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Abstract
Background and Objectives  Durvalumab, a human monoclonal antibody targeting programmed cell death ligand 1, has been 
approved for urothelial carcinoma and stage III non-small cell lung cancer by the US Food and Drug Administration and is 
being evaluated in various malignancies. The objective of this study was to develop a population-pharmacokinetic model 
of durvalumab in patients with various hematologic malignancies and to investigate the effects of demographic and disease 
factors on the pharmacokinetics in this population.
Methods  A total of 1812 concentrations from 267 patients with myelodysplastic syndromes, acute myeloid leukemia, mul-
tiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma were included in the analysis.
Results  The pharmacokinetics of durvalumab was adequately described by a two-compartment model with first-order elimi-
nation. A decrease in durvalumab clearance over time was mainly explained by incorporation of time-dependent changes in 
albumin (in all patients) and immunoglobulin G (in patients with multiple myeloma) into the model. For multiple myeloma, 
patients with immunoglobulin G ≥ 20 g/L showed a 30% lower area under the concentration–time curve at cycle 1 compared 
with patients with immunoglobulin G < 20 g/L. The impact of any baseline covariates on durvalumab pharmacokinetics 
did not appear to be clinically relevant. The pharmacokinetics of durvalumab in hematologic malignancies was generally 
consistent with previously reported pharmacokinetics in solid tumors.
Conclusions  These results support the same dosing regimen (1500 mg every 4 weeks) for both solid tumors and hematologic 
malignancies from the perspective of adequate exposure. Additionally, total immunoglobulin G level could be a critical 
covariate for the pharmacokinetics of monoclonal antibodies in patients with multiple myeloma.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4026​2-019-00804​-x) contains 
supplementary material, which is available to authorized users.
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Key Points 

A population-pharmacokinetic model of durvalumab was 
developed in patients with various hematologic malig-
nancies including myelodysplastic syndromes, acute 
myeloid leukemia, multiple myeloma, non-Hodgkin 
lymphoma, or Hodgkin lymphoma

The pharmacokinetics of durvalumab in hematologic 
malignancies was generally consistent with that in solid 
tumors, and these results support the same dosing regi-
men (1500 mg every 4 weeks) for both solid tumors 
and hematologic malignancies from the perspective of 
adequate exposure

Total immunoglobulin G level could be a critical covari-
ate for the pharmacokinetics of monoclonal antibodies in 
patients with multiple myeloma

1  Introduction

The programmed cell death 1 (PD-1)/programmed 
cell death ligand 1 (PD-L1) pathway plays a criti-
cal role in maintaining an immunosuppressive tumor 
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microenvironment and the blockade of PD-1/PD-L1 path-
way has become the key component of cancer immuno-
therapy [1]. Durvalumab (MEDI4736) is a human immu-
noglobulin G1 (IgG1) kappa monoclonal antibody that 
binds to PD-L1, blocking the ability to bind to PD-1 or 
a cluster of differentiation 80 on activated T cells, lead-
ing to immune-mediated killing [2]. Durvalumab has been 
approved for the treatment of patients with urothelial car-
cinoma and stage III non-small cell lung cancer by the US 
Food and Drug Administration [3], and is currently being 
evaluated in various solid tumors and hematologic malig-
nancies, including non-Hodgkin lymphoma (NHL), mul-
tiple myeloma (MM), myelodysplastic syndromes (MDS), 
and acute myeloid leukemia (AML). Anti-PD-1 antibod-
ies (nivolumab and pembrolizumab) and other anti-PD-L1 
antibodies (atezolizumab and avelumab) have also been 
approved for the indication of various solid tumors and 
some hematologic malignancies such as classical Hodgkin 
lymphoma and primary mediastinal large B-cell lymphoma 
[3].

The pharmacokinetics of these PD-1/PD-L1 inhibi-
tors is largely similar to that of endogenous IgG, except 
the time-varying clearance (CL) [4]. Clearance of PD-1/
PD-L1 inhibitors decreases over time, which appears to 
be associated with response to treatment [4]. Population-
pharmacokinetic (PK) models of anti-PD-1/PD-L1 anti-
bodies in solid tumors have been reported [5–11], and 
the PK profiles of anti-PD-1/PD-L1 antibodies were 
typically characterized by a two-compartment model 
with linear elimination [4]. A time-dependent decrease 
in CL of nivolumab and pembrolizumab was described 
with empirical time-varying CL models [6, 8, 9]. Baverel 
et al. [7] recently reported the population-PK analysis 
of durvalumab in solid tumors, where the change in CL 
over time was well explained by a semi-mechanistic time-
varying CL model with longitudinal covariates related 
to disease status. For hematologic malignancies, one 
population-PK model has been reported for nivolumab 
in patients with classical Hodgkin lymphoma, indicating 
consistent PK properties with solid tumors except for a 
lower baseline CL by 28% [12]. However, population-
PK analyses of PD-1/PD-L1 inhibitors in other common 
hematologic malignancies such as NHL and MM have not 
been reported.

In this study, a population-PK model of durvalumab 
was developed using pooled data from four clinical tri-
als of hematologic malignancies (NHL, MM, MDS, and 
AML), and the model structure and covariate effects were 
compared with those in solid tumors. In addition, differ-
ences in durvalumab pharmacokinetics and the covariate 
effects among hematologic malignancies were explored.

2 � Methods

2.1 � Clinical Study Data

Four clinical studies of durvalumab (MEDI4736-MDS-001 
[NCT02775903], MEDI4736-MM-002 [NCT02685826], 
MEDI4736-MM-005 [NCT03000452], and MEDI4736-
NHL-001 [NCT02733042]) were included in the population-
PK analyses (Table 1). Data available as of September 2018 
were used. These studies have been conducted in accordance 
with the Declaration of Helsinki and the International Coun-
cil for Harmonisation Guideline for Good Clinical Practice 
(ICH E6). Written informed consent was obtained from all 
subjects.

2.2 � Bioanalytical Methods

Serum durvalumab concentrations were measured using 
validated electrochemiluminescence method with a lower 
limit of quantification of 0.050 µg/mL and an upper limit of 
quantification of 1.600 µg/mL. Soluble PD-L1 (sPD-L1) that 
is not bound to durvalumab in human serum was measured 
using a validated electrochemiluminescence immunoassay 
with a lower limit of detection of 67.1 pg/mL and an upper 
limit of quantification of 1000 pg/mL.

2.3 � Population‑Pharmacokinetic Analyses

A total of 1812 serum durvalumab concentrations from 267 
patients were used in the population-PK analyses. Popula-
tion-PK models were developed using a nonlinear mixed-
effect modeling approach, as implemented in the NONMEM 
software version 7.3.0 (ICON Development Solutions, Elli-
cott City, MD, USA). Plotting of NONMEM outputs was 
conducted using the R software (version 3.4.1) and RStudio 
(version 1.1.456; Boston, MA, USA).

In the development of the structural PK model, one- to 
three-compartment models with linear CL and/or nonlinear 
(Michaelis–Menten) CL and/or empirical time-varying CL 
were tested to fit serum concentration–time data. An empiri-
cal time-varying CL model was described as follows:

where CLt,i represents the CL of subject i at a given time 
t, CLi represents the baseline CL of subject i, Emax repre-
sents the maximum change in CL over time, T50 represents 
the time at which the change is half of its maximum, and γ 
represents the shape parameter that describes the degree of 
sigmoidicity. A fixed value of γ was not explored because 

CL
t,i = CL

i
⋅ exp

(

Emax ⋅ t
�

T
�

50
+ t�

)

,
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the γ value in the population-PK model of durvalumab in 
solid tumors [7] could be different from that in hematologic 
malignancies, and Emax and T50 are sensitive to γ. Serum 
durvalumab concentrations were log-transformed prior to 
the analyses. First-order conditional estimation with inter-
action was used for parameter estimation. The inter-subject 
variability was modeled assuming a log-normal distribution. 
Residual variability was modeled using an additive model. 
The model selection was based on minimum objective func-
tion values (OFVs), precision of parameter estimates, con-
dition number, and goodness-of-fit plots. Covariate model 
building was carried out using a stepwise procedure, with 
significant levels set to 0.01 and 0.001 for the forward inclu-
sion and backward elimination steps, respectively.

Factors related to demographics (age, sex, body weight, 
race, and ethnicity), liver function (aspartate aminotrans-
ferase, alanine aminotransferase, and total bilirubin), kid-
ney function (creatinine CL), and disease status at baseline 
(Eastern Cooperative Oncology Group performance status 
and tumor type) were tested as baseline covariates. Lon-
gitudinal markers related to disease status [albumin, IgG, 
sPD-L1, and lactate dehydrogenase (LDH)] were tested 
as time-varying covariates. Longitudinal IgG data were 
available only from MEDI4736-MM-002 and MEDI4736-
MM-005, and only baseline IgG levels were included from 
MEDI4736-NHL-001. Immunoglobulin levels were not 
available from MEDI4736-MDS-001. Soluble PD-L1 levels 
below the lower limit of detection was imputed as a lower 
limit of detection/2 (33.55 pg/mL). Missing baseline covari-
ates were imputed as the median value in the study popula-
tion. The last observation carried forward method was used 
to fill in missing values at later points.

The nonparametric bootstrap resampling technique was 
used to assess the precision of the parameter estimates of the 
final population-PK model. One thousand bootstrap data-
sets were created by randomly resampling the original data-
set with replacement. The predictability of the final model 
was evaluated using a visual predictive check, which was 
constructed using 200 simulated replicates of the original 
dataset. The nonparametric 90% confidence interval (CI) of 
the median and the 5th and 95th prediction percentiles of 
the simulated concentrations at each binned timepoint were 
visually compared with the median and 5th and 95th percen-
tiles of the observed concentrations.

For the assessment of effects of covariates or type of 
malignancies on durvalumab exposure, the area under the 
concentration–time curve of durvalumab at cycle 1 (AUC​C1) 
was used as the exposure parameter and calculated based on 
Bayesian estimates of PK parameters at baseline from the 
final population-PK model. In addition, the durvalumab PK 
profile during cycle 1 was simulated at both a fixed dose 
(1500 mg) and a weight-based dose (20 mg/kg) using 267 
patients in the population-PK dataset.

3 � Results

3.1 � Demographics

The population-PK dataset included data from 267 sub-
jects with various types of hematologic malignancies. 
Demographic characteristics of these subjects are shown in 
Table 2, and generally comparable to those in the popula-
tion-PK analysis of durvalumab in solid tumors [7].

3.2 � Base Population‑Pharmacokinetic Model 
of Durvalumab

The pharmacokinetics of durvalumab was adequately 
described by a two-compartment model with first-order elim-
ination (linear CL). Inter-individual variability was estimated 
for CL and the volume of distribution of central compartment 
(Vc). Nonlinear (Michaelis–Menten) CL was not included in 
the base model owing to poor precision of Michaelis–Menten 
parameter estimates [Michaelis-Menten constant (Km) and 
maximum elimination rate (Vmax)] and poor stability of the 
model. Similarly, the empirical time-varying CL model was 
not implemented in the base model because the time-varying 
CL parameter (γ) was estimated with poor precision.

3.3 � Final Population‑Pharmacokinetic Model 
of Durvalumab

The parameters of the final model, including bootstrap medi-
ans and 95% CIs for the PK parameters, are presented in 
Table 3. The main steps of the covariate model building 
from the base model to the final model are summarized in 
Table 1 of the Electronic Supplementary Material (ESM). 
All covariates added in the forward inclusion step (∆OFV 
< − 6.635, p < 0.01) were retained in the backward elimina-
tion step (∆OFV > 10.828, p < 0.001). The final population-
PK model included the following covariates: albumin (time 
varying), sex and body weight (baseline) on both CL and 
Vc, IgG (time varying), sPD-L1 (time varying), LDH (time 
varying) and MDS/AML on CL, and MM on Vc. Adding 
the time-dependent change in albumin and IgG on CL sig-
nificantly decreased the OFV by 239 and 153, respectively, 
while effects of other covariates on the OFV were − 15 to 
− 35 (Table 1 of the ESM). Lower albumin level, higher 
body weight, and male sex were associated with higher CL 
and Vc independently, and higher IgG, sPD-L1, and LDH 
levels were associated with higher CL. Patients with MM 
had lower Vc compared with those with non-MM, and 
patients with MDS/AML had higher CL than those with 
non-MDS/AML. Figures 1 and 2 present goodness-of-fit 
plots for the final model and the visual predictive check, 
respectively. Changes in durvalumab CL with time were 
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Table 2   Baseline demographic and disease characteristics of 267 patients with hematologic malignancies

AML acute myeloid leukemia, CLL chronic lymphocytic leukemia, DLBCL diffuse large B-cell lymphoma, ECOG Eastern Cooperative Oncol-
ogy Group, FL follicullar lymphoma, HL Hodgkin lymphoma, LOCF last observation carried forward, MCL mantle cell lymphoma, MDS 
myelodysplastic syndromes, MM multiple myeloma, MZL marginal zone lymphoma, N number of subjects, n number of observations, NA not 
applicable, NHL non-Hodgkin lymphoma, PD-L1 programmed cell death ligand 1, SLL small lymphocytic leukemia, tFL transformed follicular 
lymphoma

Characteristics

Continuous variables Median (Range) Missing, N (%) LOCF, n (%)

Age (years) 71 (21–89) 0 (0) NA
Weight (kg) 74.7 (37.7–121) 0 (0) NA
Creatinine clearance (mL/min) 73.9 (8.96–272) 1 (0.4) NA
Aspartate aminotransferase (U/L) 19 (9–84) 0 (0) NA
Alanine aminotransferase (U/L) 16 (5–127) 0 (0) NA
Total bilirubin (µmol/L) 7.7 (2.6–28) 0 (0) NA
Serum albumin (g/L) 40 (23–50) 0 (0) 568 (31.3)
Lactate dehydrogenase (U/L) 216 (89–1481) 1 (0.4) 644 (35.5)
Soluble PD-L1 (pg/mL) 173.8 (72.0–985) 30 (11.2) 899 (49.6)
Immunoglobulin A (g/L) 0.64 (0.28–53) 100 (37.5) NA
Immunoglobulin G (g/L) 7.6 (0.70–74) 100 (37.5) 379 (20.9)
Immunoglobulin M (g/L) 0.24 (0.20–11) 100 (37.5) NA

Categorical variables N (%)

Sex
 Male 173 (64.8)
 Female 94 (35.2)

Race
 Caucasian 185 (69.3)
 African–American 4 (1.5)
 Asian 16 (6.0)
 Others 6 (2.2)
 Unknown 56 (21.0)

Ethnicity
 Hispanic or Latino 11 (4.1)
 Non-Hispanic or Latino 198 (74.2)
 Unknown 58 (21.7)

ECOG
 0 121 (45.3)
 1 120 (44.9)
 2 23 (8.6)
 3 1 (0.4)
 Unknown 2 (0.7)

Tumor
 NHL 90 (33.7)

  DLBCL 32 (12.0)
  FL 22 (8.2)
  MCL 17 (6.4)
  CLL/SLL 13 (4.9)
  MZL 5 (1.9)
  tFL 1 (0.4)

 MM 73 (27.3)
 AML 61 (22.8)
 MDS 38 (14.2)
 HL 5 (1.9)

Co-administration
 Monotherapy 26 (9.7)
 Combination therapy 241 (90.3)
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depicted by malignancy type in Fig. 3 and Fig. 1 of the 
ESM, and a time-dependent decrease in CL was observed 
in patients with NHL and MM. The changes in albumin, 
IgG, sPD-L1, and LDH with time by malignancy type were 
shown in Fig. 2 of the ESM.

3.4 � Impact of Covariates on Durvalumab Exposure

Next, the impacts of these significant covariates at baseline 
on durvalumab exposure were investigated (Fig. 4). Time-
varying covariates (albumin, IgG, sPD-L1, and LDH) were 

highly variable at baseline and became less variable over 
time in this study (Fig. 2 of the ESM), suggesting that the 
greatest impact of these variables should be observed at 
cycle 1. Therefore, AUC​C1 was used as a typical exposure 
measure. Significant covariates at baseline were summarized 
in Fig. 3 of the ESM. Female patients showed a 27% increase 
in AUC​C1 compared with male patients. Patients with higher 
albumin (third tertile) and lower albumin (first tertile) had 
14% higher and 14% lower AUC​C1 than the second tertile 
group, respectively. Patients with higher IgG (third tertile) 
and lower IgG (first tertile) had 14% lower and 16% higher 
AUC​C1 than the second tertile group, respectively. Patients 
with higher body weight (third tertile) and lower body 
weight (first tertile) had 13% lower and 14% higher AUC​C1 
than the second tertile group, respectively. For other covari-
ates, the impact on the AUC​C1 (median and 90% CI) was 
within a 20% increase/decrease. Simulation results demon-
strated that both a fixed dose (1500 mg) and a weight-based 
dose (20 mg/kg) provide a similar durvalumab PK profile in 
cycle 1 (Fig. 4 of the ESM).

The relationship between albumin and IgG at baseline 
was explored (Fig. 5a). Interestingly, albumin was positively 
correlated with IgG up to 20 g/L, which is the upper limit of 
normal range of IgG, while albumin was negatively corre-
lated with IgG over 20 g/L. Most patients with IgG > 20 g/L 
were those with MM. The impact of albumin on durvalumab 
CL was different at IgG of below and above 20 g/L (Fig. 5b). 
Furthermore, the impacts of subtypes of MM and NHL on 
durvalumab exposure were evaluated. For MM, patients with 
IgG of ≥ 20 g/L showed 30% lower AUC compared with 
patients with IgG of < 20 g/L (Fig. 6a). For NHL, no appar-
ent difference in durvalumab exposure was observed among 
different subtypes (Fig. 6b). 

4 � Discussion

This is the first study to report a population-PK model of 
anti-PD-1/PL-1 antibodies in subjects with common hema-
tologic malignancies such as NHL, MM, MDS, and AML. 
In this population-PK model, durvalumab pharmacokinet-
ics was well described by a two-compartment model with 
first-order CL. Serum albumin, IgG, sPD-L1, LDH, weight, 
sex, and some malignancy type (MDS/AML and MM) were 
incorporated in the final model as covariates on CL and Vc. 
Change in albumin (in all patients) and IgG (in patients with 
MM) over time adequately accounts for the time-dependent 
decrease in durvalumab CL. For MM, patients with IgG of 
≥ 20 g/L showed 30% lower AUC compared with patients 
with IgG of < 20 g/L.

The population-PK model of durvalumab in hemato-
logic malignancies was generally consistent with that in 
solid tumors [7]. The structural model of durvalumab in this 

Table 3   Population-pharmacokinetic parameter estimates of dur-
valumab and bootstrap evaluation

ALB serum albumin, AML acute myeloid leukemia, CI confidence 
interval, CL clearance, CV coefficient of variation, IgG immuno-
globulin G, LDH lactate dehydrogenase, MDS myelodysplastic syn-
dromes, MM multiple myeloma, Q inter-compartmental clearance, 
RSE relative standard error, sPD-L1 soluble programmed cell death 
ligand 1, TV typical value, Vc volume of distribution of central com-
partment, Vp volume of distribution of peripheral compartment, WT 
weight
a Calculated from 914 bootstraps with successful minimization (out of 
1000 bootstraps)
b CL (L/h) = 0.0107 × (ALB/40)−1.58 × (IgG/7.61)0.258 × (sPD-
L1/173.8)0.0617 × (LDH/216)0.115 × (WT/74.7)0.581 × 0.791 (if female) 
× 1.26 (if MDS/AML)
c Vc (L) = 4.63 × (ALB/40)−0.566 × (WT/74.7)0.451 × 0.790 (if female) 
× 0.820 (if MM)

Parameter Parameter esti-
mates (%RSE)

Bootstrap mediana (95% 
CI)

Fixed effects
TVCL, L/h 0.0107 (3.1) 0.0107 (0.0100–0.0113)
TVVc, L 4.63 (2.1) 4.62 (4.43–4.84)
TVQ, L/h 0.0376 (11.6) 0.0375 (0.0298–0.0468)
TVVp, L 2.68 (6.3) 2.69 (2.43–2.98)
ALB on CLb −1.58 (7.1) −1.58 (−1.81 to −1.36)
IgG on CLb 0.258 (12.0) 0.258 (0.193–0.317)
sPD-L1 on CLb 0.0617 (37.1) 0.0597 (0.0198–0.116)
LDH on CLb 0.115 (33.2) 0.117 (0.0423–0.199)
WT on CLb 0.581 (15.5) 0.581 (0.385–0.766)
Sex on CLb 0.791 (4.2) 0.789 (0.724–0.857)
MDS/AML on CLb 1.26 (4.0) 1.26 (1.15–1.37)
ALB on Vcc −0.566 (18.8) −0.561 (−0.800 to 

−0.363)
WT on Vcc 0.451 (18.9) 0.448 (0.284–0.591)
Sex on Vcc 0.790 (4.2) 0.790 (0.726–0.859)
MM on Vcc 0.820 (4.3) 0.822 (0.756–0.893)
Random effects
 Inter-individual variability
  CL, CV% 25.8 (7.9) 25.3 (21.6–29.5)
  Vc, CV% 24.7 (5.2) 24.5 (22.1–26.8)

 Residual variability
  Log additive error 0.198 (4.3) 0.197 (0.179–0.215)
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analysis was a two-compartment model with first-order CL, 
which is the most common base model of monoclonal anti-
bodies [13] including other PD-1/PD-L1 inhibitors [4]. Most 
of the covariates in the final model (albumin on CL, sex on 
CL and Vc, and weight on CL and Vc) were also observed in 
the population-PK model of durvalumab in solid tumors [7]. 
The sPD-L1 level was a covariate on CL and Vmax in hemato-
logic and solid tumors, respectively, and a high sPD-L1 level 
was associated with higher total CL in both models. Addi-
tionally, a time-dependent change in albumin significantly 
improved the fitting of both models.

Several differences were observed in the base model 
structure between the two durvalumab population-PK 
models in patients with hematologic malignancies and 
solid tumors. Nonlinear CL was not included in our popu-
lation-PK model of durvalumab in hematologic malignan-
cies, while a previous population-PK model of durvalumab 
in solid tumors contained nonlinear Michaelis–Menten 
CL [7]. In addition, we failed to obtain robust parameter 
estimates of the empirical time-varying CL model. The 

discrepancy in nonlinearity may in part be explained by 
the difference in dose levels of durvalumab. Durvalumab 
showed nonlinear pharmacokinetics with saturable target-
mediated CL at doses < 3 mg/kg, and the solid tumor 
model included data from doses ranging from 0.1 to 20 
mg/kg [7]. However, our four clinical trials in subjects 
with hematologic malignancies tested only one dose and 
at a relatively high dose level, 1500 mg every 4 weeks 
(equivalent to 10 mg/kg every 2 weeks or 20 mg/kg every 
4 weeks), where the linearity of exposure with doses was 
approached. Failure to add the empirical time-varying CL 
model into the current model could be explained in part 
by the shorter follow-up period of PK sampling. In the 
previously reported durvalumab model [7], population 
mean value of T50 was 173 days (about 5 months). In our 
analysis, 85% and 95% of concentrations were obtained 
within 2 and 4 months after the first dose, indicating the 
difficulty of estimating robust empirical time-varying CL 
model parameters in our model. The goodness-of-fit plot 
(conditional weighted residual vs. time after first dose, 

Fig. 1   Goodness-of-fit plots of 
the final population-pharma-
cokinetic model of durvalumab 
in subjects with hematologic 
malignancies. CWRES condi-
tional weighted residuals, DV 
observed value, IPRED indi-
vidual predicted values, PRED 
predicted values, TAD time 
after last dose (hour), TIME 
time after first dose (hour). The 
blue line represents the identity 
line or zero line. The red line 
represents the locally weighted 
scatterplot smoothing line
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Fig. 1) of the final model did not show any under-pre-
diction of durvalumab concentrations at later timepoints, 
justifying the final model with time-varying covariates.

The covariate with the largest impact on durvalumab 
exposure was sex, and female patients showed 27% higher 
exposure than male patients (Fig. 4). In the final popula-
tion-PK model, lower body weight and being female were 
independently associated with lower durvalumab CL, which 
is often observed in other monoclonal antibodies [13]. In 
this study, median body weight of female patients (63.5 kg) 
was 20% lower than that of male patients (79.0 kg). Effect 
of sex on durvalumab exposure was higher in hematologic 
malignancies (27%) compared with solid tumors (17%) 
[7], which would be in part owing to larger actual doses 
in female patients in studies of hematologic malignancies, 
caused by the switch from a weight-based dosing regimen in 
solid tumor studies (10 mg/kg every 2 weeks) to a fixed dos-
ing regimen in hematologic malignancy studies (1500 mg 
every 4 weeks). Simulation results indicated the similar dur-
valumab concentration–time profile between 1500 mg and 
20 mg/kg (which is comparable to 1500 mg). The slightly 
higher 95 percentile concentration in 1500 mg would be 
explained by the larger actual dose in female patients. Nev-
ertheless, the impact of sex on durvalumab pharmacokinet-
ics would not be clinically significant because the impact 
of sex was relatively small and no exposure–efficacy or 
exposure–safety relationship for durvalumab was observed 
in patients with solid tumors receiving the recommended 
dosing regimen (10 mg/kg every 2 weeks) [14]. Overall, the 

Fig. 2   Visual predictive check for durvalumab in subjects with hema-
tologic malignancies. Circles represent observed data. Lines represent 
the 5th (dashed), 50th (solid), and 95th (dashed) percentiles of the 
observed data. Shaded areas represent nonparametric 90% confidence 
intervals about the 5th (light pink), 50th (dark pink), and 95th (light 
pink) percentiles for the corresponding model-predicted percentiles
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impact of any baseline covariates on durvalumab pharma-
cokinetics did not appear to be clinically meaningful.

Incorporation of albumin and IgG as time-varying covari-
ates in the final model significantly improved the statistical 
fit (∆OFV: − 239 and − 153, respectively). An apparent 
time-dependent increase in albumin and a decrease in IgG 
were observed in patients with NHL and MM, respectively 
(Fig. 2 of the ESM). In the time-invariant model, baseline 
albumin and IgG reduced OFV by 35 and 62, respectively 
(data not shown), indicating the appropriateness of time-var-
ying covariates in the final model. Soluble PD-L1 improved 
the statistical fit as a time-varying covariate (∆OFV: − 18), 
however, it was not retained in the final time-invariant model 
(data not shown). The sPD-L1 level in most patients with 
available sPD-L1 data at a later time was lower than the 
limit of detection (Fig. 2 of the ESM), accounting for a 16% 
decrease in CL from the baseline at cycle 2 and beyond. The 
decrease in OFV by including time-varying LDH was 15, 

which was comparable to that of the time-invariant model 
(∆OFV: −27, data not shown), indicating the impact on CL 
would be mostly accounted for by the LDH at baseline. As 
shown in Fig. 4, the effect of LDH on durvalumab exposure 
was minimal.

The neonatal Fc receptor plays a critical role in salvag-
ing both IgG and albumin from lysosomal degradation 
[15]. Albumin level was positively correlated with IgG at 
below 20 g/L of IgG, which is the upper range of normal 
IgG levels (Fig. 5a). This suggests that at normal IgG lev-
els, a lower albumin level could be an indicator of higher 
CL of both albumin and IgG (including externally admin-
istered monoclonal antibodies) [13]. However, the albumin 
level decreased with an increasing IgG level above 20 g/L 
(Fig. 5a), where the salvage of IgG and albumin by the neo-
natal Fc receptor appeared to be saturated. Hypergamma-
globulinemia is commonly seen in patients with MM, and 
the higher CL of monoclonal antibodies in this populations 
has been suggested [16, 17]. The current study demonstrated 
that albumin and IgG were independent covariates of the 
durvalumab population-PK model and the impact of albu-
min on durvalumab CL was different at IgG of below and 
above 20 g/L (Fig. 5b). These findings suggest that both 
albumin and IgG are independent determinants of CL of 
monoclonal antibodies in patients with MM with hypergam-
maglobulinemia, while albumin could be enough to explain 
the CL of monoclonal antibodies at the normal range of IgG 
levels. A time-dependent decrease in durvalumab CL would 
be explained by the change in IgG over time in patients with 
MM, which is consistent with a time-dependent decrease in 
CL of daratumumab in patients with MM [18].

The type of hematologic malignancy had a relatively 
small impact on durvalumab pharmacokinetics. The differ-
ences in durvalumab exposure (median and 90% CI) were 
within 20% among MDS/AML, MM, and NHL/Hodgkin 
lymphoma (Fig. 4). In addition, there was no apparent dif-
ference in durvalumab exposure among various NHL sub-
types (Fig. 6b). For MM, hypergammaglobulinemia was a 
key determinant of durvalumab exposure (Fig. 6a).

Our study was limited by a single-dose level and a rela-
tively shorter collection duration of PK data. Because only 
one dose level of durvalumab (1500 mg every 4 weeks) 
was included in this population-PK analysis, it is difficult 
to capture nonlinear CL of durvalumab that was observed 
over a wide dose range in solid tumors [7]. In addition, the 
PK sampling period from the first dose in our analysis was 
shorter than that in the previous analyses of durvalumab 
and other PD-1/PD-L1 inhibitors where empirical time-
varying CL was implemented [7–9]. Therefore, we could 
not draw an unequivocal conclusion that these differences 
between the current and previous analyses is due to the 
difference in tumor type (solid tumors vs. hematologic 
malignancies). Rather, durvalumab pharmacokinetics in 

Fig. 4   Forest plot of baseline covariates on durvalumab exposure. 
Data are shown as median (90% confidence interval). References 
are male (sex), non-Hodgkin lymphoma, and Hodgkin lymphoma 
(malignancy type) and second tertile (weight, albumin, immuno-
globulin G [IgG], soluble programmed cell death ligand 1 [sPD-L1] 
and lactate dehydrogenase [LDH]). First, second, and third tertile of 
weight at baseline are 37.7–68.5 kg, 68.6–80.1 kg, and 80.5–121 kg, 
respectively. First, second, and third tertile of albumin at baseline are 
23–38 g/L, 39–42 g/L, and 43–50 g/L, respectively. First, second and 
third tertile of IgG at baseline are 0.70–4.99 g/L, 5.00–10.4 g/L, and 
10.5–73.7 g/L, respectively. First, second, and third tertile of sPD-L1 
at baseline are 72.0–145.5 pg/mL, 145.7–204.1 pg/mL, and 204.5–
984.6 pg/mL, respectively. First, second, and third tertile of LDH at 
baseline are 89–190 U/L, 191–261 U/L, and 263–1481 U/L, respec-
tively. Area under the concentration–time curve at cycle 1 (AUC) of 
durvalumab was used as an exposure parameter and calculated based 
on individual Bayesian estimates of PK parameters at baseline from 
the final population-PK model
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hematologic malignancies was mostly consistent with that in 
solid tumors. Second, some time-varying covariates were not 
available from all patients (IgG) or available at less frequent 
timepoints (sPD-L1). Time-varying IgG data were available 
only from patients with MM. More complete time-varying 
data of IgG and sPD-L1 would improve the statistical fit of 
the population-PK model; however, the impact would be 

minimal because of the following reasons: (1) sPD-L1 level 
is considered to affect nonlinear CL; however, the contribu-
tion of nonlinear CL to the total CL of durvalumab is small 
and (2) hypergammaglobulinemia in non-MM hematologic 
malignancies is not as common as MM, and a significant 
time-dependent change in IgG is not expected in non-MM 
hematologic malignancies.

Fig. 5   Association of albumin with immunoglobulin G [IgG] (a) and durvalumab clearance (CL) controlling IgG (b). The lines represent the 
locally weighted scatterplot smoothing lines. MM multiple myeloma

Fig. 6   Effects of hypergammaglobulinemia in multiple myeloma 
[MM] (a) and subtype of non-Hodgkin lymphoma [NHL] (b) on dur-
valumab exposure. AUC​ area under the concentration–time curve at 
cycle 1, CLL chronic lymphocytic leukemia, DLBCL diffuse large 

B-cell lymphoma, FL follicullar lymphoma, IgG immunoglobulin G, 
MCL mantle cell lymphoma, MZL marginal zone lymphoma, N num-
ber of subjects, SLL small lymphocytic leukemia, tFL transformed 
follicular lymphoma
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5 � Conclusions

The pharmacokinetics of durvalumab in hematologic malig-
nancies was generally consistent with that in solid tumors, 
and these results support the same dosing regimen (1500 mg 
every 4 weeks) for both solid tumors and hematologic malig-
nancies. In addition, IgG level was indicated to be a critical 
covariate of monoclonal antibodies in patients with MM.

Acknowledgments  The authors thank all study participants and their 
families. We also thank the clinical study team members at the study 
sites, Celgene Corporation and the contract research organizations.

Compliance with Ethical Standards 

Funding  This study was funded by Celgene Corporation.

Conflict of Interest  Ken Ogasawara, Kathryn Newhall, Stephen E. 
Maxwell, Justine Dell’Aringa, Vitalina Komashko, Nurgul Kilavuz, 
Richard Delarue, Myron Czuczman, Lars Sternas, Shelonitda Rose, 
C.L. Beach, Steven Novick, Simon Zhou, Maria Palmisano, and Yan 
Li are employees of Celgene Corporation and hold equity ownership 
in Celgene Corporation.

Ethics Approval  All procedures performed in the studies involving 
human participants were in accordance with the ethical standards of 
the institutional and/or national research committee and with the 1964 
Helsinki Declaration and its later amendments or comparable ethical 
standards.

Consent to Participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution-NonCommercial 4.0 International License 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits any 
noncommercial use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made.

References

	 1.	 Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, 
present, and future. J Clin Invest. 2015;125(9):3384–91. https​://
doi.org/10.1172/JCI80​011.

	 2.	 Stewart R, Morrow M, Hammond SA, Mulgrew K, Marcus D, 
Poon E, et al. Identification and characterization of MEDI4736, 
an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immu-
nol Res. 2015;3(9):1052–62. https​://doi.org/10.1158/2326-6066.
CIR-14-0191.

	 3.	 US Food and Drug Administration. Drugs@FDA: FDA approved 
drug products. https​://www.acces​sdata​.fda.gov/scrip​ts/cder/daf/. 
Accessed 11 Feb 2019.

	 4.	 Sheng J, Srivastava S, Sanghavi K, Lu Z, Schmidt BJ, Bello A, 
et al. Clinical pharmacology considerations for the development of 

immune checkpoint inhibitors. J Clin Pharmacol. 2017;57(Suppl. 
10):S26–42. https​://doi.org/10.1002/jcph.990.

	 5.	 Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de 
Greef R, et al. Model-based characterization of the pharmacoki-
netics of pembrolizumab: a humanized anti-PD-1 monoclonal 
antibody in advanced solid tumors. CPT Pharmacometrics Syst 
Pharmacol. 2017;6(1):49–57. https​://doi.org/10.1002/psp4.12139​.

	 6.	 Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-
based population pharmacokinetic analysis of nivolumab in 
patients with solid tumors. CPT Pharmacometrics Syst Pharma-
col. 2017;6(1):58–66. https​://doi.org/10.1002/psp4.12143​.

	 7.	 Baverel PG, Dubois VFS, Jin CY, Zheng Y, Song X, Jin X, et al. 
Population pharmacokinetics of durvalumab in cancer patients and 
association with longitudinal biomarkers of disease status. Clin 
Pharmacol Ther. 2018;103(4):631–42. https​://doi.org/10.1002/
cpt.982.

	 8.	 Li H, Yu J, Liu C, Liu J, Subramaniam S, Zhao H, et al. Time 
dependent pharmacokinetics of pembrolizumab in patients 
with solid tumor and its correlation with best overall response. 
J Pharmacokinet Pharmacodyn. 2017;44(5):403–14. https​://doi.
org/10.1007/s1092​8-017-9528-y.

	 9.	 Liu C, Yu J, Li H, Liu J, Xu Y, Song P, et al. Association of time-
varying clearance of nivolumab with disease dynamics and its 
implications on exposure response analysis. Clin Pharmacol Ther. 
2017;101(5):657–66. https​://doi.org/10.1002/cpt.656.

	10.	 Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel 
J, et al. Clinical pharmacokinetics and pharmacodynamics of 
atezolizumab in metastatic urothelial carcinoma. Clin Pharmacol 
Ther. 2017;102(2):305–12. https​://doi.org/10.1002/cpt.587.

	11.	 Wilkins JJ, Brockhaus B, Dai H, Vugmeyster Y, White JT, Brar 
S et al. Time-varying clearance and impact of disease state on 
the pharmacokinetics of avelumab in merkel cell carcinoma and 
urothelial carcinoma. CPT Pharmacometrics Syst Pharmacol. 
2019. https​://doi.org/10.1002/psp4.12406​.

	12.	 Wang X, Ludwig EA, Passarell J, Bello A, Roy A, Hruska MW. 
Population pharmacokinetics and exposure-safety analyses of 
nivolumab in patients with relapsed or refractory classical Hodg-
kin lymphoma. J Clin Pharmacol. 2019;59(3):364–73. https​://doi.
org/10.1002/jcph.1324.

	13.	 Ogasawara K, Alexander GC. Use of population pharmacokinetic 
analyses among FDA-approved biologics. Clin Pharmacol Drug 
Dev. 2019. https​://doi.org/10.1002/cpdd.658.

	14.	 Jin CY, Zheng Y, Jin X, Mukhopadhyay P, Gupta A, Dennis PA, 
et al. Exposure-efficacy and safety analysis of durvalumab in 
patients with urothelial carcinoma (UC) and other solid tumors. J 
Clin Oncol. 2017;35(15):2568.

	15.	 Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS. FcRn: the 
architect behind the immune and nonimmune functions of IgG 
and albumin. J Immunol. 2015;194(10):4595–603. https​://doi.
org/10.4049/jimmu​nol.14030​14.

	16.	 Jacobs JFM, Mould DR. The role of FcRn in the pharmacokinetics 
of biologics in patients with multiple myeloma. Clin Pharmacol 
Ther. 2017;102(6):903–4. https​://doi.org/10.1002/cpt.665.

	17.	 Xu XS, Schecter JM, Jansson R, Yan X. Response to “The role 
of FcRn in the pharmacokinetics of biologics in patients with 
multiple myeloma”. Clin Pharmacol Ther. 2017;102(6):905. https​
://doi.org/10.1002/cpt.779.

	18.	 Xu XS, Yan X, Puchalski T, Lonial S, Lokhorst HM, Voorhees 
PM, et al. Clinical implications of complex pharmacokinetics for 
daratumumab dose regimen in patients with relapsed/refractory 
multiple myeloma. Clin Pharmacol Ther. 2017;101(6):721–4. 
https​://doi.org/10.1002/cpt.577.

https://doi.org/10.1172/JCI80011
https://doi.org/10.1172/JCI80011
https://doi.org/10.1158/2326-6066.CIR-14-0191
https://doi.org/10.1158/2326-6066.CIR-14-0191
https://www.accessdata.fda.gov/scripts/cder/daf/
https://doi.org/10.1002/jcph.990
https://doi.org/10.1002/psp4.12139
https://doi.org/10.1002/psp4.12143
https://doi.org/10.1002/cpt.982
https://doi.org/10.1002/cpt.982
https://doi.org/10.1007/s10928-017-9528-y
https://doi.org/10.1007/s10928-017-9528-y
https://doi.org/10.1002/cpt.656
https://doi.org/10.1002/cpt.587
https://doi.org/10.1002/psp4.12406
https://doi.org/10.1002/jcph.1324
https://doi.org/10.1002/jcph.1324
https://doi.org/10.1002/cpdd.658
https://doi.org/10.4049/jimmunol.1403014
https://doi.org/10.4049/jimmunol.1403014
https://doi.org/10.1002/cpt.665
https://doi.org/10.1002/cpt.779
https://doi.org/10.1002/cpt.779
https://doi.org/10.1002/cpt.577

	Population Pharmacokinetics of an Anti-PD-L1 Antibody, Durvalumab in Patients with Hematologic Malignancies
	Abstract
	Background and Objectives 
	Methods 
	Results 
	Conclusions 

	1 Introduction
	2 Methods
	2.1 Clinical Study Data
	2.2 Bioanalytical Methods
	2.3 Population-Pharmacokinetic Analyses

	3 Results
	3.1 Demographics
	3.2 Base Population-Pharmacokinetic Model of Durvalumab
	3.3 Final Population-Pharmacokinetic Model of Durvalumab
	3.4 Impact of Covariates on Durvalumab Exposure

	4 Discussion
	5 Conclusions
	Acknowledgments 
	References




