using MR

∧ versus GR
∧ .

Genotypic correlates of estimated genetic barrier
To investigate contributions of protease mutations and
polymorphisms on the predicted genetic barrier, evolu-
tion was simulated for a virtual cohort of 2764 patients
on NFV treatment, and for each simulation, the number
of generations GR to develop NFV resistance was
recorded. Because the estimated fitness landscape only
models intra-subtype variation for each subtype, this
analysis was done only using HIV-1 subtype B, the most
prevalent subtype in our data set. Phylogenetic recon-
struction indicated interspersion of multiple lineages of
sequences sampled in Portugal. Therefore, separation of
sequences in the tree conditioned on the center of data
collection could not be established (data not shown).
A step-wise model search was performed to identify a

best linear model for log GR, which thus included the
independent, multiplicative contributions of single muta-
tions. In the final model, 22 mutations (10F/I/V, 12K,
13V, 20R/T, 33F, 35 D, 36I/V, 45R, 62V, 64M/V, 70R,
71T/V, 72V, 75I, 77I and 88D) independently decreased
the genetic barrier (p < .05), while 7 mutations (12P, 17
D, 37A, 41K, 69Y and 89I/M) increased the genetic bar-
rier (Figure 1). Although Figure 1 indicates contributions
of pro-tease mutations to the genetic barrier with a fixed
extent, these values resulted from averaging over the
entire population (of 2764 sequences) and, since only

Table 2 Univariable analysis of development of NFV
resistance at failure

Variable Odds ratio 95% CI p Value

log F
∧ , per unit higher 1.40 0.64 - 3.04 .39

MR
∧ , per additional mutation 0.65 0.45 - 0.94 .02

GR
∧ , per 10 generations more 0.98 0.97 - 0.99 .01

GSSOther, per unit higher 0.53 0.39 - 0.71 < .001

ΔT, per month more 1.00 0.99 - 1.01 .74

Sub, as B 1.63 0.83 - 3.22 .16

Univariable association of factors at baseline with risk of nelfinavir (NFV)
resistance development at treatment failure: fitness under NFV treatment (log

F
∧ ), expected number of mutations to NFV resistance ( MR

∧ ), expected
number of generations to NFV resistance (GR

∧ ), time between baseline and
follow-up sequence (ΔT), the activity of the other drugs in the combination
(GSSOther) and the subtype distribution (Sub).

Table 3 Multivariable analysis of development of NFV resistance at failure

Variable Coefficient (b) SE P Value Odds Ratio 95% CI

Intercept 1.68 1.27

log F
∧ , per unit higher -0.51 0.56 .36 0.60 0.20 - 1.79

MR
∧ , per additional mutation -0.61 0.26 .02 0.54 0.32 - 0.91

GSSOther, per unit higher -0.72 0.17 < .001 0.49 0.35 - 0.67

ΔT, per month more < 0.001 < 0.001 .14 1.00 0.99 - 1.01

Sub, as B 0.55 0.38 .15 1.73 0.82 - 3.64

Variable Coefficient (b) SE P Value Odds Ratio 95% CI

Intercept 3.31 1.44

log F
∧ , per unit higher -0.67 0.56 .24 0.51 0.17 - 1.56

GR
∧ , per 10 generations more -0.02 0.005 .008 0.98 0.97 - 0.99

GSSOther, per unit higher -0.74 0.17 < .001 0.47 0.34 - 0.66

ΔT, per month more < 0.001 < 0.001 .14 1.00 0.99 - 1.01

Sub, as B 0.41 0.38 .29 1.51 0.70 - 3.23

A multivariable logistic regression model is shown for development of nelfinavir (NFV) resistance at treatment failure starting from the baseline genotype based
on the expected number of mutations to NFV resistance ( MR

∧ ) in the upper table and based on the expected number of generations to NFV resistance (GR
∧ )

in the lower table. Analyses are corrected for duration between baseline and follow-up sequence (ΔT), fitness under NFV treatment (log F
∧ ), the activity score of

the combination excluding NFV (GSSOther) and the subtype distribution (Sub).
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independent and individual mutational contributions
were considered, as well over mutations epistatically
interacting with the respective mutation listed (see addi-
tional file 1 for the full model). As such, these findings do
not contradict with the observation that the genetic con-
text contributes to fitness in the landscape, and conse-
quently to the genetic barrier to resistance. For example,
mutation 71V was present in 85 isolates (3.1%), of which
45 (53%) selected 30N as first mutation and 9 (11%)

90 M (which are considered major resistance mutations
by Rega). Baseline sequences lacking this mutation only
selected in 487 (18%) and in 106 cases (4%) 30N and 90
M respectively. On the other hand, 9 isolates harboured
mutation 17 D and 30N was only selected in 1 (11%) and
90 M (0%) zero cases, compared to 531 (19%) and 115
(4%) for isolates lacking 17 D.
For several of the mutations that contributed to a

decreased genetic barrier (10V, 13V, 20R, 33F, 35 D,
36I/V, 45R, 62V, 64M/V, 70R, 71T/V, 77I, 88D) and
one mutation that increased genetic barrier (89I), pre-
dicted selection by the fitness landscape model was
shown previously to correlate with observed evolution
in longitudinal data from patients on NFV treatment
[15]. Thus, for these mutations, the fitness function
modeled interactions with polymorphisms or other
resistance mutations that affects their selection. Rega
considers ten mutations (10I/V, 20R/T, 33F, 62V, 64V,
71T/V, and 88D) to contribute to resistance as minor
mutations. Eleven mutations that were predicted to
decrease genetic barrier (12K, 13V, 35 D, 36I/V, 45R, 64
M, 70R, 72V, 75I, and 77I), and five mutations that
were predicted to increase the genetic barrier (12P, 17
D, 37A, 41K, 69Y, and 89M) are not included in the
rules for NFV resistance in Rega. Some of these muta-
tions have been described previously in relation to resis-
tance to NFV or other protease inhibitors: mutations
36I and 77I are polymorphisms that are involved in
NFV resistance [16]; mutation 45R has recently been
associated with NFV treatment [17]; mutations 13V,
36I/V, 45R, 72V, 75I and 77I are associated with pro-
tease inhibitor treatment [18] and mutation 13V has
been associated with reduced response to tipranavir
[19]. Mutation 89I has been linked to treatment failure
in several non-B subtypes, where the wild-type is 89 M
[20]. 89I/M are rare mutations in subtype B, and the
model indicates that in subtype B, they increase the
genetic barrier to resistance because they are reverted to
the wild type (89L), although the same model correctly
predicts selection of 89I during NFV treatment in other
subtypes [15].

Discussion
In this study, we evaluated retrospectively the associa-
tion of genotypic information contained in the baseline
genotype with the risk of developing NFV resistance at
treatment failure, when treated with a NFV containing
regimen, in longitudinal sequence pairs. The baseline
sequences were interpreted using an estimated fitness
function for HIV-1 under NFV selective pressure, which
was used to compute the estimated fitness (log F

∧ ) and
two measures of genetic barrier: the expected number of
mutations MR

∧ or generations GR
∧ to evolve a muta-

tional pattern that is considered by Rega as causing

88D (0.1 %)
33F (0.1 %)
36V (0.3 %)
75I (0.2 %)
20T (0.1 %)
71V (3.1 %)
10F (0.4 %)
13V (17 %)

0.0 0.5 1.0 1.5 2.0

41K
12P
89M
37A
69Y
17D
89I

(26 %)
(3.3 %)
(1.3 %)
(1.6 %)
(2.4 %)
(0.3 %)
(0.1 %)

10I
12K
45R
36I
64M
35D
10V
20R
77I
70R
71T
62V
64V
72V

(8.0 %)
(1.0 %)
(1.3 %)

(1.4 %)

(2.3 %)
(2.4 %)

(3.1 %)
(5.8 %)

(14 %)

(26 %)

(29 %)

(23 %)
(18 %)
(9.3 %)

Fold change genetic barrier
Figure 1 Genotypic correlates of genetic barrier. Impact of
protease mutations and polymorphisms on the estimated genetic
barrier to nelfinavir (NFV) resistance. For each mutation, the
prevalence is indicated in the data set of protease inhibitor naive
patients, which are all predicted as fully susceptible to NFV.
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resistance to NFV. As expert resistance interpretation
system, Rega was chosen because it has been clinically
evaluated for prediction of treatment outcome [21]. This
will allow us to investigate if the fitness landscape could
be used to predict treatment options available at treat-
ment failure as predicted by Rega.
Both in univariable and multivariable analyses, a lower

genetic barrier was found to increase the risk for devel-
oping NFV resistance at treatment failure. Such esti-
mated genetic barrier may provide unique and useful
information to a clinician contemplated a change of
treatment, allowing to take into account available ther-
apy options in case of subsequent treatment failure.
This is, to our knowledge, the first proof of direct clini-
cal impact of (individualized) genetic barrier on risk of
development of resistance at treatment failure.
With the goal of life-long treatment, options at treat-

ment failure are taken into consideration at start of treat-
ment, and therefore current HIV-1 treatment guidelines
take into account proper drug sequencing and the spar-
ing of inhibitor classes [22]. An individualized prediction
of (cross-)resistance development at treatment failure
may therefore contribute to a more informed treatment
choice. Noteworthy, a lower activity of the regimen
accompanying NFV, predicted by Rega, was associated
with an increased risk of NFV resistance at therapy fail-
ure. This association can be expected since a suboptimal,
less potent regimen may favor evolution and develop-
ment of NFV resistance more easily. The accuracy of the
predictions may be further improved by using the genetic
barrier to resistance for the other drugs in the combina-
tion, instead of a susceptibility score.
The association of a lower genetic barrier with an

increased risk for resistance development at failure
implies indirectly that the estimated genetic barrier
could also be predictive for long-term treatment
response. Indeed, these results show that a lower genetic
barrier facilitates resistance development, and may
therefore be expected to increase as well the risk for
treatment failure because of resistance development
under non-optimal adherence. Although the Rega sys-
tem for genotypic resistance interpretation also scores
the presence of several minor resistance mutations as
intermediate resistance (motivated by the principle that
they may reduce the genetic barrier to resistance), in
this analysis only patients were included for which Rega
predicted full susceptibility to NFV at baseline. Assum-
ing that viral fitness during treatment depends on the
susceptibility of the virus to the drug, log F

∧ can be
considered an in vivo resistance phenotype. The restric-
tion of the study to patients predicted susceptible may
explain why viral fitness, visualized by the virus position
in the landscape, did not relate to the emergence of
NFV resistance. Overall, these results provide additional

indication that the estimated fitness landscape may out-
perform an expert system for prediction of treatment
outcome, in particular for patients who are considered
fully susceptible by the expert system [15].
Although clinical response in terms of viral load mea-

surements was not available for these patients, the avail-
ability of a follow-up genotype is indicative of treatment
failure. By requesting a genotypic test, the clinician pre-
sumed failure of the current regimen, and successful
genotyping implied high enough viremia. We previously
evaluated the performance of this landscape to predict
virological outcome in a clinical cohort of patients,
starting with a combination of zidovudine (AZT), lami-
vudine (3TC) and NFV. Differently from the current
study, patients were not required to be fully susceptible
to NFV. A higher genetic barrier was significantly asso-
ciated with higher viral load reduction on short term
and with lower odds of virological failure on long term
[23].
For this analysis, sequence data were combined that

originated from different geographic locations. Genoty-
pic variation was accounted for by adding HIV-1 sub-
type to the model. Additionally, phylogenetic analysis
did not unveil geographical withinsubtype sequence dif-
ferences. By pooling data from multiple sources,
(unknown) variables, besides epidemiology, could differ
between patient groups and influence resistance devel-
opment. The objective of the fitness estimation proce-
dure was not to predict resistance development as such,
but to quantify the influence of mutational patterns on
viral fitness under drug selective pressure and eventually
to predict virus evolution under this pressure. Resistant
virus was defined by an independent interpretation algo-
rithm. As measures of “time”, we considered the number
of mutations or simulated generations. The actual time
to therapy failure is besides the evolutionary distance
under drug selective pressure (quantified by the genetic
barrier), a function of the rate at which HIV-1 will
bridge this distance (quantified by the strength of drug
selective pressure). Next to drug activity, the potency of
treatment is the outcome of different parameters.
Though information on patient-specific parameters
(such as therapy adherence) or on management of HIV-
1 infection is missing, these parameters most likely do
not influence the actual evolutionary distance to resis-
tance, but do affect drug potency and subsequently the
time to therapy failure. Hence, the time between therapy
initiation and failure was included as a variable to cor-
rect for (hidden) variables that influence the amount of
virus evolution tolerated.
To obtain an insight into the contributions of muta-

tions and polymorphisms towards estimated genetic bar-
rier to NFV resistance in isolates susceptible to NFV, we
simulated resistance evolution during NFV treatment in
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subtype B sequences from a large virtual clinical patient
cohort. A total of 29 mutations and polymorphisms
were identified that independently contribute to the
genetic barrier to NFV resistance (Figure 1).
Because of the combined use of the fitness landscape

with an expert system, a mutation may influence the
estimated genetic barrier either because it contributes to
resistance (as predicted by Rega), or because it influ-
ences, in the fitness function, the selection of mutations
that contribute to resistance, or both. A number of
mutations (12K/P, 13V, 17 D, 35 D, 36I/V, 37A, 41K,
45R, 64 M, 69Y, 70R, 72V, 75I, 77I and 89M) are not
included in the rules for NFV resistance. Therefore,
each of these mutations contributes to a lower (respec-
tively higher) estimated genetic barrier through their
inclusion in the fitness landscape model, where they
cause a faster (respectively slower) selection of resistance
mutations that are considered by Rega. The mechanism
for the contribution to a lower genetic barrier of muta-
tions (10I/V, 20R/T, 33F, 62V, 64V, 71T/V, and 88D)
which are considered by Rega to contribute to resistance
(as minor resistance mutation), may be because of their
inclusion in the rule for predicting resistance in Rega, or
because of an influence on selection of (major) resis-
tance mutations in the fitness landscape model, or both.
The contribution of a mutation to viral fitness is

highly dependent on the genetic background, and a
mutation with an impact on the genetic barrier was
identified by the model conditioned on the presence of
polymorphic variation. Despite the recruitment of only
subtype B sequences, and phylogenetic analysis that
indicated distributed sequences among the tree, intra-
subtype variation, as a consequence of founder effects, is
inevitable and has also been reported [24]. A total of 10
mutations listed in Figure 1 differed significantly (p <
0.05) in prevalence between the two patients groups (see
additional file 2). However, these mutations still contrib-
uted significantly to the genetic barrier when the analy-
sis was restricted to data source, highlighting the role of
sequence variability. Application of the same methodol-
ogy to another subtype B dataset may conceivably not
identify exactly the same set of mutations, given that
genotypic (geographical) variation exists within a sub-
type. These findings argue the usefulness of the genetic
barrier to predict resistance development, and the influ-
ence of the genetic background on this parameter.
Knowledge extracted from this analysis could be used to
enhance prediction of therapy outcome.
As evolutionary simulator of the HIV-1 intrahost

population, an ideal Wright-Fisher model of molecular
evolution was assumed, which is a well accepted model
for evolution in a finite population. A number of
assumptions were implemented to reduce the (computa-
tional) complexity of the model (see additional file 3).

The model did not include recombination. These simpli-
fications may be avoided with availability of a more
accurate, but also more computationally demanding
simulator. Although recombination can speed up resis-
tance accumulation, the fitness landscape attempts to
capture the selective advantage of mutational patterns
under drug selective pressure, what is not expected to
be influenced by recombination.

Conclusions
In conclusion, we have demonstrated for the first time
the existence of intra-patient variation in genetic barrier
to resistance (in this study, to nelfinavir) in patients
considered fully susceptible by an expert system. The
estimated genetic barrier not only reflects the amount of
genetic change needed for resistance, but also takes into
account the influence of virus genetic background, evo-
lutionary constraints as well as the relative impact of a
mutation on the in vivo fitness. We found that a lower
individualized genetic barrier was associated with a
higher risk for development of resistance at treatment
failure. The genetic barrier to resistance, estimated at
baseline, may uncover more information predictive for
developing resistance than currently used genotypic
algorithms.

Methods
Clinical data
Clinical data was pooled from the Stanford HIV Drug
Resistance Database [25] and from a clinical database
maintained at the Molecular Biology Laboratory of Cen-
tro Hospitalar de Lisboa Occidental, on behalf of the
Portuguese HIV Resistance Study Group.
To investigate a correlation between estimated genetic

barrier to NFV resistance and development of NFV
resistance at failure, patients were selected that failed on
a NFV as first containing treatment, and for whom a
protease sequence was available both at start of treat-
ment and at treatment failure. Patients did not have pre-
vious PI history. The activity of NFV at baseline and
failure was predicted using the Rega v8.0.1 algorithm for
genotypic resistance interpretation [21]. Only patients
with full genotypic susceptibility to NFV at baseline
(Genotypic Susceptibility Score (GSSNFV = 1) were
included, and at most one sequence pair per patient.
None of these sequences were included in the data used
to estimate the fitness function under NFV selective
pressure. Genotypic susceptibility (GSSOther) for the
therapy combination (excluding NFV) was computed by
summing up the individual GSS of the other drugs in
the combination. HIV-1 subtype distribution of the
population was determined from the protease and par-
tial reverse transcriptase sequences using the REGA
HIV-1 Subtype tool v2.0 [26]. Isolates were classified as
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either subtype B or nonB (Sub), as B was the majority
subtype in the longitudinal data set.
To investigate genotypic correlates in protease with

the estimated genetic barrier to NFV resistance, evolu-
tion under NFV treatment was simulated for a large
cohort of susceptible protease sequences (with GSSNFV

= 1). At most one sequence per patient was used. The
technique of fitness landscape was developed to particu-
larly take into account the large natural diversity of
HIV-1, in order to estimate a fitness landscape that
could be used across subtypes. However, since the
method relies on within patients evolution towards
higher fitness under drug selective pressure, evolution
from one subtype to another, even if more fit under
treatment, will never be observed. Therefore, resistance
evolution can never capture fitness differences between
subtypes, and thus, in vivo fitness and derived genetic
barrier are directly comparable only within each subtype
individually, but not across subtypes [15]. To avoid a
subtype bias, only subtype B sequences were included.

NFV fitness function
A fitness landscape of HIV-1 under NFV selective pres-
sure was previously estimated from cross-sectional data,
as described in detail in [15] (an overview of the metho-
dology and a list of mutations included in the fitness
function can be found in additional file 3). Briefly, we
estimated a fitness function compatible with differences
in prevalence of mutational patterns observed in
sequences from untreated and treatment experienced
patients that are the result of convergent evolution
under selective pressure modeled by the fitness function.
More specifically, we contrasted 7774 sequences
obtained from protease inhibitor naive patients with
1026 sequences from patients treated with NFV as sin-
gle protease inhibitor. These sequences were of diverse
subtypes (B: 66%, G: 15%, C: 7% and other: 13%).
Estimated fitness is based on the assumption that

when a mutation, or pattern of mutations, is indepen-
dently fixed in a population under selective pressure of
the same treatment in multiple patients, this convergent
evolution may indicate that the mutation or pattern
increases the fitness of the virus in that environment.
Since an interaction between two mutations is expected
to lead to a different observed prevalence of one muta-
tion depending on the presence of the other, conditional
dependencies in mutations prevalence (identified by
Bayesian Network Learning) may indicate epistatic fit-
ness interactions between these mutations [27]. These
interactions are incorporated in a multiplicative fitness
function, which describes fitness as a product of inde-
pendent contributions of presence of 114 amino muta-
tions at 48 protease positions, augmented with
independent contributions for combinations of

interacting mutations. So the fitness contribution of a
mutation is dependent on the presence of mutations
with which it interacts.
To estimate fitness function parameters, the fitness

function was combined with a simulator of HIV-1 intra-
host evolution, making the connection between naive
protease sequences, treatment selective pressure, and
sequences from patients failing treatment. The fitness
landscape was scaled so that fitness of the HIV-1 sub-
type B reference strain HXB2 was 1, so that for any
given sequence put in the landscape, a fitness number is
computed that represents the relative fitness compared
to HXB2.

Correlation of estimated genetic barrier to NFV resistance
with resistance development at treatment failure
The NFV fitness landscape was used to estimate, for
each baseline sequence of 201 longitudinal pairs, viral
fitness under NFV treatment and the simulated genetic
barrier to NFV resistance. The position of the viral
sequence in the landscape can be considered as quantifi-
cation of genotypic susceptibility. For a baseline
sequence, this predicted viral fitness under NFV treat-
ment ( F

∧ ) (fitness number as explained above and
expressed in log scale) was computed as the average fit-
ness of 100 baseline sequences, in which nucleotide
mixtures were removed from each sequence by random
sampling one of the pure nucleotides from the mixture.
The genetic barrier to NFV resistance for a sequence

was calculated by simulating HIV-1 evolution using the
estimated fitness landscape and the simulator of HIV-1
intra-host evolution [15]. For each sequence, the genetic
barrier was quantified as the average number of muta-
tions ( MR

∧ ) or number of simulated generations (GR
∧ )

until full resistance was predicted by Rega (GSSNFV = 0)
in 100 evolution simulation runs. At the start of each
simulation, nucleotide mixtures were removed as
described before.
The associations of log F

∧ , MR
∧ and GR

∧ with odds for
development of NFV resistance R at failure, were inves-
tigated using univariable and multivariable logistic
regression models. Variables included in the multivari-
able models were log F

∧ , MR
∧ or GR

∧ (per 10 genera-
tions), duration between baseline and follow-up sample,
GSSOther and subtype distribution (Sub).

Identifying genotypic correlates of estimated genetic
barrier
To investigate genotypic correlates of the estimated
genetic barrier to NFV resistance, evolution under NFV
treatment was simulated for a virtual clinical cohort of
2764 patients fully susceptible to NFV at baseline
(GSSNFV = 1). For each sequence, one simulation run
was performed using the fitness landscape and the
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number of simulated generations GR was recorded until
full resistance was predicted by Rega.
Subsequently, a step-wise linear model selection was

performed for log GR, in order to investigate the inde-
pendent multiplicative contributions of the presence of
individual mutations to the estimated genetic barrier.
The model selection started from an empty model, and
considered all 114 mutations that were included in the
fitness function model. At each step, the addition to or
removal from the model of each mutation was consid-
ered, and the change that resulted in a model with low-
est Akaike Information Criterion (AIC) score was
selected, until no more improvement was observed. All
statistical analyses were performed using R 2.2.1 [28].

Additional material

Additional file 1: Genotypic correlates of estimated genetic barrier.
A step-wise linear model selection procedure was performed to
investigate the independent, multiplicative contributions of presence of
individual, baseline mutations to the genetic barrier. The analysis yielded
in total 43 mutations, of which 29 were significantly associated. Columns
denote baseline mutation, estimated coefficient, standard error, t-statistic
and corresponding (two-sided) p-value of the fitted model.

Additional file 2: Distribution of mutation prevalence between
collection centers. For each of the 114 protease mutations included in
the fitness function, the prevalence and corresponding percentage are
shown with respect to the database from which data was pooled, as
well as the p-value, odds ratio (OR) and the adjusted p-value using
Bonferroni correction for multiple testing. Data were retrieved from
either a database maintained at the Molecular Biology Laboratory of
Centro Hospitalar de Lisboa Occidental in Portugal (PT) or from the
Stanford HIV Drug Resistance Database (HIVDB). A total of 19 mutations
differed significantly in prevalence between the two patient groups.
Mutations that significantly contributed to the genetic barrier to NFV
resistance (listed in Figure 1) are indicated in bold.

Additional file 3: Estimating a HIV-1 fitness landscape under
selective pressure. A brief overview of the method to estimate an in
vivo fitness landscape experienced by HIV-1 under drug selective
pressure, from observed evolution in clinical sequences.
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