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1  | INTRODUC TION

Many species and populations are declining at an alarming rate 
(Barnosky et al., 2011; Ceballos et al., 2015; Dirzo et al., 2014), mainly 
driven by human-mediated habitat loss and climate change (Loarie 

et al., 2009). Active prevention of population declines and extirpations 
is a priority for conservation (Cardinale et al., 2012; Thompson et al., 
2017) because reduction in population size is often followed by reduc-
tion in genetic diversity (Allendorf et al., 2013; Soulé, 1985). The loss of 
genetic diversity has negative consequences on the future persistence 

 

Received: 1 September 2020  |  Revised: 25 February 2021  |  Accepted: 2 March 2021

DOI: 10.1111/eva.13216  

O R I G I N A L  A R T I C L E

Genetic load has potential in large populations but is realized in 
small inbred populations

Samarth Mathur1  |   J. Andrew DeWoody1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

1Department of Biological Sciences, Purdue 
University, West Lafayette, Indiana, USA
2Department of Forestry and Natural 
Resources, Purdue University, West 
Lafayette, Indiana, USA

Correspondence
Samarth Mathur, Department of Evolution, 
Ecology and Organismal Biology, The 
Ohio State University, 318 W 12th Ave, 
Columbus, OH 43210, USA.
Email: mathur.112@osu.edu

Present address
Samarth Mathur, Department of Evolution, 
Ecology and Organismal Biology, The Ohio 
State University, Columbus, Ohio, USA

Funding information
National Institute of Food and Agriculture; 
Rob and Bessie Welder Wildlife Foundation; 
Texas AgriLife Research; Reversing the 
Decline of Quail in Texas Initiative

Abstract
Populations with higher genetic diversity and larger effective sizes have greater evo-
lutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are 
interested in how the variation captured in protein-coding genes fluctuates relative 
to overall genomic diversity and whether smaller populations suffer greater costs due 
to their genetic load of deleterious mutations compared with larger populations. We 
analyzed individual whole-genome sequences (N = 74) from three different popula-
tions of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that 
is sustainably harvested in some portions of its range but is of conservation con-
cern elsewhere. Our historical demographic results indicate that Montezuma quail 
populations in the United States exhibit low levels of genomic diversity due in large 
part to long-term declines in effective population sizes over nearly a million years. 
The smaller and more isolated Texas population is significantly more inbred than the 
large Arizona and the intermediate-sized New Mexico populations we surveyed. The 
Texas gene pool has a significantly smaller proportion of strongly deleterious vari-
ants segregating in the population compared with the larger Arizona gene pool. Our 
results demonstrate that even in small populations, highly deleterious mutations are 
effectively purged and/or lost due to drift. However, we find that in small populations 
the realized genetic load is elevated because of inbreeding coupled with a higher fre-
quency of slightly deleterious mutations that are manifested in homozygotes. Overall, 
our study illustrates how population genomics can be used to proactively assess both 
neutral and functional aspects of contemporary genetic diversity in a conservation 
framework while simultaneously considering deeper demographic histories.
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of a species as it impedes its ability to adapt to environmental change 
(Bijlsma & Loeschcke, 2005; Bürger & Lynch, 1995; Reed & Frankham, 
2003). Smaller and/or isolated populations exhibit a more rapid loss of 
within-population genetic variation as compared to their larger coun-
terparts (Willi et al., 2006). The combined effects of drift, inbreeding, 
weak selection, and lack of gene flow in small, isolated populations may 
lead to “genetic erosion” (Bijlsma & Loeschcke, 2012). Genetic ero-
sion can impede future adaptive potential in small inbred populations 
(Keller, 2002), reduce the mean fitness of a population, and increase 
extinction risks (Bijlsma & Loeschcke, 2012; Leroy et al., 2018).

In theory, mean fitness is expected to progressively decrease in 
small isolated populations because of the accumulation of delete-
rious mutations that are ineffectively purged by selection. In large 
populations and/or when selection intensity is very strong (i.e., when 
Ne(s) > 1, where Ne is effective population size and s is the selection 
coefficient), natural selection is an effective determinant of allelic 
fate (Kimura & Ohta, 1969). However, in small populations and/or 
when selection is weak (e.g., on small-effect mutant alleles), genetic 
drift is more pronounced and allelic fate is more stochastic (Lynch 
et al., 1995). Thus, highly deleterious mutations are more likely to 
be purged by selection than to drift to high frequencies, whereas 
slightly deleterious mutations can actually increase in frequency 
in small populations (Hedrick & Garcia-Dorado, 2016). Most of the 
genes underlying adaptation represent complex polygenic traits, and 
most genetic load is probably due to small-effect (i.e., only slightly 
deleterious) alleles (Charlesworth & Charlesworth, 1987), which in-
dicates that genetic erosion can reduce mean fitness of small popu-
lations if small-effect recessive deleterious alleles rise in frequency 
due to drift (Charlesworth et al., 1993; Lynch, 2007).

In practice, empirical evidence for the purging of deleterious mu-
tations is mostly experimental and there is far less evidence from nat-
ural populations, especially with respect to genomic sequence data 
(Bersabé & García-Dorado, 2013; Bijlsma et al., 1999; Crnokrak & 
Barrett, 2002; Grossen et al., 2020; Rettelbach et al., 2019). Economic 
and technical breakthroughs in whole-genome resequencing now 
make such assessments in wild populations far more tractable. Beyond 
the basic evolutionary interest in allelic fates, the genetic erosion of 
adaptive potential is increasingly recognized as a major threat to mod-
ern conservation efforts (Holderegger et al., 2019; Ralls et al., 2018).

Much of the vertebrate genome is thought to evolve in a neutral or 
nearly neutral fashion (Ohta, 1992) and is shaped by genome-wide pro-
cesses such as inbreeding, migration, and demographic stochasticity 
(Pool & Nielsen, 2007). For example, contemporary genomic patterns 
of neutral diversity may be affected by the recent lack of gene flow 
due to anthropogenic habitat fragmentation and historic demographic 
responses to glaciations (Nadachowska-Brzyska et al., 2015). Beyond 
neutrality, variants in genic regions often underlie evolutionary adapta-
tions subject to natural selection, and the mode and strength of selec-
tion largely determine the phenotypic response (Ellegren & Sheldon, 
2008). Hence, explicitly comparing whole genomes with defined genic 
regions should help with identifying the major contributors to overall 
genomic architecture and also gauge the adaptive potential of pop-
ulations. In this study, we use whole-genome sequences to quantify 

genic and whole-genome variation from different-sized populations of 
Montezuma quail (Cyrtonyx montezumae), and then estimate the de-
gree of genetic erosion and its impact on adaptive potential by inves-
tigating the genetic load via biochemical predictions as inferred from 
coding regions throughout the genome.

The Montezuma quail is a small game bird that is hunted in portions 
of Mexico, New Mexico, and Arizona but of conservation concern in 
Texas (Figure 1). It is one of the least-studied avian species in North 
America (Gonzalez Gonzalez, Harveson, & Luna, 2017) due to its 
cryptic nature and difficulties associated with live trapping and mon-
itoring (Hernandez et al., 2006). Montezuma quail are currently ex-
periencing species-wide declines within the United States (Harveson 
et al., 2007), and Texas populations are listed as Vulnerable by Texas 
Parks and Wildlife Department (TPWD) with no open hunting season 
due to growing concerns about extirpations (Harveson, 2009). Unlike 
other North American quails, Montezuma quail are diet (Albers & 
Gehlbach, 1990) and habitat specialists (Brown, 1979) that heavily 
rely on grass cover for predator evasion (Bristow & Ockenfels, 2004). 
Their demography is strongly impacted by seasonal rainfall (Chavarria 
et al., 2012) and adequate grass cover (Brown, 1979), making habitat 
degradation and fragmentation major threats to Montezuma quail 
survival (Luna et al., 2017). Populations in Arizona are more genet-
ically diverse than those from Texas or New Mexico (Mathur et al., 
2019) and are expected to be the least impacted by genetic erosion 
due to larger sizes and more contiguous habitat (Figure 1). In contrast, 
the Texas population is expected to have the highest signature of 
genetic erosion due to a restricted geographic range and associated 
demographic isolation (Mathur et al., 2019).

Herein, we report the data from whole-genome sequencing 
(WGS) of 90 Montezuma quail from Arizona, New Mexico, and 
Texas. We used these WGS data to quantify the levels of overall ge-
nomic diversity, genic variation, differentiation, individual inbreed-
ing, and the inferred genetic load in each population. We do so in a 
conservation context by comparing populations of different sizes. 
Our results indicate that Montezuma quail effective population sizes 
have decreased over much of the last million years, and their similar 
trajectories over time indicate that now-disjunct populations in the 
United States were long connected demographically. Furthermore, 
we find that the small Texas population is isolated and genetically 
depauperate, and that its genetic load is mostly due to small-impact 
deleterious mutations. Because inbreeding is also more pronounced 
in the small Texas population compared with the larger populations, 
these deleterious mutations are more likely to occur in homozygotes 
and thus contribute to a decline in fitness.

2  | MATERIAL S AND METHODS

2.1 | Samples, DNA extraction, and sequencing

Montezuma quail samples were opportunistically collected (i.e., ei-
ther hunter-harvested wing tissues or roadkill carcasses) from three 
representative geographic populations in the United States: Arizona 
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(AZ), New Mexico (NM), and Texas (TX) as described earlier (Mathur 
et al., 2019; Figure 1). Based on the size of their geographic range 
in each state, on assessments by each state game agency, on eBird 
sightings, and on previous genetic analyses, we explicitly assume 
that AZ samples come from a large population, NM from a medium-
sized population, and TX from a small population relative to each 
other (Mathur et al., 2019). Arizona samples were acquired from 
hunter-harvested wings initially collected by Randel et al. (2019). 
New Mexico samples were acquired as voucher specimens by R. 
Luna, whereas Texas samples were collected as roadkill carcasses 
by L. Harveson. Sample handling and DNA extraction protocols are 
described in Mathur et al. (2019).

We sequenced whole genomes of 90 Montezuma quail samples 
(AZ = 60, TX = 17, and NM = 13) by creating individually barcoded 
dual-index libraries using Illumina® Nextera™ reagents following the 
manufacturer's protocol. The libraries were sequenced in 8 lanes 
of paired-end 150 bp reads (2 × 150 bp) on one S4 flow cell using 
Illumina® NovaSeq™ 6000 sequencing system in Purdue University's 

Genomics Core Facility. The estimated genome size of Montezuma 
quail is 1.03 Gb (Mathur et al., 2019), and we removed any sample if 
they failed to generate more than 8 million reads (i.e., less than 1× 
mean read depth).

2.2 | Sequencing filtering, alignment, and read 
preprocessing

We used FastQC v0.11.7 (Andrews, 2010) to quality check our raw 
reads and removed adapter sequences from trailing and leading 
edges of each read using Trimmomatic v.036 (Bolger et al., 2014). 
We also used Trimmomatic to remove low-quality sequences (Phred 
<20) and any read smaller than 30 bp after clipping and quality filter-
ing, prior to any further downstream analysis.

The filtered reads were mapped to a Montezuma quail draft ge-
nome assembly (Mathur et al., 2019) with BWA v.0.7.17 (Li & Durbin, 
2009) using the mem algorithm. Our final dataset contained 74 

F I G U R E  1   Montezuma quail species 
range and sampling sites (from Mathur et 
al., 2019). Samples were collected from 
the larger and most contiguous Arizona 
sites (N = 60), from an intermediate-
sized population in New Mexico (N = 13), 
and from a relatively isolated and small 
population in Texas (N = 15)
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individuals (AZ = 52, TX = 15, and NM = 7). We used the Genome 
Analysis ToolKit (GATK) “Best Practice Workflow” (Van der Auwera 
et al., 2013) to preprocess our mapped reads. We first sorted the 
reads by their coordinates and marked duplicates using Picard 
Tools (http://picard.sourc​eforge.net). We then used GATK v3.6.0 
(McKenna et al., 2010) to realign our reads around indels to mini-
mize misaligning with mismatches. We identified the regions to be 
realigned using RealignerTargetCreator and aligned BAM files using 
IndelRealigner. The base quality score was recalibrated for all the 
reads using known variant sites discovered from high coverage ge-
nome reads (Mathur et al., 2019) using BaseRecalibrator. We finally 
used these filtered–realigned–recalibrated reads to get coverage 
statistics using SAMtools depth (Li et al., 2009) and for further 
downstream analyses.

In cases where we needed to polarize genomic variants as ances-
tral or derived (i.e., for selection scan and population trend analyses; 
see below), we used the high-quality and contiguous chicken genome 
(Gallus gallus GRCg6a) as reference. Both Galliformes, Montezuma 
quail, belong to the New World quail family Odontophoridae that 
diverged from junglefowl (Gallus spp.; family: Phasianidae) approxi-
mately 30–40 million years ago (Cox et al., 2007; Hosner et al., 2015). 
Read mapping and preprocessing steps were the same as above.

2.3 | Mitogenome assembly and diversity

We mapped genomic reads to the previously published Montezuma 
quail mitogenome (Mathur et al., 2019) and extracted the uniquely 
mapped reads (mito-reads) using BBMap v37.93 (Bushnell, 2014). 
Since nuclear copies of mitochondrial DNA (NUMTs) exist in nearly 
all eukaryotic genomes (Bensasson et al., 2001; Lopez et al., 1994), 
we tried to first identify the NUMTs in the nuclear genome assem-
bly of the Montezuma quail. We used a BLAST-based approach to 
query the Montezuma quail reference mitogenome against a custom 
blast database of Montezuma quail nuclear genome scaffolds. We 
extracted the NUMT sequences from genome assembly as FASTA 
files using faSomeRecords (Kent et al., 2002). Any mito-read that also 
uniquely matched to the NUMT fasta sequences were removed using 
BBMap. This helped ensure that final mito-specific reads we retained 
belonged to the mitogenome and not NUMTs. We used SAMtools 
mpileup to align mito-specific reads to the reference mitogenome and 
used bcftools (Li et al., 2009) to call variants. We filtered the variants 
with a minimum base depth of 10 using vcflib (Garrison, 2012) and 
used bcftools consensus to create consensus mitogenomes for every 
individual. To avoid mismapping and errors introduced at the artificial 
ends created in the linearized mitogenome, we trimmed 40 bp from 
either end of the mitochondrial sequence prior to analysis.

All mitogenomes were aligned as multiple sequence alignment 
using Clustal W v.2.1 (Thompson et al., 1994) using default param-
eters. We calculated mitochondrial nucleotide diversity indices and 
haplotype statistics using Arlequin v3.5 (Excoffier & Lischer, 2010). 
We accounted for unequal sample sizes for each population by ran-
domly subsampling mitochondrial genomes from each population 

(N = 7) and recalculated nucleotide diversity indices using 100 inde-
pendent permutations.

2.4 | Genotype likelihood estimation, 
subsampling, and genotype calling

For the nuclear reads, we used the SAMtools model in ANGSD 
v0.929 (Korneliussen et al., 2014) to estimate genotype likelihoods 
(GLs) and call single nucleotide polymorphisms (SNPs). We filtered 
BAM files to only include unique reads with a minimum mapping 
quality of 20. We excluded bases with a base quality score <20 and 
only retained only proper pairs. Major and minor allele was inferred 
from the GL, and triallelic sites were removed. Per-site allele fre-
quencies (AFs) were estimated using a combination of estimators, 
that is, first estimating AF from GL assuming both major and minor 
alleles are known and then re-estimating AF by summing over the 
three possible minor alleles weighted by their probabilities. We used 
a p-value cutoff of 10−6 to call a site polymorphic and a minimum 
minor allele frequency (MAF) of 0.05. We also used a maximum 
depth threshold of 500 to avoid calling SNPs from repetitive regions 
(Clucas et al., 2019). Deviations from the Hardy–Weinberg equilib-
rium were tested, and sites with p-value <0.01 were filtered out to 
remove potential paralogous sequences with an excess of heterozy-
gotes due to erroneous mapping (Meisner & Albrechtsen, 2019).

When estimating GL across all samples (N  =  74), we used a 
threshold of minimum 60 individuals to ensure genotypic informa-
tion is captured in at least 80% of all samples and to avoid retaining 
segregating sites from only the Arizona population (N = 52) (“popu-
lation dataset”). To avoid biases introduced due to uneven sample 
sizes, we re-estimated GL and discovered SNPs from an equal subset 
of Arizona and Texas samples (N = 21; AZ = 7, TX = 7, and NM = 7). 
For our subsamples, we chose samples with the highest depth and 
breadth of coverage to maximize the genomic spread of our variants 
(“genomic dataset”). For the subset, we used a minimum individual 
threshold of 15 and maximum depth threshold of 100.

In the end, we analyzed our GL data in two ways: (a) retaining 
maximum individual information at the cost of markers per individual 
(“population dataset”) and (b) retaining maximum genomic informa-
tion on each population at the cost of individuals analyzed per pop-
ulation (“genomic dataset”). The population dataset was used for the 
estimation of inbreeding and genetic structure, both of which can be 
inferred from a smaller set of widespread markers from more indi-
viduals (McLennan et al., 2019), whereas the genomic dataset with 
higher SNP density was used to estimate genome-wide diversity and 
for detecting signatures of selection (Benjelloun et al., 2019).

2.5 | Relatedness, inbreeding coefficient, and 
population structure estimation

Assumptions of many population genetic estimators are violated 
if family members and closely related individuals are analyzed 

http://picard.sourceforge.net
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simultaneously. Related individuals among a sample set should thus 
be identified and removed prior to population structure analysis 
(Meisner & Albrechtsen, 2018, 2019). We estimated relatedness 
among our samples using IBSrelate (Waples et al., 2019). IBSrelate 
uses GL estimates to categorize a pair of individuals as either parent–
offspring, full siblings, half-siblings, first cousins, or unrelated based 
on whether the pair share the same genotype or exhibit dissimilar 
genotypes at a particular site (Manichaikul et al., 2010). We com-
pared all individual pairs (total of 2701 comparisons) and removed 
any pairwise comparison from relatedness estimates if the number 
of sites compared was <100,000.

We estimated individual inbreeding coefficients (F) using 
PCAngsd v.0.982 (Meisner & Albrechtsen, 2018) from inferred GL. 
This allows F-values at a site to vary between −1 and 1, where a neg-
ative value indicates an excess of heterozygotes and a positive value 
indicates an excess of homozygotes at a site. Since inbred individu-
als would have an excess of homozygous sites, they should have an 
overall F > 0. We used extremely low tolerance values (1 × 10−9) and 
5000 maximum iterations for estimation to assure a stricter stopping 
criterion and avoid convergence at a local minimum (Figure S11).

To identify genetic structure in our Montezuma quail sam-
ples, we used two approaches: First, we used PCAngsd to calcu-
late a covariance matrix and performed individual level PCA using 
princomp function in R (Team, 2013); second, we used NGSAdmix 
(Skotte et al., 2013) to estimate individual admixture proportions. 
For PCAngsd, we used a minimum tolerance value for population AF 
estimation of 1e-9, a tolerance threshold for updating individual AF 
of 1e-9 for 1000 iterations. For NGSAdmix, we ran 10 independent 
runs for each K from 1 to 10 with minimum MAF 0.05, 1e-9 tolerance 
for convergence, 1e-9 tolerance for log-likelihood difference in 50 
iterations, and maximum 50,000 iterations. The most likely number 
of subpopulations was determined based on first- and second-order 
rate of change in the likelihood distribution from the 10 runs (Evanno 
et al., 2005).

2.6 | Nucleotide diversity, heterozygosity, and 
contemporary effective population size estimation

For nucleotide diversity estimates, we only used the genomic data-
set to avoid biases in estimating site frequency spectrum (SFS) due 
to uneven sample sizes and heavy data pruning, which was the case 
for our population dataset. We used ANGSD to generate a folded 
SFS by using the Montezuma quail reference genome and a mini-
mum base quality of 20 and minimum mapping quality of 20 (Figure 
S12). Next, we obtained a maximum-likelihood estimate of the SFS 
using realSFS by bootstrapping it 100 times and using the mean SFS 
for each population to estimate per-site Watterson's theta (θW). We 
estimated heterozygosity for each individual as the total proportion 
of heterozygous sites from its SFS.

To obtain an estimate of contemporary effective population sizes 
(Ne) from mean genomic θW, we first estimated the whole-genomic 
mutation rate (µ) for Montezuma quail (θW = 4Neµ). Since no linkage 

map exists for Montezuma quail, we estimated µ following Zhan et al. 
(2013). The Montezuma quail reference assembly was mapped to the 
chicken genome (Gallus gallus GRCg6a) using LASTZ (Harris, 2007). 
The mean divergence time (t) between chicken and Montezuma quail 
was derived from www.timet​ree.org, and polymorphic loci were 
identified only if neither target nor query nucleotide was N/n and 
the locus was not in an alignment gap. The final µ per nt per year was 
calculated with the following formula: µ = (counts of mutated loci / 
sequence length) / 2t (Zhan et al., 2013).

2.7 | Genetic differentiation and selection scans

Small populations in isolation can become genetically differenti-
ated due to drift at neutral loci and positive selection at non-neutral 
loci (e.g., in response to local adaptation). Both processes lead to 
nucleotide divergence (DXY) and divergence in allele frequencies 
(FST) (Matthey-Doret & Whitlock, 2019; Puzey et al., 2017; Rousset, 
1997). We investigated genomic patterns of genetic differentiation 
by estimating pairwise FST using a sliding window approach (window 
size=100 kb, step=50 kb) for each population pair (AZ-TX, TX-NM, 
AZ-NM). We used ANGSD to calculate the 2D SFS for each popula-
tion pair using the chicken genome (GRCg6a) as reference to polarize 
alleles as derived or ancestral. We quantified the levels of nucleotide 
divergence (DXY) using the calcDxy.R (https://github.com/mfuma​
galli/​ngsPo​pGen/blob/maste​r/scrip​ts/calcD​xy.R). In this case, we 
ran ANGSD for each population individually to get population-level 
AF and GL information, but only for the SNPs previously identified in 
our genomic dataset. This ensured that sites with a fixed allele in one 
population were still included in our per population DXY calculations.

To identify candidate regions under putative selection due to 
local adaptation, we Z-transformed FST around the mean for each 
sliding window and examined the outliers that had Z(FST) values out-
side 5 standard deviations from the mean (Willoughby et al., 2018). 
After removing false positives that showed higher deviations due to 
lack of data (see Results), the remaining outlier windows were in-
spected for nearby genes. We blasted the 100-kb outlier window 
to the chicken genome using default parameters and only retained 
windows that contained annotated genes with known function.

2.8 | Population trends and historic 
demographic sizes

Neutral alleles with rare initial frequencies are more likely to be lost 
during bottlenecks, whereas more common alleles tend to increase 
in frequencies more than expected under an equilibrium demo-
graphic model. This shift from rarity in the AF spectrum results in an 
overall positive value of Fu's F statistic (Fu, 1997). On the other hand, 
the addition of de novo mutations in expanding populations tends 
to produce an excess of rare variants and a negative mean value of 
Fu's F. Fu's F is more sensitive to demographic changes than Tajima's 
D (Ramos-Onsins & Rozas, 2002) but requires ancestral sequences 

http://www.timetree.org
https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R
https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R
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for unbiased estimations. Thus, we estimated mean Fu's F statistic 
for every population over a sliding window in ANGSD using the 
chicken genome as an ancestral reference with 100 kb window size 
and 50 kb step.

We reconstructed ancestral demographic histories using SMC++ 
v.1.15.2 (Terhorst et al., 2016), which uses unphased whole-genome 
data to infer population size histories using sequential Markov coales-
cent (SMC) simulations. The reads that mapped to the first 10 chicken 
chromosomes (NC_006088.5–NC_006097.5) comprising ~750 Mbp 
were used to create composite likelihoods for each population indi-
vidually by varying the identity of the distinguished individual while 
keeping other individuals within the population as undistinguished. 
We used cross-validation to estimate population size changes using 
the Powell algorithm with a tolerance of 1 × 10−5 and a mutation rate 
of 3.14 × 10−09 (estimated as above). We ran our model using 5000 
iterations and used different parameter values for thinning and reg-
ularization penalty to avoid degeneracy in the likelihood and overfit-
ting (Terhorst et al., 2016) with final model generated using thinning 
parameter of 1300 and regularization penalty of 6. A generation time 
of 1.5 was used to convert generations into years.

2.9 | Genic diversity and estimation of genetic load

The Montezuma quail genome consists of ~17,500 genes (Mathur 
et al., 2019), and here, we compared the levels of nucleotide varia-
tion across the entire genome to levels of variation in just the genic 
regions in order to help partition the effects of drift and selection. 
We used BEDOPS (Neph et al., 2012) to convert the gene annotation 
file (.gff) to a BED file and filtered BAM files to only include reads 
that overlapped with the genic coordinates using SAMtools view. 
The GLs and diversity indices were estimated for the genic regions 
following the same methods and parameters as above. AF at each of 
the genic variants were calculated from the GL.

Genetic load can be viewed from a gene pool level or at indi-
vidual level. To distinguish the two perspectives, we introduce the 
terms potential load and realized load. We quantified the poten-
tial load (LoadP) of a population as the proportion of deleterious 
variants of different impact classes across all annotated protein-
coding genes. We did so by predicting the effect of each nucleotide 
variant on the resulting amino acid sequence and then quantifying 
its putative deleterious impact using SnpEff 4.2 (Cingolani et al., 
2014) where we classified only exonic variants that the algorithm 
considered high quality. The deleterious impact of a variant is pre-
dicted under the assumption that the reference allele is nondele-
terious, but the alternate allele is deleterious to gene function. A 
variant is then classified as either high, moderate, low, or no impact 
based on its inferred effect on protein translation. High-impact 
variants should have the most disruptive (i.e., deleterious) effect 
on protein structures such as premature termination or other loss 
of function mutations, whereas low- or no-impact mutations were 
mostly synonymous substitutions with little to no impact on pro-
tein sequences. Individuals and populations that bear the highest 

ratio of highly deleterious mutations to total genic variants have 
the highest LoadP. So,

where i ∈ (high, moderate, low, no impact) and k ∈ (AZ, TX, NM). LoadP 
is conceptually similar to the term “segregating load” (van Oosterhout, 
2020), but instead of comparing the absolute number of deleterious 
SNPs, we defined LoadP as a proportion conditioned on all genic SNPs 
present in a population to standardize load across populations that 
might vary in levels of genetic diversity or across species that may vary 
in genome size.

We note, however, that the proportion of potential load that is 
actually realized in individuals also depends on the mode of domi-
nance and on zygosity. To illustrate how LoadP is manifested in terms 
of individual fitness, we calculated realized load (LoadR) as the pro-
portion of impactful variants that exist as homozygotes within indi-
vidual diploid genomes. We computed the per-individual proportion 
of deleterious variants of each impact class as the total number of 
deleterious alleles present within an individual divided by twice the 
number of segregating sites within each impact class (Simons et al., 
2014). Thus,

where i ∈ (high, moderate, low, no impact) and, in the present study, 
k ∈ (AZ, TX, NM). To assess the zygosity of an impactful mutation 
in genic regions, we called individual genotypes at SNPs within the 
genes based on the posterior probability of the genotypes from GL 
using ANGSD. Genotypes were only called at sites with minimum 
individual depth of 5× to minimize technical biases (Benjelloun et al., 
2019). The inverse relationship between dominance and selection 
coefficient means that highly deleterious mutations that arise in a 
population are mostly recessive (Agrawal & Whitlock, 2011). Thus, 
we demarcate load as “potential” and “realized” to show that the po-
tential genetic load of deleterious recessive alleles that are present 
in a population may or may not be widely realized within an individ-
ual, depending on zygosity (Fu et al., 2014), which varies depending 
on the degree of inbreeding. Thus, LoadP is a population-level and 
zygosity-independent assessment of genetic load, whereas LoadR is 
an individual assessment of genetic load dependent on the homozy-
gosity of deleterious mutations within a given genome. Significant 
differences in mean load (i.e., LoadP and LoadR of different impact 
classes) among different populations were identified using Welch's 
two-sample t-test.

3  | RESULTS

In this study, we collected WGS data from 90 Montezuma quail 
(AZ  =  60, TX  =  17, and NM  =  13; Figure 1). We generated more 

LoadP[jk] =
totalnumberofmutationsof impactclass i in individual jk

totalnumberofgenicmutations inpopulationk

LoadR[jk] =
totalnumberof homozygousmutationsof impactclass i in individual jk

2 × totalnumberof sitesof impactclass i in individual jk
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than 1.65 billion reads (mean = 18.5 million reads per individual) cor-
responding to approximately 250 billion bases (mean  =  2.8 billion 
bases per individual; >2× individual coverage). Since these samples 
were opportunistically collected, we found significant variability 
in the quality and quantity of DNA sequenced. This stochasticity 
was evident from sequences generated per individual (Table S1) 
and their depth and breadth of coverage (Table S1, Figure S1). We 
removed samples that failed to generate the threshold of 8 million 
bases (N = 10) or were less than 50% of the total reads mapped to 
the Montezuma quail assembly (N  =  6). However, we achieved a 
high level of read mapping for the remainder of the samples (84.4% 
±18.1%; Table S1). Ultimately, we analyzed genomic information 
from 74 individuals (AZ = 52, TX = 15, and NM = 7) that covered 
65.1  ±  22.1% (mean  ±  SD) of the Montezuma quail genome at 
2.1 ± 1.3× depth (Table 1).

Our complete mitogenome analysis detected 39 unique haplo-
types in the Arizona population with 239 parsimony-informative 
sites shared among them. There were 11 unique Texas haplotypes 
sharing 171 parsimony-informative sites, and we found only three 
unique haplotypes for the New Mexico population with 167 such 
sites. We found per-site nucleotide diversity (Π) and Kimura 2-P pair-
wise distances to be smaller in the Texas and New Mexico mitoge-
nomes (p = 0.03 and p = 0.04, respectively) as compared to Arizona. 
Haplotype diversity (Hd) did not significantly differ between Texas 
and Arizona mitogenomes (p = 0.70) but was significantly smaller in 
New Mexico as compared to Arizona (p = 0.02; Figure S2).

For the nuclear genome analysis, we partitioned our data into two 
datasets: population and genomic. The population dataset consisted 
of GLs from 456,373 SNPs retained from all individuals (N = 74). The 
genomic dataset contained GL information from 6,696,145 SNPs 
sampled across an equal subset of each representative population 
(N  =  21). Using the population dataset, we first estimated the re-
latedness among our samples to determine whether we had close 
relatives in the study. Pairwise relatedness was measured for 2341 
individual pairs. Almost all the pairs analyzed were either unrelated 
(99.5%) or 3rd-degree relatives (0.21%). We found no full-sibling or 
parent–offspring relationships (1st-degree) in our samples; how-
ever, five pairs from Arizona, one pair from Texas, and one pair from 
New Mexico had 2nd degree or half-sibling relationship (Figure 2a). 
Overall, our kinship analysis indicates that, consistent with our op-
portunistic field sampling and broad survey range, close relatives 
were only rarely sampled and thus should not impact our population 
structure results. Inbreeding coefficient estimates (Table 1) showed 
significantly higher levels of mean inbreeding in Texas birds as com-
pared to Arizona birds (Figure 2b; Table S2), whereas inbreeding in 
Texas was only slightly elevated relative to New Mexico birds. Both 
PCA and admixture analysis produced similar results indicating that 
the Arizona, Texas, and New Mexico populations are genetically 
distinct (Figure 2c,d). However, based on the ∆K method (Evanno 
et al., 2005), the most likely number of ancestral populations is K = 4 
(Figure S3), splitting Arizona populations into two subpopulations 
(Figure 2c). The population-level trends for relatedness, inbreed-
ing, and genetic differentiation were concordant between the two TA

B
LE

 1
 

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r s

eq
ue

nc
e 

co
ve

ra
ge

, i
nb

re
ed

in
g 

co
ef

fic
ie

nt
s 

(F
), 

pe
r-

si
te

 W
at

te
rs

on
's 

th
et

a 
(θ

w
), 

he
te

ro
zy

go
si

ty
 (H

), 
an

d 
ef

fe
ct

iv
e 

po
pu

la
tio

n 
si

ze
s 

(N
e) 

fo
r M

on
te

zu
m

a 
qu

ai
l 

po
pu

la
tio

ns
 a

na
ly

ze
d 

in
 th

is
 s

tu
dy

N
Se

qu
en

ce
 d

ep
th

 (X
) 

(m
ea

n 
±

SD
)

Se
qu

en
ce

 b
re

ad
th

 (%
) 

(m
ea

n 
±

SD
)

F 
(m

ea
n 

±
SD

)

W
ho

le
 g

en
om

e
G

en
ic

 re
gi

on
s

N
e (

95
%

 C
I)

θ W
H

θ W
H

A
riz

on
a

52
2.

14
 ±

 0
.7

8
69

.4
5 

±
 1

4.
51

0.
05

 ±
 0

.0
8

5.
37

 ×
 1

0−4
0.

00
14

5.
23

 ×
 1

0−4
0.

00
12

42
,7

95
 

(4
2,

76
4–

42
,8

25
)

Te
xa

s
15

1.
45

 ±
 1

.8
2

42
.6

9 
±

 3
0.

17
0.

33
 ±

 0
.2

8
4.

05
 ×

 1
0−4

0.
00

09
3.

94
 ×

 1
0−4

0.
00

07
32

,2
08

 
(3

2,
18

2–
32

,2
34

)

N
ew

 M
ex

ic
o

7
3.

48
 ±

 1
.7

8
84

.1
6 

±
 1

1.
51

0.
07

 ±
 0

.0
8

5.
57

 ×
 1

0−4
0.

00
13

4.
47

 ×
 1

0−4
0.

00
11

36
,4

17
 

(3
6,

39
0–

36
,4

46
)

N
ot

e:
 T

he
 d

iv
er

si
ty

 in
di

ce
s 

w
er

e 
ca

lc
ul

at
ed

 fo
r e

ith
er

 th
e 

w
ho

le
 g

en
om

e 
or

 ju
st

 th
e 

ge
ni

c 
re

gi
on

s.
 L

on
g-

te
rm

 (e
vo

lu
tio

na
ry

) N
e w

as
 c

al
cu

la
te

d 
us

in
g 

an
 e

st
im

at
ed

 m
ut

at
io

n 
ra

te
 o

f 3
.1

4 
× 

10
−9

 w
ith

 9
5%

 C
I 

ca
lc

ul
at

ed
 u

si
ng

 s
ta

nd
ar

d 
er

ro
r i

n 
θ w

 e
st

im
at

es
. S

eq
ue

nc
e 

de
pt

h 
is

 m
ea

su
re

d 
in

 fo
ld

 c
ov

er
ag

e,
 a

nd
 b

re
ad

th
 is

 m
ea

su
re

d 
as

 p
er

ce
nt

ag
e 

of
 M

on
te

zu
m

a 
qu

ai
l a

ss
em

bl
y 

m
ap

pe
d 

by
 th

e 
re

ad
s.



     |  1547MATHUR and DeWOODY

datasets (Figure S4), and thus, it seems clear that sampling issues 
have not biased our interpretations. This concordance also illus-
trates that analyzing many SNPs from a small sample can provide 
similar estimates to analysis from larger sample size, which is often 
important for endangered species or where sample size is a major 
restriction.

We used genomic dataset to quantify the levels of genome-
wide nucleotide diversity as estimated by per-site Watterson's 
theta (θW). Mean genome-wide θW was significantly lower for the 
Texas population (θW = 4.05 × 10−4; SE = 1.67 × 10−7) as compared 
to both Arizona (θW  =  5.37  ×  10−4; SE  =  1.93  ×  10−7) and New 
Mexico (θW = 4.57 × 10−4; SE = 1.80 × 10−7; Table 1; Table S3). The 

genome-wide distribution of per scaffold diversity had a higher 
mean in the Arizona population than in Texas or New Mexico (Figure 
S5). Contemporary estimates of Ne were quantified using whole-
genomic µ of 3.14 × 10−9 bp−1 year−1 (CI: 2.59 × 10−9–3.34 × 10−9) 
(Table 1). Thus, Texas quail show a ~30% reduction in their overall 
genomic diversity with a mean, long-term evolutionary Ne reduction 
of ~25% relative to Arizona. The genomic heterozygosity was also 
significantly reduced for Texas birds (Table 1) as compared to either 
Arizona or New Mexico birds (Figure 3a; Table S4). This indicates 
that smaller Montezuma quail population in Texas is more severely 
impacted by genetic erosion with contemporary diversity equiva-
lent to those reported in endangered and vulnerable avian species, 

F I G U R E  2   Inbreeding and population structure in Montezuma quail. Samples analyzed in this study were mostly unrelated based on 
(a) kinship analysis. The degree of kinship (solid boxes) between a pair of individuals was based on Waples et al. (2019). (b) Mean individual 
inbreeding coefficients (F) were significantly higher in the Texas population with no significant difference between Arizona and New Mexico 
populations. Results from both (c) admixture and (d) PCA clearly demarcate samples from the three collecting sites into independent genetic 
clusters. However, likelihood estimates indicate the most likely number of ancestral populations in our data is K = 4 (indicated with asterisk), 
where Arizona is sundered into two subpopulations
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whereas the larger Arizona population has heterozygosity estimates 
similar to other more common avian species (Figure 3b).

Global estimates of FST between each population pair showed 
low-to-moderate levels of genetic differentiation at the whole-
genome level (Table 2). However, we found significant variation in FST 
values across the genome for each population pair (Figure 4; Figure 
S6). One interesting observation was large Z(FST) scores for loci 
on chromosome 16 (NC_006103.5) for all population comparisons 
(Figure 4; Figure S6). This is probably due to low synteny between 
quail and chicken at chromosome 16 (Morris et al., 2020), perhaps 
due to an inversion (Clucas et al., 2019), but this needs further vali-
dation using longer sequence scaffolds (Lamichhaney & Andersson, 
2019). Low synteny regions had poor mapping quality and thus had 
missing data that overestimate the differentiation patterns and are 
marked as outliers with large Z(FST) values. Note there is a similar 
discontinuity at one end of chicken chromosome 26 (Figure S6). 
We examined the windows that were highly differentiated in both 
AZ-TX and TX-NM comparisons to look for genes and assess their 
functionality. Genes or a gene clusters associated with the outlier 
peaks are shown in Figure 4, and their known functions are listed in 
Table S5. Per-site FST and DXY values for SNPs located in those genes 
are shown in Fig S7. In total, we found 12 genes that exhibited very 
high levels of differentiation (>5 SD) with known function in immu-
nity and/or development-related traits (Table S5). These genes are 
candidates for those under strong selection and could underlie local 
adaptations in Texas quail.

Demographic analysis indicated that the Arizona population have 
been expanding with Fu's F = −0.23 ± 0.01 (mean ± SE), whereas 
both the Texas and New Mexico populations have been declining 
with Fu's F = 0.11 ± 0.02 and 0.22 ± 0.02, respectively (Figure 5a). 
We tracked Ne estimates over the last ~1 million years using the 
pairwise sequentially Markov coalescent method (Figure 5b). The 
three populations display concordant trajectories for most of their 
evolutionary history over that time frame. We observed a decline 
in Ne from in the period of 106–105  years before present (YBP) 
followed by a more stable period. A subsequent re-expansion oc-
curred around 10,000 years ago, and then, populations began to re-
bound until growth rates became negative around 3000–5000 YBP 
(Figure 5b).

One of the major emphases of our study was to assess the 
adaptive potential of Montezuma quail, particularly in the small, 
isolated Texas population. Variation in protein-coding genes has 
the capacity to accurately gauge adaptive potential (Barbosa et al., 
2018). The trend we observed for the subset of genic diversity was 
similar to the whole-genome data; in both cases, there was a ~25% 
reduction in nucleotide diversity in Texas quail (Table 1). In particu-
lar, the Texas population had significantly lower (θW = 3.94 × 10−4; 
SE  =  2.87  ×  10−7) genic nucleotide diversity as compared to both 
Arizona (θW  =  5.23  ×  10−4; SE  =  3.33  ×  10−7) and New Mexico 
(θW = 4.47 × 10−4; SE = 3.09 × 10−7; Table S6). Mean heterozygos-
ity (i.e., proportion of heterozygous sites per individual) in the genic 
regions of Texas quail was significantly reduced relative to Arizona 

F I G U R E  3   Estimated levels of heterozygosity in Montezuma quail. (a) Genic heterozygosity is comparable to genome-wide 
heterozygosity in individuals from all three populations, but Texas quail exhibit significantly lower levels of both as compared to Arizona 
quail (b) Comparison of genome-wide heterozygosity with other birds indicates that smaller Montezuma quail populations in Texas and New 
Mexico have genomic diversity comparable to vulnerable species (Brüniche-Olsen et al., 2019; de Villemereuil et al., 2019; Li et al., 2014). 
Heterozygosity was measured as the mean proportion of heterozygous sites per-individual genome
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quail, whereas Texas and New Mexico samples showed similar levels 
of genic heterozygosity (Figure 3a; Table S7). Our FST estimates from 
the genic regions show significantly higher levels of differentiation 
among the three populations as compared to the whole-genomic 
background (Table 2), which indicates that both selection and drift 
contribute to population structure (which could also be influenced 
by recombination and introgression).

To quantify selection and the genetic load associated with the 
genic variants, we compared the deleterious mutations within 
protein-coding genes (Figure S8) and their predicted change on 
translation (Figure 6a). Most (82.1%) of the genic variation was due 
to noncoding intronic sites upstream and downstream of the tran-
scription unit; both of these sources of variation can impact gene 
expression levels and thus serve as sources of regulatory variation. 
Exonic sites harbored about 4.5% of the genic variation. Within the 
exonic SNPs, the Arizona population had a significantly higher poten-
tial load (LoadP) due to higher proportions of high-, moderate-, and 
low-impact deleterious mutations, and lower proportions of noncod-
ing variants, when compared to either the Texas or New Mexico pop-
ulations (Figure 6a; Table S8). Our estimates of realized load (LoadR) 
showed that Texas quail had no significant difference in the mean AF 
of highly deleterious mutations per individual (Figure S9; p > 0.05) 
as compared to Arizona quail. Most exonic variants were classified 
as moderate- or low-impact deleterious mutations, and we found 
them at higher frequencies and significantly more homozygous con-
tributing to significantly higher LoadR in Texas quail as compared to 

Arizona quail (p = 0.1 and p = 0.3; Figure 6b; Figure S9; Tables S9, 
S10). We recognize that calling genotypes may be biased due to low 
coverage (Figure S13) and sample size (Benjelloun et al., 2019), but 
we note that the observed effects of depth of coverage or mapping 
rate on our load estimates are statistically insignificant (Tables S11, 
S12) and the trends we observe here among different impact classes 
have also been observed in other natural populations (Grossen et al., 
2020).

4  | DISCUSSION

In this study, we analyzed whole-genome sequences from three natural 
populations of Montezuma quail that vary in size and habitat continu-
ity (Figure 1) to understand how drivers of genetic erosion (e.g., small 
sizes and isolation) can affect genomic diversity and reservoirs of future 
adaptive potential. Small populations are predicted to have lower levels 
of diversity (Soulé, 1985), and recessive deleterious alleles should have 
a more pronounced impact on fitness than in large populations due 
to inbreeding (Charlesworth & Charlesworth, 1999). Populations that 
have experienced declines and are restricted to smaller habitats tend to 
have lower levels of overall genomic heterozygosity (Barsh et al., 2017; 
Brüniche-Olsen et al., 2019; Palkopoulou et al., 2015), but how these 
factors affect the adaptive potential is far less explored. By comparing 
levels of genome-wide diversity, genic (i.e., potentially adaptive) diver-
sity, and quantifying genetic load in different populations, our aim was 

Population pair

Mean global FST (95% CI)

Whole genome Genic regions

Arizona–Texas 0.1287 (0.1286–0.12878) 0.2042 
(0.2018–0.2065)

Texas–New Mexico 0.0962 (0.0961–0.0962) 0.1762 (0.1744–0.1781)

Arizona– New Mexico 0.0972 (0.0972–0.0973) 0.1217 (0.1213–0.1220)

TA B L E  2   Estimates of global FST 
between the different population pairs 
measured for either the whole genome 
or just the genic regions. 95% CI was 
calculated using standard error in FST 
estimates by 100 bootstraps of the 2D 
SFS for each population pair

F I G U R E  4   Z-transformed FST estimates for comparisons between Arizona and Texas samples. The reads were mapped to the chicken 
genome, and the windows (100 kb width with 50 kb steps) were arranged according to chicken autosomal (1–33) or sex (Z, W) chromosomes. 
Scaffolds that were not part of the major chicken chromosomes were binned together as unplaced. We found windows within each 
chromosome that had high (>5 SD) levels of differentiation, and many of those windows contained genes with known function (red arrows). 
These data illustrate the heterogeneous landscape of genomic differentiation in Montezuma quail
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to gain a better understanding of how genetic erosion contributes to 
extinction risks by decreasing the adaptive potential and mean fitness 
of small populations.

4.1 | Genetic erosion reduces genomic diversity

Our genomic diversity estimates are consistent with predictions for 
small declining populations that are expected to be most impacted 
by genetic erosion (Bijlsma & Loeschcke, 2012; Leroy et al., 2018). 
Species with small population sizes have lower diversity (Frankham, 
1996) and less adaptive potential (Hedrick et al., 2019) than larger 
populations, and our population genomic data are consistent with 
these expectations. Montezuma quail exhibit lower levels of whole-
genomic heterozygosity than many other avian species (Figure 3). 
The reduction in genomic diversity in Montezuma quail is reflective 
of long-term declines in Ne over the last million years (Figure 5b). 
More specifically, Montezuma quail from Texas are the most geneti-
cally depauperate of the populations we surveyed, with genomic di-
versity similar to vulnerable and endangered birds (Figure 3b). Our 
Texas samples had genome-wide heterozygosity similar to raptors 
and other large birds (Table 1, Figure 3b) even though small birds 
typically have more genetic diversity (Eo et al., 2011). Overall, we 
think the data reveal that genomic erosion has likely reduced the 
evolutionary potential of Montezuma quail in Texas and that this re-
duction is unlikely to improve without gene flow through assisted 
translocation or other means.

4.2 | Isolation leads to more inbreeding

A lack of migration among populations limits gene flow and acceler-
ates inbreeding (Frankham, 1996; Gong et al., 2010; Hedrick et al., 
2016; Keller, 2002; Madsen et al., 1996; Pulanić et al., 2008). Our 
samples from Montezuma quail populations in the United States 
form independent genetic clusters (Figure 2c,d), which is unsurpris-
ing given the geographic distances among sampling sites and the 
limited dispersal capacity of this ground-dwelling bird (Stromberg, 
1990). These results are in general accordance with our previous 
findings based on a small SNP panel (Mathur et al., 2019), but the 
divide in Arizona (Figure 2c; Figure S3) was undetected with that 
same SNP panel. Our kinship analysis suggests that very few of our 
samples were derived from related individuals (Figure 2a), and our 
inbreeding estimates show that the Texas population is highly inbred 
as compared to Arizona and New Mexico (Figure 2b). Our samples 
were acquired opportunistically and that likely reduced the probabil-
ity of collecting related individuals. However, inbreeding itself can 
reduce estimates of kinship as inbred individuals may have elevated 
number of alternate homozygous genotypes and a reduced num-
ber of shared heterozygous genotypes. We observed an elevated 
incidence of alternative homozygotes for within-Texas compari-
sons (Figure S10), which could lead to longer runs of homozygosity 
(ROHs). However, we did not explicitly test for differences in ROHs 
as GL method uses a probabilistic approach to quantify inbreeding 
coefficients (see Meisner & Albrechtsen, 2018, for details) and is 
not recommended for ROH analysis. Overall, we think the collective 

F I G U R E  5   (a) Population trends and (b) demographic histories of Montezuma quail. Population trends indicate that only the Arizona 
population(s) has been expanding (Fu's F < 0), whereas both Texas and New Mexico populations are declining (Fu's F > 0). Error bars indicate 
95% CI around the estimate. The data indicate that Montezuma quail experienced a strong historic bottleneck during the last glacial maxima 
(LGM) followed by re-expansion, and the similar demographic trajectories of each population prior to the LGM suggest that genomic 
differentiation (Figure 4) is relatively recent in origin
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F I G U R E  6   Larger populations have higher potential genetic load, but load is more realized in smaller, inbred populations (see Materials 
and Methods for details). Variants were classified as either high, moderate, low, or no impact based on their inferred effect on protein 
translation. High-impact variants should have the most disruptive (i.e., deleterious) effect, whereas low- or no-impact mutations were mostly 
synonymous substitutions with little to no impact on protein sequences (a) Potential genetic load was estimated for each population as the 
proportion of deleterious mutations within annotated protein-coding genes. The Arizona samples had the highest potential load of high-
impact, moderate-impact, and low-impact variants. Note the difference in scales on y-axis. (b) Realized load was measured as the mean 
frequency of deleterious alleles found within individual genomes for each impact class (N = 21; AZ = 7, TX = 7, and NM = 7). No significant 
difference was found in realized load of highly deleterious mutations between Texas and Arizona quail, but the small Texas population has 
a higher frequency of moderate-, low-, and no-impact variants coupled with more inbreeding and more homozygosity (Figures 2, 3, and S9) 
than the larger outbred Arizona populations. Error bars indicate 95% CI around the estimates. ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

(a)

(b)
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genomic evidence presented herein shows that the small, isolated 
population of Montezuma quail in West Texas is relatively inbred, 
meaning more of the potential genetic load will be realized (see 
below).

4.3 | Impact of genetic drift on 
population divergence

One of the major drivers of genetic erosion in small populations is 
genetic drift. In the absence of migration, genetic drift can fix com-
mon alleles or lose rare alleles from the gene pool. Isolated popula-
tions with historically low sizes can become phenotypically distinct 
over time (Holycross & Douglas, 2007; Schierup et al., 2018) due 
to differences in nucleotide composition (DXY) (Wakeley, 1996) or 
allele frequencies (FST) (Beaumont, 2005). The intensity of genetic 
differentiation due to drift is generally expected to be the same 
for all neutral loci in the nuclear genome due to lack of selection 
pressures, but it is complicated by linked selection (McVean et al., 
2009; Rettelbach et al., 2019). Recent genomic studies have identi-
fied “differentiation islands” among populations that could be either 
due to local adaptation or due to hybridization from an unstudied 
and genetically differentiated “ghost population” (Burri et al., 2015; 
Ellegren et al., 2012). We observe similar results in Montezuma 
quail populations (Figure 4; Figure S6) where many regions show 
highly significant values of FST even though global estimates seem 
biologically insignificant (Table 2). Some of these high- FST windows 
no doubt represent statistical artifacts, but many of these highly 
differentiated regions contain functional genes (Figure 4) that are 
associated with traits that may be under local selection (Table S5) 
(Willoughby et al., 2018). These genomic islands of differentiation 
between populations raise the theoretical possibility that local adap-
tations could constrain genetic rescue due to the possible reduction 
in fitness of interpopulation hybrids (Bell et al., 2019; Whiteley et al., 
2015). On the other hand, such analyses have the potential to iden-
tify source populations that have adaptive genetic signatures most 
similar to the recipient population and thus the greatest likelihood 
of success from a long-term, evolutionary perspective. Furthermore, 
recent meta-analyses clearly indicate that the empirical benefits of 
maximizing overall genetic variation in the target population (e.g., via 
genetic rescue) clearly outweigh a variety of theoretical risks (Ralls 
et al., 2020).

4.4 | The adaptive potential and genetic load of 
small populations

Understanding the adaptive response of a species to future envi-
ronmental changes is a high priority for conservation (Holderegger 
et al., 2019) as this response impacts the long-term probability of 
persistence (Hedrick et al., 2019), but such an assessment is not 
straightforward. Genetic erosion is expected to increase extinction 
risk by either reducing the overall standing variation thus reducing 

adaptive potential (Keller, 2002) and/or by decreasing mean fitness 
due to the accumulation of deleterious mutations (Lynch et al., 1995; 
Ohta, 1992). We evaluated these two detractors of evolutionary 
capacity by considering variation contained exclusively in genic re-
gions and assessing their possible phenotypic impact. Montezuma 
quail have over 17,000 genes, and our results show that both nucleo-
tide diversity and heterozygosity in genic regions are lower relative 
to the whole-genomic background (Table 1; Figure 3a). This is not 
entirely unexpected as many genes might be evolving neutrally or 
nearly so, but some are highly conserved and mutations arising at 
these genes will be deleterious and subject to purifying selection 
(Rettelbach et al., 2019). Our study thus documents a reduction 
in both the “nearly neutral” (all) and “adaptive” (genic) fractions of 
genomic diversity in progressively smaller wild quail populations. 
These reductions in genomic diversity, including both nucleotide di-
versity and heterozygosity, are likely to diminish the evolutionary 
potential of the small, isolated Texas population.

The proportion of deleterious mutations present in the genic re-
gions reflects the genetic load of a population (Charlesworth et al., 
1993; Ellegren & Sheldon, 2008; Hedrick & Garcia-Dorado, 2016). 
We introduced the term potential load (LoadP) to summarize the 
population-wide genetic load dependent on the proportion of del-
eterious mutations in a given gene pool. Our results indicate that 
Arizona quail carry significantly more high-impact deleterious vari-
ants as compared to Texas quail, and this difference tends to dimin-
ish with variant impact (Figure 6a). This means that overall, larger 
populations have higher LoadP as they harbor more sites that could 
potentially be deleterious or evade selection. Most of the genic vari-
ants are noncoding (Figure S8) and thus do not impact amino acid se-
quences, but we expect that many serve as regulatory variants that 
impact expression levels (Harder et al., 2020). Recent population 
genomic studies have shown via simulations (Coop et al., 2015) and 
empirical data (Ávila et al., 2010; Do et al., 2015; Rettelbach et al., 
2019) that most deleterious genic variants are rare and exist at low 
frequencies. Over evolutionary timescales, rare deleterious variants 
tend to be either purged by strong purifying selection or lost due to 
drift, but at any snapshot in time small-effect recessive mutations 
can taint a gene pool (as seen in our Texas quail). Overall, popula-
tion genomic data are revealing that most populations can efficiently 
cull highly deleterious mutations, but small-effect deleterious mu-
tants that escape selection are difficult to purge in small populations 
where drift predominates (i.e., when Ne(s) < 1). In addition to drift, in-
dividuals from smaller inbred populations tend to carry these small-
effect deleterious mutants as homozygotes, whereas they tend to be 
heterozygous in larger outbred populations (Figure S9). To compare 
the loss of individual fitness due to homogenization of deleterious 
alleles, we introduced the concept of realized load (LoadR) to better 
assess genomic vulnerabilities and estimate inbreeding depression 
in individuals of small populations. It seems clear that large effect 
deleterious mutations (e.g., FOXQ1 (Barsh et al., 2017)) can have a 
major impact on fitness. However, most adaptive traits are polygenic 
and based on many small-effect mutations, so small-effect deleteri-
ous alleles in homozygotes may disproportionately contribute to the 
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overall LoadR in small and declining populations like in Montezuma 
quail from West Texas.

4.5 | Conservation considerations

Our results indicate that Montezuma quail populations in the United 
States exhibit low genomic diversity comparable to a number of 
threatened and endangered species (Brüniche-Olsen et al., 2019; de 
Villemereuil et al., 2019; Zhan et al., 2013) (Figure 3b). Our genomic 
diversity estimates are consistent with predictions for small declin-
ing populations, and we argue that our estimates of genic diversity 
serve as a reasonable proxy for the evolutionary potential of the 
species. This study adds to the growing body of literature urging 
conservation organizations such as IUCN to add genetic diversity 
estimates as a consideration in the listing process (Allendorf et al., 
2010; Brüniche-Olsen et al., 2018; Ralls et al., 2018; Willoughby 
et al., 2015).

Theory suggests that deleterious mutations should be more 
abundant in small populations and empirical data support this pre-
diction for species such as wooly mammoths (Barsh et al., 2017) 
and Iberian lynx (Abascal et al., 2016), with critically low popula-
tion sizes and ineffective purifying selection. However, most of the 
species that are declining due to recent anthropogenic activities 
(like Montezuma quail) have maintained relatively large Ne with 
previous cycles of bottlenecks and re-expansions ((Nadachowska-
Brzyska et al., 2015); Figure 5b). This study and a recent overview 
of mammals (van der Valk et al., 2019) suggest that smaller popu-
lations have significantly lower proportions of deleterious muta-
tions as compared to larger, more genetically diverse populations. 
These deleterious variants are maintained at lower frequencies 
and presumably represent a major fraction of the potential genetic 
load. This pattern exists in part because purifying selection against 
partially recessive deleterious recessive alleles is relaxed in large 
populations where higher heterozygosity effectively hides these 
alleles from selection. In contrast, small populations are only likely 
to purge strongly deleterious mutations, but the collective genetic 
load of mildly deleterious mutations still impacts individual fitness 
when these variants become homozygous due to inbreeding and/
or drift. Thus, our genomic data illustrate and quantify the inci-
dence of potential genetic load in large populations (Arizona) rel-
ative to the realized genetic load in small, inbred populations such 
as Texas.

5  | CONCLUSIONS

We analyzed whole-genome sequences from different populations 
of Montezuma quail in the United States and compared the relative 
impact of genetic erosion between populations of various sizes. Our 
results indicate that Montezuma quail populations in the United 
States have mean genome-wide heterozygosity comparable to 

other avian taxa of conservation concern. We found that inbreed-
ing and random drift due to isolation are likely the major driving 
force behind these observed patterns of reduced genomic diver-
sity. We also identified highly differentiated candidate genes that 
may underlie local adaptations, though we acknowledge a lack of 
environmental data supporting this idea. More interestingly, we 
find that larger populations carry a larger proportion of deleterious 
mutations (potential genetic load) than small populations. However, 
small populations are most susceptible to reduced fitness because 
small-effect deleterious alleles are homogenized due to drift and in-
breeding (realized genetic load). Overall, we think these data will be 
useful to those interested in the conservation of Montezuma quail 
and that they illustrate the power of population genomics in evalu-
ating adaptive potential in light of fragmented landscapes and rapid 
environmental change.

ACKNOWLEDG MENTS
We thank Dr. Louis Harveson for collecting the Texas samples and 
Dr. Ryan Luna for the New Mexico samples. We thank Dr. John M. 
Tomeček and Arizona Department of Game and Fish (J. Heffelfinger) 
for the hunter-harvested wings. This research was funded in part by 
the Texas A&M AgriLife Extension Service, the Reversing the Decline 
of quail in Texas Initiative, and the National Institute for Food and 
Agriculture. SM was supported by a Graduate Research Fellowship 
from the Welder Wildlife Foundation. This article represents pub-
lication #733 of the Rob and Bessie Welder Foundation. We thank 
Drs. John W. Bickham, H. Lisle Gibbs, Mark Christie, Ximena Bernal, 
and members of the DeWoody laboratory group for constructive 
criticism on an earlier draft of the manuscript.

CONFLIC T OF INTERE S T
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The sequence datasets generated during the current study are 
available in NCBI’s Short Read Archive BioProject Accession No. 
PRJNA623948, BioSample Accession No. SAMN14562436-509, and 
SRA Accession No. SRR11514056-129. The scripts developed for 
analysis can be publicly accessed at https://github.com/samar​th839​
2/MQU_PopGe​nomics.

ORCID
Samarth Mathur   https://orcid.org/0000-0002-6446-5718 
J. Andrew DeWoody   https://orcid.org/0000-0002-7315-5631 

R E FE R E N C E S
Abascal, F., Corvelo, A., Cruz, F., Villanueva-Cañas, J. L., Vlasova, A., 

Marcet-Houben, M., Martínez-Cruz, B., Cheng, J. Y., Prieto, P., 
Quesada, V., Quilez, J., Li, G., García, F., Rubio-Camarillo, M., Frias, 
L., Ribeca, P., Capella-Gutiérrez, S., Rodríguez, J. M., Câmara, F., … 
Godoy, J. A. (2016). Extreme genomic erosion after recurrent demo-
graphic bottlenecks in the highly endangered Iberian lynx. Genome 
Biology, 17(1), 251. https://doi.org/10.1186/s1305​9-016-1090-1

https://github.com/samarth8392/MQU_PopGenomics
https://github.com/samarth8392/MQU_PopGenomics
https://orcid.org/0000-0002-6446-5718
https://orcid.org/0000-0002-6446-5718
https://orcid.org/0000-0002-7315-5631
https://orcid.org/0000-0002-7315-5631
https://doi.org/10.1186/s13059-016-1090-1


1554  |     MATHUR and DeWOODY

Agrawal, A. F., & Whitlock, M. C. (2011). Inferences about the distribu-
tion of dominance drawn from yeast gene knockout data. Genetics, 
187(2), 553–566. https://doi.org/10.1534/genet​ics.110.124560

Albers, R. P., & Gehlbach, F. R. (1990). Choices of feeding habitat by Relict 
Montezuma quail in central Texas. Wilson Bulletin, 102(2), 300–308.

Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and 
the future of conservation genetics. Nature Reviews Genetics, 11(10), 
697–709. https://doi.org/10.1038/nrg2844

Allendorf, F. W., Luikart, G., & Aitken, S. N. (2013). Conservation and the 
genetics of populations (2nd ed.). Wiley-Blackwell.

Andrews, S. (2010). FastQC: A quality control tool for high throughput 
sequence data. In: Babraham Bioinformatics. Babraham Institute.

Ávila, V., Amador, C., & García-dorado, A. (2010). The purge of ge-
netic load through restricted panmixia in a Drosophila experi-
ment. Journal of Evolutionary Biology, 23(9), 1937–1946. https://doi.
org/10.1111/j.1420-9101.2010.02058.x

Barbosa, S., Mestre, F., White, T. A., Paupério, J., Alves, P. C., & Searle, 
J. B. (2018). Integrative approaches to guide conservation decisions: 
Using genomics to define conservation units and functional corri-
dors. Molecular Ecology, 27(17), 3452–3465. https://doi.org/10.1111/
mec.14806

Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., 
Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, 
K. C., Mersey, B., & Ferrer, E. A. (2011). Has the Earth’s sixth mass 
extinction already arrived? Nature, 471(7336), 51–57. https://doi.
org/10.1038/natur​e09678

Barsh, G. S., Rogers, R. L., & Slatkin, M. (2017). Excess of genomic de-
fects in a woolly mammoth on Wrangel island. PLoS Genetics, 13(3), 
e1006601. https://doi.org/10.1371/journ​al.pgen.1006601

Beaumont, M. A. (2005). Adaptation and speciation: What can Fst tell 
us? Trends in Ecology and Evolution, 20(8), 435–440. https://doi.
org/10.1016/j.tree.2005.05.017

Bell, D. A., Robinson, Z. L., Funk, W. C., Fitzpatrick, S. W., Allendorf, 
F. W., Tallmon, D. A., & Whiteley, A. R. (2019). The exciting po-
tential and remaining uncertainties of genetic rescue. Trends in 
Ecology and Evolution, 34(12), 1070–1079. https://doi.org/10.1016/j.
tree.2019.06.006

Benjelloun, B., Boyer, F., Streeter, I., Zamani, W., Engelen, S., Alberti, A., 
Alberto, F. J., BenBati, M., Ibnelbachyr, M., Chentouf, M., Bechchari, 
A., Rezaei, H. R., Naderi, S., Stella, A., Chikhi, A., Clarke, L., Kijas, J., 
Flicek, P., Taberlet, P., & Pompanon, F. (2019). An evaluation of se-
quencing coverage and genotyping strategies to assess neutral and 
adaptive diversity. Molecular Ecology Resources, 19(6), 1497–1515. 
https://doi.org/10.1111/1755-0998.13070

Bensasson, D., Zhang, D.-X., Hartl, D. L., & Hewitt, G. M. (2001). 
Mitochondrial pseudogenes: Evolution's misplaced witnesses. Trends 
in Ecology and Evolution, 16(6), 314–321. https://doi.org/10.1016/
S0169​-5347(01)02151​-6

Bersabé, D., & García-Dorado, A. (2013). On the genetic parameter de-
termining the efficiency of purging: An estimate for Drosophila egg-
to-pupae viability. Journal of Evolutionary Biology, 26(2), 375–385. 
https://doi.org/10.1111/jeb.12054

Bijlsma, Bundgaard & Van Putten (1999). Environmental dependence 
of inbreeding depression and purging in Drosophila melanogas-
ter. Journal of Evolutionary Biology, 12(6), 1125–1137. https://doi.
org/10.1046/j.1420-9101.1999.00113.x

Bijlsma, R., & Loeschcke, V. (2005). Environmental stress, adaptation and 
evolution: An overview. Journal of Evolutionary Biology, 18(4), 744–
749. https://doi.org/10.1111/j.1420-9101.2005.00962.x

Bijlsma, R., & Loeschcke, V. (2012). Genetic erosion impedes adaptive 
responses to stressful environments. Evolutionary Applications, 5(2), 
117–129. https://doi.org/10.1111/j.1752-4571.2011.00214.x

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible 
trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–
2120. https://doi.org/10.1093/bioin​forma​tics/btu170

Bristow, K. D., & Ockenfels, R. A. (2004). Pairing season habitat selection 
by Montezuma quail in southeastern Arizona. Rangeland Ecology and 
Management, 57(5), 532–538.

Brown, D. E. (1979). Factors influencing reproductive success and 
population densities in Montezuma quail. The Journal of Wildlife 
Management, 43(2), 522. https://doi.org/10.2307/3800365

Brüniche-Olsen, A., Kellner, K. F., Anderson, C. J., & DeWoody, J. A. 
(2018). Runs of homozygosity have utility in mammalian conserva-
tion and evolutionary studies. Conservation Genetics, 19(6), 1295–
1307. https://doi.org/10.1007/s1059​2-018-1099-y

Brüniche-Olsen, A., Kellner, K. F., & DeWoody, J. A. (2019). Island area, 
body size and demographic history shape genomic diversity in 
Darwin's finches and related tanagers. Molecular Ecology, 28(22), 
4914–4925. https://doi.org/10.1111/mec.15266

Bürger, R., & Lynch, M. (1995). Evolution and extinction in a changing en-
vironment: A quantitative-genetic analysis. Evolution, 49(1), 151–163. 
https://doi.org/10.1111/j.1558-5646.1995.tb059​67.x

Burri, R., Nater, A., Kawakami, T., Mugal, C. F., Olason, P. I., Smeds, L., 
Suh, A., Dutoit, L., Bureš, S., Garamszegi, L. Z., Hogner, S., Moreno, 
J., Qvarnström, A., Ružić, M., Sæther, S. A., Sætre, G. P., Török, 
J., & Ellegren, H. (2015). Linked selection and recombination rate 
variation drive the evolution of the genomic landscape of differ-
entiation across the speciation continuum of Ficedula flycatchers. 
Genome Research, 25(11), 1656–1665. https://doi.org/10.1101/
gr.196485.115

Bushnell, B. (2014). BBMap: A fast, accurate, splice-aware aligner. Lawrence 
Berkeley National Lab (LBNL).

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., 
Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, 
A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, 
D. S., & Naeem, S. (2012). Biodiversity loss and its impact on human-
ity. Nature, 486(7401), 59–67. https://doi.org/10.1038/natur​e11148

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & 
Palmer, T. M. (2015). Accelerated modern human–induced species 
losses: Entering the sixth mass extinction. Science Advances, 1(5), 
https://doi.org/10.1126/sciadv.1400253

Charlesworth, B., & Charlesworth, D. (1999). The genetic basis of in-
breeding depression. Genetical Research, 74(3), 329–340. https://doi.
org/10.1017/S0016​67239​9004152

Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effect 
of deleterious mutations on neutral molecular variation. Genetics, 
134(4), 1289–1303.

Charlesworth, D., & Charlesworth, B. (1987). Inbreeding depres-
sion and its evolutionary consequences. Annual Review of Ecology 
and Systematics, 18(1), 237–268. https://doi.org/10.1146/annur​
ev.es.18.110187.001321

Chavarria, P. M., Montoya, A., Silvy, N. J., & Lopez, R. R. (2012). Impact 
of inclement weather on overwinter mortality of Montezuma quail in 
southeast Arizona. Paper presented at the National Quail Symposium 
Proceedings

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, 
S. J., Lu, X., & Ruden, D. M. (2014). A program for annotating and 
predicting the effects of single nucleotide polymorphisms, SnpEff. 
Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695

Clucas, G. V., Lou, R. N., Therkildsen, N. O., & Kovach, A. I. (2019). Novel 
signals of adaptive genetic variation in northwestern Atlantic cod 
revealed by whole-genome sequencing. Evolutionary Applications, 
12(10), 1971–1987. https://doi.org/10.1111/eva.12861

Coop, G., Balick, D. J., Do, R., Cassa, C. A., Reich, D., & Sunyaev, S. R. 
(2015). Dominance of deleterious alleles controls the response to a 
population bottleneck. PLoS Genetics, 11(8), e1005436. https://doi.
org/10.1371/journ​al.pgen.1005436

Cox, W. A., Kimball, R. T., Braun, E. L., & Klicka, J. (2007). Phylogenetic 
Position of the New World Quail (Odontophoridae): Eight nuclear 
loci and three mitochondrial regions contradict morphology and 

https://doi.org/10.1534/genetics.110.124560
https://doi.org/10.1038/nrg2844
https://doi.org/10.1111/j.1420-9101.2010.02058.x
https://doi.org/10.1111/j.1420-9101.2010.02058.x
https://doi.org/10.1111/mec.14806
https://doi.org/10.1111/mec.14806
https://doi.org/10.1038/nature09678
https://doi.org/10.1038/nature09678
https://doi.org/10.1371/journal.pgen.1006601
https://doi.org/10.1016/j.tree.2005.05.017
https://doi.org/10.1016/j.tree.2005.05.017
https://doi.org/10.1016/j.tree.2019.06.006
https://doi.org/10.1016/j.tree.2019.06.006
https://doi.org/10.1111/1755-0998.13070
https://doi.org/10.1016/S0169-5347(01)02151-6
https://doi.org/10.1016/S0169-5347(01)02151-6
https://doi.org/10.1111/jeb.12054
https://doi.org/10.1046/j.1420-9101.1999.00113.x
https://doi.org/10.1046/j.1420-9101.1999.00113.x
https://doi.org/10.1111/j.1420-9101.2005.00962.x
https://doi.org/10.1111/j.1752-4571.2011.00214.x
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.2307/3800365
https://doi.org/10.1007/s10592-018-1099-y
https://doi.org/10.1111/mec.15266
https://doi.org/10.1111/j.1558-5646.1995.tb05967.x
https://doi.org/10.1101/gr.196485.115
https://doi.org/10.1101/gr.196485.115
https://doi.org/10.1038/nature11148
https://doi.org/10.1126/sciadv.1400253
https://doi.org/10.1017/S0016672399004152
https://doi.org/10.1017/S0016672399004152
https://doi.org/10.1146/annurev.es.18.110187.001321
https://doi.org/10.1146/annurev.es.18.110187.001321
https://doi.org/10.4161/fly.19695
https://doi.org/10.1111/eva.12861
https://doi.org/10.1371/journal.pgen.1005436
https://doi.org/10.1371/journal.pgen.1005436


     |  1555MATHUR and DeWOODY

the Sibley-Ahlquist tapestry. The Auk, 124(1), 71–84. https://doi.
org/10.1093/auk/124.1.71

Crnokrak, P., & Barrett, S. C. H. (2002). Perspective: purging the ge-
netic load: A review of the experimental evidence. Evolution, 
56(12), 2347–2358. https://doi.org/10.1111/j.0014-3820.2002.
tb001​60.x

de Villemereuil, P., Rutschmann, A., Lee, K. D., Ewen, J. G., Brekke, P., 
& Santure, A. W. (2019). Little adaptive potential in a threatened 
passerine bird. Current Biology, 29(5), 889–894.e883. https://doi.
org/10.1016/j.cub.2019.01.072

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. 
(2014). Defaunation in the Anthropocene. Science, 345(6195), 401–
406. https://doi.org/10.1126/scien​ce.1251817

Do, R., Balick, D., Li, H., Adzhubei, I., Sunyaev, S., & Reich, D. (2015). No 
evidence that selection has been less effective at removing deleteri-
ous mutations in Europeans than in Africans. Nature Genetics, 47(2), 
126–131. https://doi.org/10.1038/ng.3186

Ellegren, H., & Sheldon, B. C. (2008). Genetic basis of fitness differences 
in natural populations. Nature, 452(7184), 169–175. https://doi.
org/10.1038/natur​e06737

Ellegren, H., Smeds, L., Burri, R., Olason, P. I., Backström, N., Kawakami, 
T., Künstner, A., Mäkinen, H., Nadachowska-Brzyska, K., Qvarnström, 
A., Uebbing, S., & Wolf, J. B. W. (2012). The genomic landscape of 
species divergence in Ficedula flycatchers. Nature, 491(7426), 756–
760. https://doi.org/10.1038/natur​e11584

Eo, S. H., Doyle, J. M., & DeWoody, J. A. (2011). Genetic diversity in birds is 
associated with body mass and habitat type. Journal of Zoology, 283(3), 
220–226. https://doi.org/10.1111/j.1469-7998.2010.00773.x

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number 
of clusters of individuals using the software structure: A sim-
ulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.
org/10.1111/j.1365-294X.2005.02553.x

Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: A new series 
of programs to perform population genetics analyses under Linux 
and Windows. Molecular Ecology Resources, 10(3), 564–567. https://
doi.org/10.1111/j.1755-0998.2010.02847.x

Frankham, R. (1996). Relationship of genetic variation to population 
size in wildlife. Conservation Biology, 10(6), 1500–1508. https://doi.
org/10.1046/j.1523-1739.1996.10061​500.x

Fu, W., Gittelman, R. M., Bamshad, M. J., & Akey, J. M. (2014). 
Characteristics of neutral and deleterious protein-coding variation 
among individuals and populations. The American Journal of Human 
Genetics, 95(4), 421–436. https://doi.org/10.1016/j.ajhg.2014.09.006

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against pop-
ulation growth, hitchhiking and background selection. Genetics, 
147(2), 915–925

Garrison, E. (2012). Vcflib: A C++ library for parsing and manipulating VCF 
files. GitHub. Retrieved from https://github.com/ekg/vcflib

Gong, W., Gu, L., & Zhang, D. (2010). Low genetic diversity and high ge-
netic divergence caused by inbreeding and geographical isolation 
in the populations of endangered species Loropetalum subcordatum 
(Hamamelidaceae) endemic to China. Conservation Genetics, 11(6), 
2281–2288. https://doi.org/10.1007/s1059​2-010-0113-9

Gonzalez Gonzalez, C. E., Harveson, L. A., & Luna, R. S. (2017). Survival 
and Nesting Ecology of Scaled Quail in the Trans-Pecos, Texas. In 
National Quail Symposium Proceedings (Vol. 8, No. 1, p. 100). https://
trace.tenne​ssee.edu/cgi/viewc​ontent.cgi?artic​le=1563&conte​
xt=nqsp

Grossen, C., Guillaume, F., Keller, L. F., & Croll, D. (2020). Purging of 
highly deleterious mutations through severe bottlenecks in Alpine 
ibex. Nature Communications, 11(1), 1001. https://doi.org/10.1038/
s4146​7-020-14803​-1.

Harder, A. M., Willoughby, J. R., Ardren, W. R., & Christie, M. R. (2020). 
Among-family variation in survival and gene expression uncovers 

adaptive genetic variation in a threatened fish. Molecular Ecology, 
29(6), 1035–1049. https://doi.org/10.1111/mec.15334

Harris, R. S. (2007). Improved pairwise Alignment of genomic DNA.
Harveson, L. A. (2009). Management of Montezuma quail in Texas: Barriers 

to establishing a hunting season. Paper presented at the National Quail 
Symposium Proceedings

Harveson, L. A., Allen, T. H., Hernández, F., Holdermann, D. A., Mueller, 
J. M., & Whitley, M. S. (2007). Montezuma quail ecology and life his-
tory. In L. A. Brennan (Ed). Texas quails: Ecology and management (pp. 
23–29). Texas A&M University.

Hedrick, P. W., & Garcia-Dorado, A. (2016). Understanding inbreeding de-
pression, purging, and genetic rescue. Trends in Ecology and Evolution, 
31(12), 940–952. https://doi.org/10.1016/j.tree.2016.09.005

Hedrick, P. W., Kardos, M., Peterson, R. O., & Vucetich, J. A. (2016). 
Genomic variation of inbreeding and ancestry in the remaining two 
isle Royale wolves. Journal of Heredity, 108, 120–126. https://doi.
org/10.1093/jhere​d/esw083

Hedrick, P. W., Robinson, J. A., Peterson, R. O., Vucetich, J. A., & 
Johnson, J. (2019). Genetics and extinction and the example of Isle 
Royale wolves. Animal Conservation, 22(3), 302–309. https://doi.
org/10.1111/acv.12479

Hernandez, F., Harveson, L. A., & Brewer, C. E. (2006). A comparison of 
trapping techniques for Montezuma Quail. Wildlife Society Bulletin, 
34(4), 1212–1215.

Holderegger, R., Balkenhol, N., Bolliger, J., Engler, J. O., Gugerli, F., 
Hochkirch, A., Nowak, C., Segelbacher, G., Widmer, A., & Zachos, 
F. E. (2019). Conservation genetics: Linking science with practice. 
Molecular Ecology, 28(17), 3848–3856. https://doi.org/10.1111/
mec.15202

Holycross, A. T., & Douglas, M. E. (2007). Geographic isolation, genetic 
divergence, and ecological non-exchangeability define ESUs in a 
threatened sky-island rattlesnake. Biological Conservation, 134(1), 
142–154. https://doi.org/10.1016/j.biocon.2006.07.020

Hosner, P. A., Braun, E. L., & Kimball, R. T. (2015). Land connectivity 
changes and global cooling shaped the colonization history and diver-
sification of New World quail (Aves: Galliformes: Odontophoridae). 
Journal of Biogeography, 42(10), 1883–1895. https://doi.org/10.1111/
jbi.12555

Keller, L. (2002). Inbreeding effects in wild populations. Trends in Ecology 
and Evolution, 17(5), 230–241. https://doi.org/10.1016/s0169​
-5347(02)02489​-8

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., 
Zahler, A. M., & Haussler, D. (2002). The human genome browser at 
UCSC. Genome Research, 12(6), 996–1006. https://doi.org/10.1101/
gr.229102

Kimura, M., & Ohta, T. (1969). The average number of generations until 
fixation of a mutant gene in a finite population. Genetics, 61(3), 
763–771

Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: 
Analysis of next generation sequencing data. BMC Bioinformatics, 15, 
356. https://doi.org/10.1186/s1285​9-014-0356-4

Lamichhaney, S., & Andersson, L. (2019). A comparison of the associa-
tion between large haplotype blocks under selection and the pres-
ence/absence of inversions. Ecology and Evolution, 9(8), 4888–4896. 
https://doi.org/10.1002/ece3.5094

Leroy, G., Carroll, E. L., Bruford, M. W., DeWoody, J. A., Strand, A., Waits, 
L., & Wang, J. (2018). Next-generation metrics for monitoring genetic 
erosion within populations of conservation concern. Evolutionary 
Applications, 11(7), 1066–1083. https://doi.org/10.1111/eva.12564

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with 
Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. 
https://doi.org/10.1093/bioin​forma​tics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, 
G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map 

https://doi.org/10.1093/auk/124.1.71
https://doi.org/10.1093/auk/124.1.71
https://doi.org/10.1111/j.0014-3820.2002.tb00160.x
https://doi.org/10.1111/j.0014-3820.2002.tb00160.x
https://doi.org/10.1016/j.cub.2019.01.072
https://doi.org/10.1016/j.cub.2019.01.072
https://doi.org/10.1126/science.1251817
https://doi.org/10.1038/ng.3186
https://doi.org/10.1038/nature06737
https://doi.org/10.1038/nature06737
https://doi.org/10.1038/nature11584
https://doi.org/10.1111/j.1469-7998.2010.00773.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1046/j.1523-1739.1996.10061500.x
https://doi.org/10.1046/j.1523-1739.1996.10061500.x
https://doi.org/10.1016/j.ajhg.2014.09.006
https://github.com/ekg/vcflib
https://doi.org/10.1007/s10592-010-0113-9
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1563&context=nqsp
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1563&context=nqsp
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1563&context=nqsp
https://doi.org/10.1038/s41467-020-14803-1
https://doi.org/10.1038/s41467-020-14803-1
https://doi.org/10.1111/mec.15334
https://doi.org/10.1016/j.tree.2016.09.005
https://doi.org/10.1093/jhered/esw083
https://doi.org/10.1093/jhered/esw083
https://doi.org/10.1111/acv.12479
https://doi.org/10.1111/acv.12479
https://doi.org/10.1111/mec.15202
https://doi.org/10.1111/mec.15202
https://doi.org/10.1016/j.biocon.2006.07.020
https://doi.org/10.1111/jbi.12555
https://doi.org/10.1111/jbi.12555
https://doi.org/10.1016/s0169-5347(02)02489-8
https://doi.org/10.1016/s0169-5347(02)02489-8
https://doi.org/10.1101/gr.229102
https://doi.org/10.1101/gr.229102
https://doi.org/10.1186/s12859-014-0356-4
https://doi.org/10.1002/ece3.5094
https://doi.org/10.1111/eva.12564
https://doi.org/10.1093/bioinformatics/btp324


1556  |     MATHUR and DeWOODY

format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.
org/10.1093/bioin​forma​tics/btp352

Li, S., Li, B. O., Cheng, C., Xiong, Z., Liu, Q., Lai, J., Carey, H. V., Zhang, Q., 
Zheng, H., Wei, S., Zhang, H., Chang, L., Liu, S., Zhang, S., Yu, B., Zeng, 
X., Hou, Y., Nie, W., Guo, Y., … Yan, J. (2014). Genomic signatures of 
near-extinction and rebirth of the crested ibis and other endangered 
bird species. Genome Biology, 15(12), 557. https://doi.org/10.1186/
s1305​9-014-0557-1

Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, 
D. D. (2009). The velocity of climate change. Nature, 462(7276), 
1052–1055. https://doi.org/10.1038/natur​e08649

Lopez, J. V., Yuhki, N., Masuda, R., Modi, W., & O'Brien, S. J. (1994). 
Numt, a recent transfer and tandem amplification of mitochon-
drial DNA to the nuclear genome of the domestic cat. Journal of 
Molecular Evolution, 39(2), 174–190. https://doi.org/10.1007/
bf001​63806

Luna, R. S., Oaster, E. A., Cork, K. D., & O'Shaughnessy, R. (2017). 
Changes in Habitat Use of Montezuma Quail in Response to Tree Canopy 
Reduction in the Capitan Mountains of New Mexico. Paper presented at 
the National Quail Symposium Proceedings

Lynch, M. (2007). The origins of genome architecture. Sinauer Associates.
Lynch, M., Conery, J., & Burger, R. (1995). Mutation accumulation and the 

extinction of small populations. The American Naturalist, 146(4), 489–
518. https://doi.org/10.1086/285812

Madsen, T., Stille, B., & Shine, R. (1996). Inbreeding depression in an iso-
lated population of adders Vipera berus. Biological Conservation, 75(2), 
113–118. https://doi.org/10.1016/0006-3207(95)00067​-4

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, 
W. M. (2010). Robust relationship inference in genome-wide as-
sociation studies. Bioinformatics, 26(22), 2867–2873. https://doi.
org/10.1093/bioin​forma​tics/btq559

Mathur, S., Tomeček, J. M., Heniff, A., Luna, R., & DeWoody, J. A. (2019). 
Evidence of genetic erosion in a peripheral population of a North 
American game bird: the Montezuma quail (Cyrtonyx montezumae). 
Conservation Genetics, 20(6), 1369–1381. https://doi.org/10.1007/
s1059​2-019-01218​-9

Matthey-Doret, R., & Whitlock, M. C. (2019). Background selection and 
FST: Consequences for detecting local adaptation. Molecular Ecology, 
28(17), 3902–3914. https://doi.org/10.1111/mec.15197

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., 
Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & 
DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce 
framework for analyzing next-generation DNA sequencing data. 
Genome Research, 20(9), 1297–1303. https://doi.org/10.1101/
gr.107524.110

McLennan, E. A., Wright, B. R., Belov, K., Hogg, C. J., & Grueber, C. E. (2019). 
Too much of a good thing? Finding the most informative genetic data 
set to answer conservation questions. Molecular Ecology Resources, 
19(3), 659–671. https://doi.org/10.1111/1755-0998.12997

McVean, G., Cai, J. J., Macpherson, J. M., Sella, G., & Petrov, D. A. 
(2009). Pervasive Hitchhiking at coding and regulatory sites in hu-
mans. PLoS Genetics, 5(1), e1000336. https://doi.org/10.1371/journ​
al.pgen.1000336

Meisner, J., & Albrechtsen, A. (2018). Inferring population structure and 
admixture proportions in low-depth NGS data. Genetics, 210(2), 719–
731. https://doi.org/10.1534/genet​ics.118.301336

Meisner, J., & Albrechtsen, A. (2019). Testing for Hardy-Weinberg equi-
librium in structured populations using genotype or low-depth next 
generation sequencing data. Molecular Ecology Resources, 19(5), 
1144–1152. https://doi.org/10.1111/1755-0998.13019

Morris, K. M., Hindle, M. M., Boitard, S., Burt, D. W., Danner, A. F., Eory, 
L., Forrest, H. L., Gourichon, D., Gros, J., Hillier, L. D. W., Jaffredo, 
T., Khoury, H., Lansford, R., Leterrier, C., Loudon, A., Mason, A. S., 
Meddle, S. L., Minvielle, F., Minx, P., … Smith, J. (2020). The quail ge-
nome: Insights into social behaviour, seasonal biology and infectious 

disease response. BMC Biology, 18(1), https://doi.org/10.1186/s1291​
5-020-0743-4

Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G., & Ellegren, H. 
(2015). Temporal dynamics of avian populations during Pleistocene 
revealed by whole-genome sequences. Current Biology, 25(10), 1375–
1380. https://doi.org/10.1016/j.cub.2015.03.047

Neph, S., Kuehn, M. S., Reynolds, A. P., Haugen, E., Thurman, R. E., 
Johnson, A. K., Rynes, E., Maurano, M. T., Vierstra, J., Thomas, 
S., Sandstrom, R., Humbert, R., & Stamatoyannopoulos, J. A. 
(2012). BEDOPS: High-performance genomic feature operations. 
Bioinformatics, 28(14), 1919–1920. https://doi.org/10.1093/bioin​
forma​tics/bts277

Ohta, T. (1992). The nearly neutral theory of molecular evolution. Annual 
Review of Ecology and Systematics, 23(1), 263–286.

Palkopoulou, E., Mallick, S., Skoglund, P., Enk, J., Rohland, N., Li, H., Omrak, 
A., Vartanyan, S., Poinar, H., Götherström, A., Reich, D., & Dalén, L. 
(2015). Complete genomes reveal signatures of demographic and ge-
netic declines in the Woolly Mammoth. Current Biology, 25(10), 1395–
1400. https://doi.org/10.1016/j.cub.2015.04.007

Pool, J. E., & Nielsen, R. (2007). Population size changes reshape ge-
nomic patterns of diversity. Evolution, 61(12), 3001–3006. https://
doi.org/10.1111/j.1558-5646.2007.00238.x

Pulanić, D., Polašek, O., Petrovečki, M., Vorko-Jović, A., Peričić, M., Lauc, 
L. B., Klarić, I. M., Biloglav, Z., Kolčić, I., Zgaga, L., Carothers, A. D., 
Ramić, S., Šetić, M., Janićijević, B., Narančić, N. S., Bućan, K., Rudan, 
D., Lowe, G., Rumley, A., … Rudan, I. (2008). Effects of isolation and 
inbreeding on human quantitative traits: An example of biochemical 
markers of hemostasis and inflammation. Human Biology, 80(5), 513–
533. https://doi.org/10.3378/1534-6617-80.5.513

Puzey, J. R., Willis, J. H., & Kelly, J. K. (2017). Population structure and local 
selection yield high genomic variation in Mimulus guttatus. Molecular 
Ecology, 26(2), 519–535. https://doi.org/10.1111/mec.13922

R Core Team (2013). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, 
R. C., Sunnucks, P., & Frankham, R. (2018). Call for a paradigm shift 
in the genetic management of fragmented populations. Conservation 
Letters, 11(2), e12412. https://doi.org/10.1111/conl.12412

Ralls, K., Sunnucks, P., Lacy, R. C., & Frankham, R. (2020). Genetic res-
cue: A critique of the evidence supports maximizing genetic diver-
sity rather than minimizing the introduction of putatively harmful 
genetic variation. Biological Conservation, 251, 108784. https://doi.
org/10.1016/j.biocon.2020.108784

Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new 
neutrality tests against population growth. Molecular Biology and 
Evolution, 19(12), 2092–2100. https://doi.org/10.1093/oxfor​djour​
nals.molbev.a004034

Randel, C. J., Johnson, C. Z., Chavarria, P. M., Lopez, R. R., Silvy, N. J., & 
Tomeček, J. M. (2019). Estimating Montezuma quail hatch date using 
primary molt at harvest. Wildlife Society Bulletin, 43(4), 766–768. 
https://doi.org/10.1002/wsb.1017

Reed, D. H., & Frankham, R. (2003). Correlation between fitness and 
genetic diversity. Conservation Biology, 17(1), 230–237. https://doi.
org/10.1046/j.1523-1739.2003.01236.x

Rettelbach, A., Nater, A., & Ellegren, H. (2019). How linked selection 
shapes the diversity landscape in Ficedula flycatchers. Genetics, 
212(1), 277–285. https://doi.org/10.1534/genet​ics.119.301991

Rousset, F. (1997). Genetic differentiation and estimation of gene 
flow from F-statistics under isolation by distance. Genetics, 145(4), 
1219–1228.

Simons, Y. B., Turchin, M. C., Pritchard, J. K., & Sella, G. (2014). The del-
eterious mutation load is insensitive to recent population history. 
Nature Genetics, 46(3), 220–224. https://doi.org/10.1038/ng.2896

Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating in-
dividual admixture proportions from next generation sequencing 

https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/s13059-014-0557-1
https://doi.org/10.1186/s13059-014-0557-1
https://doi.org/10.1038/nature08649
https://doi.org/10.1007/bf00163806
https://doi.org/10.1007/bf00163806
https://doi.org/10.1086/285812
https://doi.org/10.1016/0006-3207(95)00067-4
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1007/s10592-019-01218-9
https://doi.org/10.1007/s10592-019-01218-9
https://doi.org/10.1111/mec.15197
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1111/1755-0998.12997
https://doi.org/10.1371/journal.pgen.1000336
https://doi.org/10.1371/journal.pgen.1000336
https://doi.org/10.1534/genetics.118.301336
https://doi.org/10.1111/1755-0998.13019
https://doi.org/10.1186/s12915-020-0743-4
https://doi.org/10.1186/s12915-020-0743-4
https://doi.org/10.1016/j.cub.2015.03.047
https://doi.org/10.1093/bioinformatics/bts277
https://doi.org/10.1093/bioinformatics/bts277
https://doi.org/10.1016/j.cub.2015.04.007
https://doi.org/10.1111/j.1558-5646.2007.00238.x
https://doi.org/10.1111/j.1558-5646.2007.00238.x
https://doi.org/10.3378/1534-6617-80.5.513
https://doi.org/10.1111/mec.13922
https://doi.org/10.1111/conl.12412
https://doi.org/10.1016/j.biocon.2020.108784
https://doi.org/10.1016/j.biocon.2020.108784
https://doi.org/10.1093/oxfordjournals.molbev.a004034
https://doi.org/10.1093/oxfordjournals.molbev.a004034
https://doi.org/10.1002/wsb.1017
https://doi.org/10.1046/j.1523-1739.2003.01236.x
https://doi.org/10.1046/j.1523-1739.2003.01236.x
https://doi.org/10.1534/genetics.119.301991
https://doi.org/10.1038/ng.2896


     |  1557MATHUR and DeWOODY

data. Genetics, 195(3), 693–702. https://doi.org/10.1534/genet​
ics.113.154138

Soulé, M. E. (1985). What is conservation biology? BioScience, 35(11), 
727–734. https://doi.org/10.2307/1310054

Stromberg, M. R. (1990). Habitat, movements and Roost characteristics 
of Montezuma Quail in Southeastern Arizona. The Condor, 92(1), 
229–236. https://doi.org/10.2307/1368404

Terhorst, J., Kamm, J. A., & Song, Y. S. (2016). Robust and scalable in-
ference of population history from hundreds of unphased whole 
genomes. Nature Genetics, 49(2), 303–309. https://doi.org/10.1038/
ng.3748

Thompson, C. J., Koshkina, V., Burgman, M. A., Butchart, S. H. M., & 
Stone, L. (2017). Inferring extinctions II: A practical, iterative model 
based on records and surveys. Biological Conservation, 214, 328–335. 
https://doi.org/10.1016/j.biocon.2017.07.029

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: 
Improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties 
and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. 
https://doi.org/10.1093/nar/22.22.4673

Van Belleghem, S. M., Vangestel, C., De Wolf, K., De Corte, Z., Möst, M., 
Rastas, P., De Meester, L., & Hendrickx, F. (2018). Evolution at two 
time frames: Polymorphisms from an ancient singular divergence 
event fuel contemporary parallel evolution. PLoS Genetics, 14(11), 
e1007796. https://doi.org/10.1371/journ​al.pgen.1007796

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, 
G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, 
J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., & DePristo, M. 
A. (2013). From FastQ Data to High-Confidence Variant Calls: The 
Genome Analysis Toolkit Best Practices Pipeline. Current Protocols in 
Bioinformatics, 43, 11.10.1–11.10.33. https://doi.org/10.1002/04712​
50953.bi111​0s43

van der Valk, T., de Manuel, M., Marques-Bonet, T., & Guschanski, K. 
(2019). Estimates of genetic load in small populations suggest exten-
sive purging of deleterious alleles. bioRxiv, 696831.

van Oosterhout, C. (2020). Mutation load is the spectre of species con-
servation. Nature Ecology and Evolution, 4(8), 1004–1006. https://doi.
org/10.1038/s4155​9-020-1204-8

Wakeley, J. (1996). Distinguishing migration from isolation using the vari-
ance of pairwise differences. Theoretical Population Biology, 49(3), 
369–386. https://doi.org/10.1006/tpbi.1996.0018

Waples, R. K., Albrechtsen, A., & Moltke, I. (2019). Allele frequency-free 
inference of close familial relationships from genotypes or low-
depth sequencing data. Molecular Ecology, 28(1), 35–48. https://doi.
org/10.1111/mec.14954

Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). 
Genetic rescue to the rescue. Trends in Ecology and Evolution, 30(1), 
42–49. https://doi.org/10.1016/j.tree.2014.10.009

Willi, Y., Van Buskirk, J., & Hoffmann, A. A. (2006). Limits to the adaptive 
potential of small populations. Annual Review of Ecology, Evolution, 
and Systematics, 37(1), 433–458. https://doi.org/10.1146/annur​
ev.ecols​ys.37.091305.110145

Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T., & 
Christie, M. R. (2018). Rapid genetic adaptation to a novel environ-
ment despite a genome-wide reduction in genetic diversity. Molecular 
Ecology, 27(20), 4041–4051. https://doi.org/10.1111/mec.14726

Willoughby, J. R., Sundaram, M., Wijayawardena, B. K., Kimble, S. J. A., 
Ji, Y., Fernandez, N. B., Antonides, J. D., Lamb, M. C., Marra, N. J., & 
DeWoody, J. A. (2015). The reduction of genetic diversity in threat-
ened vertebrates and new recommendations regarding IUCN con-
servation rankings. Biological Conservation, 191, 495–503. https://
doi.org/10.1016/j.biocon.2015.07.025

Zhan, X., Pan, S., Wang, J., Dixon, A., He, J., Muller, M. G., Ni, P., Hu, 
L. I., Liu, Y., Hou, H., Chen, Y., Xia, J., Luo, Q., Xu, P., Chen, Y., Liao, 
S., Cao, C., Gao, S., Wang, Z., … Bruford, M. W. (2013). Peregrine 
and saker falcon genome sequences provide insights into evolution 
of a predatory lifestyle. Nature Genetics, 45(5), 563–566. https://doi.
org/10.1038/ng.2588

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Mathur S, DeWoody JA Genetic load 
has potential in large populations but is realized in small inbred 
populations. Evol Appl. 2021;14:1540–1557. https://doi.
org/10.1111/eva.13216

https://doi.org/10.1534/genetics.113.154138
https://doi.org/10.1534/genetics.113.154138
https://doi.org/10.2307/1310054
https://doi.org/10.2307/1368404
https://doi.org/10.1038/ng.3748
https://doi.org/10.1038/ng.3748
https://doi.org/10.1016/j.biocon.2017.07.029
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1371/journal.pgen.1007796
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1038/s41559-020-1204-8
https://doi.org/10.1038/s41559-020-1204-8
https://doi.org/10.1006/tpbi.1996.0018
https://doi.org/10.1111/mec.14954
https://doi.org/10.1111/mec.14954
https://doi.org/10.1016/j.tree.2014.10.009
https://doi.org/10.1146/annurev.ecolsys.37.091305.110145
https://doi.org/10.1146/annurev.ecolsys.37.091305.110145
https://doi.org/10.1111/mec.14726
https://doi.org/10.1016/j.biocon.2015.07.025
https://doi.org/10.1016/j.biocon.2015.07.025
https://doi.org/10.1038/ng.2588
https://doi.org/10.1038/ng.2588
https://doi.org/10.1111/eva.13216
https://doi.org/10.1111/eva.13216

