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Abstract

Background: Succinate dehydrogenase (SDH) loss and mastermind-like 3 (MAML3) translocation are two clinically
important genetic alterations that correlate with increased rates of metastasis in subtypes of human paraganglioma
and pheochromocytoma (PPGL) neuroendocrine tumors. Although hypotheses propose that succinate
accumulation after SDH loss poisons dioxygenases and activates pseudohypoxia and epigenomic hypermethylation,
it remains unclear whether these mechanisms account for oncogenic transcriptional patterns. Additionally, MAML3
translocation has recently been identified as a genetic alteration in PPGL, but is poorly understood. We hypothesize
that a key to understanding tumorigenesis driven by these genetic alterations is identification of the transcription
factors responsible for the observed oncogenic transcriptional changes.

Methods: We leverage publicly-available human tumor gene expression profiling experiments (N = 179) to
reconstruct a PPGL tumor-specific transcriptional network. We subsequently use the inferred transcriptional network
to perform master regulator analyses nominating transcription factors predicted to control oncogenic transcription
in specific PPGL molecular subtypes. Results are validated by analysis of an independent collection of PPGL tumor
specimens (N = 188). We then perform a similar master regulator analysis in SDH-loss mouse embryonic fibroblasts
(MEFs) to infer aspects of SDH loss master regulator response conserved across species and tissue types.

Results: A small number of master regulator transcription factors are predicted to drive the observed subtype-
specific gene expression patterns in SDH loss and MAML3 translocation-positive PPGL. Interestingly, although EPAS1
perturbation is detectible in SDH-loss and VHL-loss tumors, it is by no means the most potent factor driving
observed patterns of transcriptional dysregulation. Analysis of conserved SDH-loss master regulators in human
tumors and MEFs implicated ZNF423, a known modulator of retinoic acid response in neuroblastoma. Subsequent
functional analysis revealed a blunted cell death response to retinoic acid in SDH-loss MEFs and blunted
differentiation response in SDH-inhibited SH-SY5Y neuroblastoma cells.

Conclusions: The unbiased analyses presented here nominate specific transcription factors that are likely drivers of
oncogenic transcription in PPGL tumors. This information has the potential to be exploited for targeted therapy.
Additionally, the observation that SDH loss or inhibition results in blunted retinoic acid response suggests a
potential developmental etiology for this tumor subtype.
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transcriptional coactivator 3, Transcriptional network, Transcription factor, Retinoic acid
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Background
Pheochromocytoma and paraganglioma (PPGL) are rare,
closely-related neuroendocrine tumors arising from the
adrenal medulla and autonomic ganglia of the peripheral
nervous system, respectively. Over the last two decades
more than 20 potentially causative genetic alterations
have been elucidated for PPGL, including mutations in
genes involved in kinase signalling, hypoxic response,
and tricarboxylic acid (TCA) cycle metabolism [1–25].
Although targeted therapies for specific PPGL genetic
subtypes are not currently available, tumor mutation and
genetic subtype information are clinically useful for de-
termining patient prognosis. In particular, patients with
mutations in genes encoding components of the succin-
ate dehydrogenase (SDH) complex of the TCA cycle,
tend toward shorter metastasis-free survival and shorter
overall survival [16, 26].
Recently, a large-scale integrative genomic analysis of

PPGL through The Cancer Genome Atlas (TCGA) Pro-
ject described another important genetic alteration in
PPGL: a translocation involving the MAML3 gene. This
translocation also correlates with poor patient prognosis
and higher rates of metastasis [27]. Collectively, this
study estimated that ~ 11% of PPGL patients carry germ-
line mutations in the four genes (SDHA, SDHB, SDHC,
SDHD; SDHx) encoding SDH subunits, and ~ 5% of
PPGL patients have tumor DNA carrying the novel
MAML3 translocation. Most PPGL metastases arise in
patients corresponding to one of these two genetic sub-
types, making the deconvolution of their underlying
oncogenic mechanisms an important clinical priority.
It remains unknown how SDH loss or MAML3 trans-

location actually drives malignancy. Regarding the
newly-described MAML3 translocation, it is hypothe-
sized that this translocation is somehow associated with
Wnt pathway activation and DNA hypomethylation [27],
but the mechanism is unknown. Regarding SDH loss,
the current tumorigenesis hypothesis proposes bi-allelic
loss of any of the SDHx genes, followed by competitive
inhibition of dioxygenase enzymes by accumulated suc-
cinate. The result is constitutive activation of hypoxic
signalling (“pseudohypoxia” by succinate inhibition of
the prolyl hydroxylases normally responsible for HIF1A
hydroxylation) and global hypermethylation of histones
and DNA [28, 29]. We recently reviewed this mechanis-
tic paradigm [30]. However, the respective tumorigenic
roles of chronic hypoxic signalling and chromatin hyper-
methylation are unknown. Constitutive activation of
hypoxic signalling is believed to occur in both SDH-loss
and VHL-loss PPGL tumors. In the latter case, hypoxic
signalling is thought to be constitutively activated due to
a defect in VHL, the E3 ubiquitin ligase responsible for
ubiquitination of hydroxylated HIF-alpha subunits, nor-
mally targeting them for proteasomal degradation. To

date, however, no unbiased analysis has been performed
to evaluate the extent to which HIF activation accounts
for oncogenic transcription observed in SDH-loss and
VHL-loss PPGL tumors. Additionally, it is not known
whether other oncogenic transcriptional programs are
cued in these tumors by dysregulated transcription
factors.
We are ultimately interested in understanding the

mechanistic linkage between specific gene defects and
PPGL tumorigenesis. In the present work, we have
therefore undertaken an unbiased master regulator ana-
lysis (MRA) to infer perturbed transcription factors that
potentially explain the observed patterns of transcrip-
tional dysregulation specific to SDH-loss, VHL-loss, and
MAML3 translocation PPGL subtypes. This strategy le-
verages the ARACNE information theoretical approach
to generate robust inferred transcriptional networks
from large numbers of PPGL tumor specimen gene ex-
pression profiling experiments reported in the TCGA-
PCPG cohort (N = 179 specimens) [31]. Using the result-
ant inferred transcriptional networks, we perform MRA
to infer transcription factors whose regulons (i.e. sets of
downstream target genes) are differentially-expressed in
a given PPGL subtype. This approach to transcriptional
network inference (TNI) and MRA has previously been
applied to successfully identify transcription factors re-
sponsible for tumorigenic gene expression patterns in
other cancers [32–40].
In the current work, we perform MRA for SDH-loss,

VHL-loss, and MAML3 translocation PPGL sub-types,
and infer a small number of MRs inferred to collectively
control the majority of differentially-expressed genes for
each subtype. We demonstrate a considerable MR over-
lap for SDH-loss and VHL-loss PPGL sub-types, with
each sub-type also characterized by a unique set of MRs.
Interestingly and surprisingly, HIF transcription factors
are not found to be among the most potent MRs in
SDH-loss PPGL, although activity-based assessment re-
veals some detectible increase in EPAS1 activity relative
to tumors lacking SDH or VHL defects. Importantly, we
also report that over 20% of the differentially-expressed
genes in MAML3 translocation PPGL are inferred to be
downstream targets of transcription factor IRX4,
encoded by a gene residing on human chromosome 5
and not structurally perturbed by the translocation. We
validate MRA results for SDH-loss and VHL-loss tumors
using gene expression data from a second large cohort
of PPGL specimens. These validated lists of subtype-
specific MRs may guide the future development of
molecularly-targeted therapies for PPGL.
Finally, we generate transcriptomic signatures for SDH

loss in cultured mouse embryonic fibroblasts (MEF) via
RNA-seq, and perform master regulator analysis on this
transcriptomic signature, leveraging a MEF-specific
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transcriptional network assembled from public data. We
then compare lists of SDH-loss MRs inferred in human
PPGL tumors and in MEFs to infer MRs conserved be-
tween species and cell types. This analysis of conserved
SDH-loss MRs in human tumors and MEFs inferred
ZNF423/ZFP423, a known modulator of retinoic acid re-
sponse in neuroblastoma. Functional analysis revealed a
blunted cell death response to retinoic acid in SDH-loss
MEFs and attenuated neuronal differentiation in SDH-
inhibited SH-SY5Y neuroblastoma cells, suggesting a po-
tential developmental etiology for this tumor subtype.

Materials
Transcriptomic datasets
RNA-seq gene expression profiles for 179 PPGL speci-
mens (TCGA-PCPG) used to assemble an inferred tran-
scriptional network were obtained via the firebrowse
tool available through the Broad Institute. This dataset
was described previously in a publication of the TCGA
consortium [27].
Microarray data for eight normal adrenal medulla

specimens and 44 PPGL tumors used to calculate gene
expression signatures for SDH loss and VHL loss were
obtained from NCBI GEO accession GSE39716. These
data were described previously [41, 42]. Included in this
dataset are 13 VHL-null pheochromocytomas, 18
SDHB-null pheochromocytomas and paragangliomas,
and 13 SDHD-null pheochromocytomas and paragan-
gliomas, including 8 head and neck tumors. For gener-
ation of SDH-loss and VHL-loss gene expression
signatures used in the discovery phase of the project, the
18 SDH-null tumors or 13 VHL-null tumors were com-
pared to the 8 normal adrenal medulla specimens.
Microarray gene expression profiles for 188 PPGL

specimens comprising the COMETE cohort, used in the
MR validation analysis, were obtained from ArrayEx-
press entry E-MTAB-733. This dataset has been de-
scribed previously [43, 44]. This dataset includes the
following number of tumors with specific known genetic
defects: 1 SDHA, 17 SDHB, 2 SDHC, 3 SDHD, 27 VHL,
9 RET, 9 NF1, and 122 tumors of other or unknown
genetic cause. For generation of the SDH-loss and VHL-
loss gene expression signatures used in the validation
phase of this project, the 23 SDH-loss tumors or 27
VHL-loss tumors were compared to the all other PPGL
tumors in the cohort.
RNA-seq data used to derive the MEF-specific SDHC-

loss transcriptomic signature were generated as de-
scribed below and deposited in NCBI GEO under acces-
sion GSE114244. RNA-seq datasets used to assemble a
MEF-specific inferred transcriptional network were ob-
tained from ArrayExpress accessions E-GEOD-72275, E-
GEOD-64489, E-GEOD-77351, E-GEOD-79095, E-
MTAB-5089, E-GEOD-75631, E-GEOD-68902, E-

GEOD-71209, E-MTAB-3875, E-GEOD-70816, E-
GEOD-63794, E-GEOD-63756, and from NCBI GEO ac-
cession GSE103662.

Derivation of gene expression signatures
Differential gene expression analysis of COMETE cohort
and TCGA-PCPG cohort specimens was conducted
using the R package limma, available through Biocon-
ductor. SDH-loss and VHL-loss gene expression signa-
tures were derived by differential gene expression
analysis, comparing these specific PPGL tumor subtypes
to normal adrenal medulla. Microarray datasets were
pre-processed with the application of the robust multi-
array average (RMA) algorithm, with downstream differ-
ential analysis including linear fitting and analysis of em-
pirical Bayes statistics for differential expression. The
MAML3 translocation gene expression signature used in
the discovery phase of the project was derived from
TCGA-PCPG data, comparing the 10 identified
MAML3-mutant tumors to all other tumors (N = 169) in
the cohort. Similarly, a differential gene expression sig-
nature for SDHC-loss in iMEF cells was calculated by
performing differential expression analysis on RNA-seq
count data, comparing SDHC-null cell lines to hemizy-
gous control lines. The criteria for differential expression
signatures in each human PPGL tumor analysis was an
absolute log2(fold-change) > 1.5 and adjusted p-value <
0.05. The criteria for differential expression for SDHC-
loss iMEFs was an absolute log2(fold-change) > 2.0 and
adjusted p-value < 0.05.

Network inference and analysis
Prior to transcriptional network inference (TNI), TCGA
RNA-seq data were log2-transformed. Transcriptional
network inference and master regulator analysis (MRA)
were conducted using the R package RTN, as previously
described [34], re-implementing other previously-
described algorithms [33, 40]. Following transcriptional
network inference, data processing inequality filtering
(DPI tolerance set to 0 or 0.05) was applied to remove
the weakest among inferred interactions prior to master
regulator analysis. Each differential expression signature
was analyzed separately via MRA to infer putative tran-
scriptional drivers of the observed signatures.
Prior to TNI on MEF RNA-seq data to generate a

MEF-specific transcriptional network, raw FASTQ data-
sets were downloaded from public repositories and
aligned to the mm9 genome using the HISAT2 fast read
aligner. SAM files yielded from the alignment step were
converted to BAM format using Samtools [45], and
FPKM gene expression values calculated using R pack-
age systemPipeR [46]. Following these steps, FPKM
values were log2-transformed prior to TNI, as described
above for the human PPGL tumor data. Following TNI,
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MRA was performed using the SDHC-loss MEF gene
expression signature to infer transcriptional drivers of
the observed signature.

Network validation
Known motif position-weight matrices for inferred mas-
ter regulator DNA binding sequences were downloaded
from HOMER (http://homer.ucsd.edu/homer/) or JAS-
PAR (http://jaspar.genereg.net/) motif databases. The
unfiltered regulon for a subset of human PPGL master
regulators was searched for nearest motif match to the
transcription start site (TSS) within a 50-kbp window.
This search was then repeated 200 times for a scrambled
version of the same motif. For each motif search, the
fraction of motif matches localizing within 2.5 kbp of
the TSS was calculated, and the distribution of scram-
bled motif fraction compared to the observed fraction
for the original motif via calculation of an empiric p-
value.

iMEF cell culture and RNA-seq
Cell culture methods and protocol for RNA-seq gene ex-
pression analysis for stable SDHC-loss and hemizygous
control iMEF cell lines were as described previously
[47]. Following high-throughput sequencing, RNA-seq
data was deposited in NCBI GEO under accession
GSE114244.

iMEF SOX11 and ZFP423 immunostaining
Stable SDHC-loss and hemizygous control cell lines
were plated into 96-well plates at a density of approxi-
mately 20,000 cells per well in 100 μL of DMEM
medium containing 10% FBS, penicillin (100 units/mL),
streptomycin (100 μg/mL), 1 mM pyruvate, 1X MEM
NEAA, and 10 mM HEPES buffer (pH 7.2–7.5) and cul-
tured at 21% O2 and 5% CO2. The next day, medium
was aspirated and cells were washed with 100 μL PBS,
fixed with 100 μL 3.7% formaldehyde in 1XPBS for 20
min at room temperature, permeabilized with 100 μL
0.1% Triton X-100 in PBS for 15 min at room
temperature, and blocked for 15 min at room
temperature in PBS containing 10% FBS. Solutions of
primary antibody were prepared by dilution of anti-
SOX11 (Abcam cat# ab134107) or anti-ZFP423 (Abcam
cat# ab94451) primary antibodies 1:100 into PBS con-
taining 10% FBS. Primary antibody solutions were added
to plates and incubated for 1 h at room temperature with
gentle agitation on an orbital shaker. Wells were then
washed 3X with 100 μL PBS, and then incubated for 30
min at room temperature with goat anti-rabbit IgG
Alexa Fluor 594 (Molecular Probes cat# R37117) diluted
2 drops per mL into PBS containing 10% FBS. Cells were
then washed 3X with 100 μL PBS, and then counter-
stained with DAPI (5 μg/mL in PBS) for 5 min prior to

imaging on a Zeiss LSM 780 confocal microscope using
a 10X objective. For each visual field, an autofocus rou-
tine was implemented to capture the plane with the
highest DAPI staining intensity. Automated image ana-
lysis was then employed to quantify compartment-
specific immunostaining patterns, as previously de-
scribed [48].

Testing effects of retinoic acid in SDHC-loss iMEF lines
Stable SDHC-loss and hemizygous control cell lines
were plated into 96-well plates at a density of approxi-
mately 10,000 cells per well in 100 μL medium as de-
scribed above. All-trans retinoic acid (ATRA; Sigma
Aldrich cat# R2625) solutions in DMSO were then
added to the plated cells to a final concentration of be-
tween 78 nM and 5 μM, with final DMSO concentration
of 1% of final medium volume. Plates were tapped gently
to mix, and then cultured at 21% O2 and 5% CO2 for 4
d. On the fourth day, the medium and retinoic acid solu-
tions were replaced, at which point phenol red was omit-
ted from the medium, and cells allowed to grow for an
additional 2 d under the same conditions. On the 6th
day, 10 μL Alamer Blue (Thermo Fisher) cell viability re-
agent was added to plates and incubated for 6 h prior to
taking absorbance measurements at 570 and 600 nm.
Cell viability was calculated from Alamar Blue reduction
as described previously [47].

Testing effects of retinoic acid in SH-SY5Y cells
SH-SY5Y neuroblastoma cells were plated into 96-well
plates at a density of approximately 15,000 cells per well
in 100 μL of DMEM/F12 medium containing 10% FBS,
penicillin (100 units/mL), and streptomycin (100 μg/mL)
and grown overnight to allow for cell attachment. The
next day, diethyl malonate (Sigma Aldrich cat#
W237507) stock solutions prepared in ethanol at 500
mM concentration were added to the plate to 5 mM
final concentration, and the cells returned to the incuba-
tor overnight. Equal volume of ethanol as vehicle control
was added to untreated cells. The next day, fresh stock
solutions of all-trans retinoic acid (Sigma Aldrich cat#
R2625) were prepared in DMSO at 1.2 mM concentra-
tion and added to cells to final concentration of 12 μM.
Equal volume of DMSO was added to vehicle-treated
cells. Cells were returned to the incubator for 2 days to
allow for initiation of retinoic acid-induced neuronal dif-
ferentiation. Cells were then trypsinized (30 μL trypsin),
diluted into 500 μL media, and transferred to a poly-D-
lysine-coated glass coverslip. Diethyl malonate, retinoic
acid, and appropriate vehicle control volumes were then
added to previous concentrations and the cells returned
to the incubator overnight to allow for cell attachment.
The next day, media was aspirated and cells washed with
1 mL PBS, fixed with 3.7% formaldehyde in PBS for 10
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min at room temperature, and permeabilized with 0.1%
Triton X-100 in PBS for 15 min at room temperature.
Cells were the stained with DAPI (Roche cat#
10236276001) and ActinRed 555 ReadyProbes reagent
(Invitrogen cat# R37112). Cells were then covered in
PBS and imaged by confocal microscopy. Cell morph-
ology of actin staining was then analysed using the Mor-
phologicalSkeleton and MeasureObjectSkeleton
subroutines in CellProfiler.

Results
Derivation of gene expression signatures
To infer transcription factors responsible for gene dys-
regulation in PPGL subtypes, signatures of differentially-
expressed genes were first derived to seed the MR infer-
ence algorithm (MARINa) [40]. We derived these signa-
tures [absolute log2(fold-change) > 1.5 and P-Value <
0.05] for SDH-loss, VHL-loss, and MAML3 translocation

PPGL subtypes, as described in Methods (Fig. 1a). In
total, the identified signatures consist of 230 (SDH-loss),
249 (VHL-loss), and 532 (MAML3 translocation)
differentially-expressed genes (Fig. 1b; Additional file 1:
Dataset S1, Additional file 2: Dataset S2, and Additional
file 3: Dataset S3). A pattern of general gene expression
down-regulation was evident for the SDH-loss signature,
with 68% of genes being down-regulated. Approximately
equal numbers of genes were up- and down-regulated in
each of the VHL-loss and MAML3 translocation signa-
tures. Interestingly, the gene sets differentially expressed
in the SDH-loss and VHL-loss are highly overlapping
(empiric p-value: 5E-136), compared to the expected
overlap for randomly-selected gene sets of this same size
(empiric p-value 4E-7; Additional file 12: Figure S1).
This high degree of overlap between SDH-loss and
VHL-loss signatures is consistent with the hypothesis
that both tumor molecular subtypes activate

A B

C

D

Fig. 1 PPGL subtype-specific gene expression signatures. a Volcano plots highlighting genes identified in differential expression analysis as
having absolute log2-fold change > 1.5 and adjusted p-value < 0.05. Comparisons for SDH-loss and VHL-loss are in reference to normal adrenal
medulla. Comparison for MAML3 translocation is in reference to all other PPGL molecular subtypes. b Numbers of differentially-expressed genes
detected for each PPGL subtype. c Venn diagram showing overlap of differentially-expressed genes detected in SDH-loss, VHL-loss, and MAML3
transcriptomic signatures. d Venn diagram showing overlap of MAML3 translocation gene expression signatures in PPGL tumors (TCGA-PCPG) and
in neuroblastoma tumors
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pseudohypoxic signalling [49]. We also examined the de-
gree of overlap between the MAML3 translocation dif-
ferential gene expression signature for PPGL and that
previously observed in MAML3 translocation-positive
neuroblastoma tumors [50] (Fig. 1d), and identify a sig-
nificant similarity (empiric p-value: 3E-35; Add-
itional file 13: Figure S2). This suggests that MAML3
translocation has similar downstream impacts upon gene
expression in these highly similar tumor types.

Transcriptional network inference and master regulator
(MR) analysis
We then assembled a PPGL-specific inferred transcrip-
tional network using 179 RNA-seq experiments gener-
ated by the TCGA Research Consortium (http://
cancergenome.nih.gov/). This dataset has been described
previously [27]. As described in Methods, we used these
data to assemble inferred transcriptional networks mod-
eling gene regulation in PPGL tumors, using an imple-
mentation of the ARACNE transcriptional network
inference (TNI) algorithm available in the R package
RTN [34]. We subsequently validated the structure of
the inferred transcriptional network by searching the
promoter sequences (50 kbp window centered on TSS)
of the inferred transcription factor (TF) regulons (i.e.
sets of target genes) for known TF DNA-binding domain
motifs, extracting the nearest pattern match for each
TSS, and comparing to the same searches performed it-
eratively for scrambled versions of the same motif. We
then assessed the fraction of nearest pattern matches for
each search localizing to within 2.5 kbp of the TSS. In
each of the examined cases, we find that the fraction of
motif pattern matches in this window is higher for the
original motif than for most scrambled versions (Add-
itional file 14: Figure S3), suggesting that the inferred
transcriptional network successfully models real gene-
regulatory interactions.
We then applied the MR inference algorithm (MAR-

INa; also implemented in R package RTN), using the in-
ferred transcriptional network, to infer TFs whose target
genes are significantly enriched for the input SDH-loss,
VHL-loss, or MAML3-translocation gene expression sig-
natures. First, we performed MRA on ARACNE-inferred
transcriptional networks stringently trimmed to remove
all but the strongest inferred regulatory connections
(DPI tolerance = 0). The results of these analyses, pre-
sented in Additional file 4: Dataset S4, Additional file 5:
Dataset S5, and Additional file 6: Dataset S6, nominate
several dozen high confidence TFs whose target genes
are perturbed in these specific PPGL molecular sub-
types, with each TF typically controlling between 2 and
10% of differentially-expressed genes. This TF subset
nominated by MRA with adjusted p-value < 0.05 are
shown in Fig. 2a, with the degree of statistical

significance from the MRA indicated on the y-axis, and
the fraction of the input gene expression signature at-
tributed to each MR indicated on the x-axis.
Surprisingly, hypoxia-inducible factors were not

among the nominated high confidence SDH-loss MRs,
although HIF2α (encoded by EPAS1) was nominated as
a MR for VHL-loss tumors, controlling ~ 5% of the ob-
served differentially-expressed genes in that tumor sub-
type. We therefore repeated the MRA procedure using
ARACNE-inferred networks trimmed with slightly less
stringent criteria (DPI tolerance = 0.05), so as to enhance
the sensitivity of detection of master regulators. These
analyses, presented in Additional file 7: Dataset S7, Add-
itional file 8: Dataset S8, and Additional file 9: Dataset
S9, reveal evidence of some enhanced EPAS1-related
transcriptional effects in SDH-loss tumors, although
EPAS1 is by no means among the top MRs inferred to
cause observed patterns of tumorigenic transcriptional
perturbation. Importantly, this suggests that HIF-related
transcriptional dysregulation is detectible, but that it in-
adequately accounts for the majority of transcriptional
perturbations observed in these “pseudohypoxic” tumor
subtypes, and that dysregulation of other transcription
factors may play a much more important role in driving
oncogenic transcriptomic patterns than previously ap-
preciated. Strikingly, for MAML3 translocation-positive
tumors, we find that a single TF, IRX4, is predicted to
account for > 20% of the observed transcriptional per-
turbation. This is particularly intriguing because the re-
ported MAML3 translocations involve chr18~chr4
fusion (TCF4~MAML3 gene fusion) or chr17~chr4 fu-
sion (UBTF-MAML3 gene fusion), with the IRX4 locus
on chromosome 5 being unaffected in either case [27]. It
is intriguing and currently unknown how MAML3 trans-
location is connected to IRX4-mediated transcriptional
dysregulation.
Next, we examined the structure of the inferred PPGL

transcriptional network to determine whether the in-
ferred subtype-specific MRs specifically co-regulate
common sets of target genes. We therefore calculated in
a pairwise fashion the degree to which the regulon (i.e.
set of target genes) of a given TF overlaps with the regu-
lon of other known TFs (Additional file 10: Dataset S10).
This pairwise matrix of regulon overlap values was then
ordered using an unbiased hierarchical clustering algo-
rithm to identify groups of TFs with highly overlapping
sets of target genes. This data, presented in Fig. 2b,
shows that TFs in PPGL tumors exert their activities on
two distinctly different and highly co-regulated subnet-
works (labelled #1 and #2, respectively), with an identifi-
able, but somewhat less co-regulated third subnetwork
(labelled #3). Intriguingly, SDH-loss and VHL-loss MRs
exert their activities almost exclusively on subnetworks
#1 and #3, while sparing subnetwork #2. This asymmetry
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in the transcriptional subnetworks impacted by PPGL
MRs suggested to us the possibility that transcriptional
subnetwork #2 is essential for cell survival.
This hypothesis was indeed borne out by more de-

tailed functional analysis of putative transcription-
regulatory interactions. We considered the subset of
genes inferred to be jointly controlled by at least two
transcription factors within a given subnetwork and

assessed enrichment for specific gene ontologies. Strik-
ingly, this revealed that each of the three identified sub-
networks is highly enriched for specific transcriptional
programs (Additional file 14: Figure S3G-I). Subnetwork
#1 was found to be highly enriched for genes involved in
plasma membrane organization, extracellular matrix
(ECM) organization, and regulation of cell migration
(Additional file 14: Figure S3G). Subnetwork #3 was

A B

C

D

Fig. 2 MRs of PPGL transcriptomic signatures. a x-y plots showing statistical significance (y-axis) and potential fraction of the input gene
expression signature (x-axis) explained by the inferred MRs for each PPGL molecular subtype. b Hierarchical clustering analysis of all TFs sorted
according to PPGL tumor regulon overlap. Highly co-regulated transcriptional subnetworks are indicated with numeric values. Annotations in red
indicate the identities of putative MRs inferred for each PPGL molecular subtype. c Running cumulative MR-attributable fraction of SDH-loss, VHL-
loss, and MAML3 translocation gene expression signatures. MRs are ranked in increasing order of MRA p-value. d Analysis of MR overlap between
SDH-loss, VHL-loss, and MAML3 translocation PPGL subtypes for MRA performed on ARACNE inferred transcriptional networks trimmed with DPI
tolerance of 0 and 0.05, respectively
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found to be highly enriched for genes expressed in the
endoplasmic reticulum and various metabolic processes
(Additional file 14: Figure S3I). In contrast, subnetwork
#2 was found to be highly enriched for nuclear proteins,
splicing factors, and proteins involved in ubiquitin-
dependent catabolic processes (Additional file 14: Figure
S3H). These data support the notion that subnetwork #2
is likely important for cell survival, and additionally, that
modulation of subnetwork #1 may be a mechanism by
which tumor cells acquire an invasive phenotype. Rigor-
ous testing of these specific hypotheses will be a topic of
interest for future follow-up.
We then assessed the degree to which the cumulative

effects of the top 20 MRs in each tumor subtype can ac-
count for the observed PPGL molecular subtype gene
expression signatures. This analysis, presented in Fig. 2c,
shows that for each tumor subtype, the top 20 MRs are
predicted to account for > 60% of the input tumor
subtype-specific gene expression signatures. This sug-
gests that the majority of transcriptomic perturbation
for these tumor subtypes may be explicable in terms of
the cumulative effects of multiple dysregulated MRs.
Next, we assessed the degree to which the MRs nomi-

nated for SDH-loss, VHL-loss and MAML3
translocation-positive PPGL tumors are similar. We
therefore assessed the overlap between master regulator
lists for these tumor subtypes. This analysis revealed sig-
nificant overlap between SDH-loss and VHL-loss tumors
(Fig. 2d), with a degree of overlap is larger than would
be expected by chance considering the size of the spe-
cific nominated MR lists (empiric p-value: 9E-8; Add-
itional file 15: Figure S4). This suggests an aspect of
similarity in transcription factor dysregulation in SDH-
loss and VHL-loss PPGL tumors.

Validation of nominated PPGL subtype-specific MRs
Beyond nomination of MRs that collectively explain pat-
terns of dysregulated gene expression in specific PPGL
molecular subtypes, we sought to validate the nominated
MRs using data from an independent large cohort of
PPGL specimens (N = 188). This dataset has been de-
scribed previously [43, 44]. Using known information re-
garding SDHx and VHL mutation status of these tumor
specimens, we calculated the average log2(fold-change)
in gene expression for tumors of each of these molecular
subtypes relative to other PPGL tumors. Then, using
known regulon structures of the PPGL inferred tran-
scriptional network, we calculated the average log2(fold-
change) for all genes under regulatory control of each of
the SDH-loss and VHL-loss MRs nominated from MRA
performed on the ARACNE network trimmed with DPI
tolerance of 0.05. We performed this same calculation
using the input gene expression signature used for MR
discovery, and then examined whether there was

correlation between the regulon log2(fold-change) values
for discovery and validation data sets. Strikingly, we ob-
serve strong agreement between the two analyses (Fig. 3a,
b). The strength of statistical correlation is especially re-
markable considering the fact that the discovery signa-
ture involves a tumor-normal comparison while the
discovery signature involves a tumor-tumor comparison.
The validation analysis therefore supports the claim that
the inferred dysregulated MR activities are biologically-
reproducible phenomena that are consistent across inde-
pendent patient cohorts.
We pursued further analysis of the discovery and val-

idation cohort data, asking whether these altered TF ac-
tivities are sufficient to drive hierarchical clustering of
PPGL specimens that accurately separates specimens ac-
cording to molecular subtype. For this analysis, we lever-
aged the VIPER algorithm, which is capable of robustly
converting individual transcriptomic datasets into TF ac-
tivity profiles [51]. When this algorithm is applied to dis-
covery cohort specimens including SDHB-null, SDHD-
null, and VHL-null PPGL tumors from various anatom-
ical locations, as well as normal adrenal medulla speci-
mens, the hierarchical clustering algorithm generally
separates normal adrenal samples, VHL-null pheochro-
mocytomas, and SDHD-null head and neck paraganglio-
mas away from the remaining SDHB-null and SDHD-
null PPGL tumors (Fig. 3c). This suggests that significant
differences in transcription factor activity profiles exist
between SDHD-null head and neck PPGL tumors and
SDH-null tumors arising from other anatomical loca-
tions, although SDH-loss tumors are generally more
self-similar than PPGL tumors arising from other gen-
etic defects (Fig. 3d). These patterns were further repro-
duced by t-SNE clustering (Additional file 16: Figure S5),
similarly underscoring the unique TF activity profile of
head and neck PPGLs compared to tumors arising from
SDH subunit defects in abdomen or thorax, but with lit-
tle other difference that can be attributed to specific
SDH subunit defects.
We therefore pursued a more detailed analysis of dif-

ferences in TF activity profiles that exist between
SDHD-null head and neck PPGL tumors and SDHD-
null tumors from abdomen and thorax. This analysis,
presented in Additional file 17: Figure S6, reveals several
specific differences in transcription factor activity that
correlate with anatomical location. Among the most im-
pressive differences in TF activity, head and neck tumors
display lower activities of FEV, TFAP2B and GATA2 and
higher activities of TFEC, LEF1, and MAFB compared to
SDHD-null tumors of other anatomical locations. The
basis for this is unclear, but this finding clearly suggests
that tumor anatomic location and underlying genotype
synergize to drive observed molecular signatures at the
transcriptional level. Whether any of these differences is
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responsible for the generally more benign character of
head and neck neoplasms remains to be seen.
We then specifically considered EPAS1, a transcription

factor of much interest to the field, testing the hypoth-
esis that tumors originating from different SDH subunit
mutations have variable EPAS1 activity. This analysis,
presented in Fig. 3e, revealed similarly elevated levels of
EPAS1 activity in SDHB-null, SDHC-null, and SDHD-
null PPGL tumors compared to those attributable to
RET of NF1 gain-of-function mutations. Additionally,
EPAS1 activities for all SDHx-loss tumors were roughly
similar to those observed in VHL-loss tumors. These
data suggest that EPAS1 activity is similarly elevated for
all PPGL tumors exhibiting VHL loss or SDH complex
bi-allelic loss of function, regardless of the particular
SDH subunit involved.
We next tested the hypothesis that EPAS1 activity is

significantly different in SDHB-null metastatic tumors
vs. those annotated as “non-malignant”. This analysis,
presented in Fig. 3f, did not detect any significant differ-
ences in EPAS1 activity between metastatic and “non-
malignant” tumors. Indeed, an expanded analysis consid-
ering the activities of all transcription factors inferred via
the VIPER algorithm did not identify a single TF that is
differentially active between metastatic SDHB-null tu-
mors and those annotated as “non-malignant”. This sug-
gests either a lack of statistical power in the analysis, or
else the lack of a true biological distinction between the
involved samples. Also, as a subset of the specific ana-
lysis of SDH MR activities in SDHD-null tumors of the
head and neck vs. those arising from other anatomical
locations, we did not note any statistical difference in
EPAS1 activity between tumors arising from these loca-
tions (Fig. 3g). Collectively, these data suggest that dif-
ferences in EPAS1 activity are not appreciably different
between SDH-null tumors of variable malignant charac-
ter or those arising from disparate anatomic locations.

Analysis of conserved SDH-loss MRs
Beyond analysis of SDH-loss MRs in human PPGL tu-
mors, we next asked whether there is any evidence for
conservation of SDH-loss MR responses across species
and cell types. To answer this question, we generated a

transcriptomic signature of SDHC-loss immortalized
mouse embryonic fibroblasts (iMEFs). This model of
SDHC-loss was used rather than the more common
SDHB and SDHD subunit defects seen in human PPGL
tumors specifically because the SDHC gene trapped al-
lele used to derive the line was readily available from the
Wellcome Trust Sanger Institute Gene Trap resource.
Examination of transcriptional patterns in this model re-
vealed general transcriptional up-regulation (Fig. 4a) that
is different from that observed in human tumors. The
reason for this is unclear. We next performed MR ana-
lysis on a MEF-specific inferred transcriptional network,
as described in Methods. In total, this approach nomi-
nated 73 MR TFs whose target genes are perturbed upon
SDHC-loss (Additional file 11: Dataset S11). Notably,
EPAS1 was nominated as the top-ranking SDHC-loss
MR gene, in contrast to the SDH-loss human PPGL
tumor analysis (Fig. 4b). The reason for this difference is
unclear, but it seems likely that cultured cell lines pro-
vide homogeneous populations, whereas tumors have
significant cellular heterogeneity. In any case, the obser-
vation that the top SDHC-loss MEF MR is EPAS1
(HIF2α) lends considerable support to the pseudohy-
poxia hypothesis of succinate-mediated poisoning of
prolyl hydroxylases catalysing HIF factor hydroxylation.
This being the case, we emphasize that EPAS1 dysregu-
lation is still inferred to account for only ~ 5% of dysreg-
ulated genes in SDHC-loss MEFs, indicating that
alternative explanations must be sought to account for
the majority of the observed dysregulated gene expres-
sion signature. These explanations likely include dysreg-
ulation of other TFs, as observed in our analysis.
We hypothesized that although human PPGL tumors

and mouse SDH-loss iMEFs are obviously very different,
fundamental similarities might point to drivers of PPGL
tumorigenesis. We therefore examined the overlap be-
tween the inferred SDHC-loss iMEF MRs and MRs in-
ferred via unbiased MR analyses in human SDH-loss
PPGL tumors. This analysis revealed five potentially
conserved MRs, a number that is higher than would be
predicted by random chance, suggesting that perturb-
ation of these MRs represents a conserved biological re-
sponse to SDH loss (Fig. 4c). We then assessed whether

(See figure on previous page.)
Fig. 3 Validation analysis of inferred PPGL subtype-specific MRs. a Validation analysis for SDH-loss MRs. Mean inferred regulon log2(fold-change)
for discovery SDH-loss transcriptomic signature is shown on the x-axis. The same quantification performed for a SDH-loss transcriptomic signature
derived from an independent PPGL cohort is shown on the y-axis. Regulon size (number of genes) is indicated by the relative size of the data
points. b Validation analysis for VHL-loss MRs. Analysis method is the same as in panel (a). c Hierarchical clustering of discovery cohort PPGL
specimen MR transcription factor activity profiles inferred by the VIPER algorithm. Color bars indicate specimen characteristics and MR type, as
shown. d Hierarchical clustering of validation cohort specimen MR transcription factor activity profiles. Color bars indicate specimen
characteristics, as shown. e EPAS1 activity for RET, NF1, SDHB, SDHC, SDHD, and VHL specimens in the validation cohort. f EPAS1 activity for
discovery cohort normal adrenal medulla specimens and SDHB-null PPGL tumors annotated as “metastatic” or “non-malignant”. g EPAS1 activity
of discovery cohort normal adrenal medulla specimens and SDHD-null PPGL tumors of the head and neck and those arising from abdomen
and thorax
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the expression changes for the inferred regulons of each
of these MRs in SDH-loss human PPGL tumors and in
SDHC-loss MEFs display similar patterns of regulatory
perturbation. This analysis, presented in Fig. 4d, reveals
that 4 of the 5 conserved SDH-loss MRs also show con-
served patterns of regulon gene expression perturbation.
These 4 MRs (ZNF423/ZFP423, SOX9, ETV5, and
SOX11) thus represent high-confidence conserved SDH-
loss MRs. Since SOX11 and ZFP423 exhibit the most
dramatic patterns of altered regulation, these were
chosen for follow-up analysis.
We examined the patterns of differential gene regula-

tion for the inferred regulons of ZFP423 and SOX11,
assessing the degree to which expression of these gene
subsets is sufficient to drive unbiased hierarchical clus-
tering of iMEF experimental (SDHC-loss) and hemizy-
gous control specimens (Fig. 4e, f ). The results of these
analyses show that the regulon for each of these MRs is
indeed sufficient to segregate experimental and control
cell lines, suggesting that the regulatory activities of
these factors are indeed characteristically perturbed in
SDHC-loss cell lines. Interestingly, despite down-
regulation being the predominant pattern of gene dys-
regulation for the ZFP423 regulon in SDHC-loss cells, a
subset of genes displays consistent up-regulation relative
to the control cell lines. This suggested to us the possi-
bility that ZFP423 may not be acting simply as a tran-
scriptional co-activator.
We therefore assessed patterns of gene expression

regulatory synergy between ZFP423 and other known
TFs to determine whether co-regulation may modulate
the transcriptional effects of ZFP423. This analysis in-
volved assessing in a pairwise fashion whether the por-
tion of the ZFP423 regulon overlapping with another TF
is differentially-expressed relative to the full ZFP423 reg-
ulon, and to the full regulon of the other TF. This ana-
lysis, presented in Fig. 4g, revealed three distinct modes
of transcriptional modulation by ZFP423, suggesting
complicated TF function. For a subset of TFs (HOXA13,
SOX18, NKX3–2, HOXC6, EVX2, POU1F1, HOXC8,

HOXB7, HOXC4, EBF1, HOXC5, and HOXC9), ZFP423
displays synergistic transcriptional repression. Encour-
agingly, EBF1 has previously been described as a
ZNF423 interaction partner, with synergistic repressive
effect, suggesting that the other synergistic repressive
partners inferred by this method may also be genuine
[52]. A second subset of synergistic partners (FOS,
HMX2, HOXA11, ARNTL, RXRG, ZIC2, POU3F2,
TAL1, EHF, POU3F1, KLF15, NR1H3, NFE2L3, AR, and
BCL6B) was inferred for which ZFP423 binding attenu-
ates the general transcription-activating activity of these
TFs. A third subset of synergistic partners (ZFP12B,
ARID5B, MXD1, BCL6, SPDEF, VAX1, TFDP1, and
ZFP410) was inferred with synergistic activation of gene
expression in the co-regulated gene subset. These syner-
gistic activating interactions likely account for the small
subset of genes in the ZFP423 regulon that display up-
regulation upon SDHC-loss. The complex pattern of
gene up- and down-regulation upon SDHC-loss reflects
the known complex role of ZFP423 in gene regulation.
Similar analysis of synergistic interactions for SOX11

was simpler, with generally only synergistic
transcription-activating interactions detected. Putative
synergistic activating partners include ALX3, DBP, FGF9,
DBX2, EPAS1, BRCA1, and FLI1 (Fig. 4h). Immuno-
staining for SOX11 levels in SDHC-loss and control
MEFs revealed an increased SOX11 signal in the SDHC-
loss context (Fig. 5a, b). Taken together with the general
pattern of regulon up-regulation upon SDHC-loss and
the sparse synergistic up-regulatory interactions with
other factors, this is consistent with SOX11 having a role
as a simple transcriptional activator. The reasons why
the cellular concentration of SOX11 is increased in
SDHC-loss MEFs remain unclear, however.
Interestingly, immunostaining for ZFP423 in SDHC-

loss and control MEFs did not reveal dramatic differ-
ences in cellular abundance of this MR, suggesting that
bulk increase or decrease in cellular ZFP423 protein is
not a feature of SDHC-loss (Fig. 6a, b). We did, however,
detect generally increased nuclear localization of ZFP423

(See figure on previous page.)
Fig. 4 Analysis of conserved SDH-loss MRs. a Volcano plot showing SDHC-loss MEF transcriptomic signature. b SDHC-loss MEF MRs organized
according to MR rank. c Venn diagram showing overlap of SDHC-loss MEF MRs and SDH-loss MRs inferred in PPGL human tumors. Green circle
shows SDH-loss MRs inferred in the discovery cohort analysis. Red circle shows MRs inferred leveraging the validation cohort SDH-loss gene
expression signature. Blue circle shows SDHC-loss iMEF MRs. Empiric p-value estimated by analysis of degree of overlap for iteratively-generated
randomly-selected sets of TFs is shown. Putative conserved SDH-loss MRs are indicated. d Analysis of regulon log2(fold-change) for putative
conserved SDH-loss MRs. Regulon expression change for human SDH-loss PPGL tumors is shown on the x-axis. Regulon expression change for
SDHC-loss MEFs is shown on the y-axis. Average size of mouse and human regulons are indicated by the size of data points. e Hierarchical
clustering of MEF samples based upon ZFP423 regulon gene expression patterns (Exp: SDHC knockout iMEF line; Ctl: hemizygous control iMEF
line). f Hierarchical clustering of MEF samples based upon SOX11 regulon gene expression patterns (Exp: SDHC knockout iMEF line; Ctl:
hemizygous control iMEF line). g Analysis of synergy between ZFP423 and other mouse TFs. Regulon expression for ZFP423 is indicated as the
leftmost column. Regulon expression for the various other TFs are indicated as the rightmost column. Regulon expression for the subset of co-
regulated genes are shown in the middle column. h Analysis of synergy between SOX11 and other mouse TFs. Method of representation is the
same as in panel (g)
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in SDHC-loss context (Fig. 6c). Understanding the basis
for this altered nuclear localization of ZFP423 upon
SDHC-loss will require future study.
ZNF423 has previously been described as a transcrip-

tional cofactor of RARα/RXRα that is critically required
for retinoic acid-induced differentiation of neuroblast-
oma [53]. An aspect of this prior work was the demon-
stration that ZNF423 physically associates with RARα/
RXRα in the region of the RARβ promoter, potentially
driving transcriptional activation through the RARα/
RXRα complex. We therefore examined our RNA-seq
gene expression data from SDHC-loss and control MEF
lines to determine whether there is any evidence for dif-
ferential expression among any of the known retinoic
acid receptors (RAR) or retinoid X receptors (RXR). In-
triguingly, we find that Rarβ gene expression is signifi-
cantly up-regulated in SDHC-loss cells (Fig. 6d). If
ZFP423 is a transcriptional cofactor required for activa-
tion of Rarβ gene expression, increased nuclear
localization of ZFP423 upon SDHC-loss and subsequent
increased occupancy of the Rarβ gene locus would po-
tentially account for the observed transcriptional activa-
tion of Rarβ expression.

Retinoic acid resistance of SDH-loss MEFs
The observation that SDHC-loss cells display increased
nuclear localization of ZFP423 and concomitant up-
regulation of Rarβ gene expression suggested to us the
possibility of differential cellular response to retinoic
acid. We tested this as described in Methods. After 6 d
of exposure to retinoic acid over a range of concentra-
tions, we assayed cell viability as a function of genotype.
Strikingly, we observe robust induction of cell death in

both control cell lines at relatively low concentrations of
retinoic acid, but little effect on viability for SDHC-loss
lines (Fig. 6e). This suggests that SDHC-loss status funda-
mentally modulates the cellular response to retinoic acid,
one of the most powerful known endogenous morpho-
gens. How perturbation of ZFP423 and RARβ results in
decreased retinoic acid-induced cell death is unclear. Pre-
vious work has suggested that BCL2 overexpression is pre-
dictive of a differentiation response rather over induction
of apoptosis in cultured tumor cell lines [54]. Intriguingly,
we see that BCL2 expression is generally up-regulated in
SDHC-loss MEF lines relative to controls, although the
comparison is not statistically significant (Fig. 6f). Our re-
sults suggest that SDHC loss may fundamentally modulate
cells away from a death response to retinoic acid.

Retinoic acid resistance of SH-SY5Y neuroblastoma cells
Since retinoic acid responses differ between cell types,
with the apoptotic responses on MEFs not necessarily
predicting the retinoic acid responses of neuronal cells,
we therefore decided to test the effects of SDH complex
inhibition on the retinoic acid-induced differentiation of
SH-SY5Y neuroblastoma cells. The differentiation re-
sponses of SH-SY5Y to retinoic acid have been previ-
ously well-characterized, with resultant phenotypic
changes in neurite outgrowth that are readily apparent
through morphological image analysis that has been
broadly used to probe the pathways involved in neuronal
differentiation [55–58]. We therefore studied the effects
of SDH complex inhibitor malonate (formulated as cell-
permeable diethyl ester) upon retinoic acid-induced dif-
ferentiation in the SH-SY5Y neuroblastoma cell line,
assessing for changes in neurite outgrowth as a function

A B

Fig. 5 SOX11 immunostaining in SDHC-loss and control MEFs. a Representative immunostain images of stable SDHC-loss (Exp) and hemizygous
control (Ctl) MEF lines. b Quantification of mean cellular SOX11 immunostain intensity using CellProfiler automated image analysis. Comparisons
indicated by asterisks are statistically significant by a two-sided heteroscedastic t-test (p < 0.05)
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of exposure to diethyl malonate (DEM) and/or retinoic
acid. Intriguingly, we observe that the cellular differenti-
ation response to 12 μM all-trans retinoic acid for 72 h is
blunted when cells are pre- and co-treated with 5 mM
diethyl malonate (DEM), evident through relatively at-
tenuated neurite outgrowth (Fig. 7). This result aligns
with the date from the MEF studies demonstrating that
SDH loss attenuates the normal cellular response to ret-
inoic acid, suggesting that attenuated retinoic acid re-
sponse may be a generalized property of cells lacking

SDH complex activity. How these phenomena relate to
human PPGL tumors remains to be seen.

Discussion
Here we apply well-validated TNI and MRA methods to
infer the main transcriptional drivers responsible for the
observed patterns of differential gene expression in SDH-
loss, VHL-loss, and MAML3-translocation PPGL subtypes.
Using calculated gene expression signatures, we show that
application of TNI/MRA nominates sets of MRs that
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Fig. 6 Analysis of ZFP423 and retinoic acid effects in SDHC-loss MEFs. a Representative ZFP423 immunostain images of stable SDHC-loss (Exp)
and hemizygous control (Ctl) MEF lines. b Analysis of ZFP423 mean cellular immunostain intensity using CellProfiler automated image analysis
approach. c Analysis of ZFP423 subcellular localization using CellProfiler automated image analysis. d Relative RNA-seq gene expression
quantification for known retinoic acid receptors and transcriptional co-activators. Comparisons indicated by asterisks are statistically significant by
a two-sided heteroscedastic t-test (p < 0.05). e Alamar blue cell viability analysis following 6-d exposure of MEF cells to retinoic acid. f Relative
RNA-seq gene expression quantification for Bcl2
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collectively explain the majority of the gene expression per-
turbation observed in these PPGL tumor subtypes. This, in
turn, suggests that perturbation of TF activities plays a lar-
ger role in modulating oncogenic gene expression in these
tumors than previously appreciated.
Considering the sets of nominated MRs, we find a

high degree of overlap between SDH-loss and VHL-loss
PPGL subtypes. This suggests a common mechanism of
TF perturbation that is similar in both molecular PPGL
subtypes. Since the molecular defect in VHL-loss tumors
is mutation of the VHL E3 ubiquitin ligase downstream
of the prolylhydroxylases believed to be poisoned by suc-
cinate accumulation, one potential hypothesis is that
these conserved MRs are previously unappreciated dir-
ect or indirect clients of both prolylhydroxylases and
VHL E3 ubiquitin ligase. In principle, this hypothesis
could be tested. Other potential explanations for this
overlap in MRs may also exist.
A virtue of the analysis reported here is that it has

high clinical potential because it is derived from human
PPGL gene expression profiles. For example, the finding
that the IRX4 gene has inferred regulatory control of
over 20% of perturbed genes inferred in the MAML3
translocation PPGL subtype makes follow-up of this ob-
servation an important priority. Indeed, for all inferred
MRs for each of the three PPGL signatures, eventual ex-
perimental pursuit of these relationships will be needed
to judge the potential clinical utility of these findings.

However, significant challenges currently exist for ex-
perimental validation of the observations reported here.
No relevant PPGL mouse models or PPGL tumor cell
lines are available, making confirmatory live cell experi-
ments impossible. When such tools become available,
perturbation experiments will be required to ask
whether the inferred MRs are targets for potential thera-
peutic intervention.
Validation of putative SDH-loss and VHL-loss MRs

was possible due to the availability of public transcrip-
tomic datasets that could be leveraged to calculate inde-
pendent gene expression signatures for these molecular
subtypes. This validation set was then leveraged to
evaluate the consistency of putative MR effects. Unfortu-
nately, no such validation dataset is currently available
for MAML3 translocation-positive PPGL tumors. The
MRs inferred in that portion of the analysis therefore re-
main putative. For SDH-loss and VHL-loss analyses, re-
markable consistency was observed in regulon
perturbation between discovery and validation datasets.
This indicates that the altered MR activities detected in
the discovery analysis are biologically reproducible
phenomena.
Classical role of pseudohypoxic activation of gene ex-

pression via HIF factors in SDH-loss and VHL-loss
PPGL tumors has not previously been studied via un-
biased methods such as TNI/MRA. Our MR discovery
analysis of human PPGL tumors inferred EPAS1

A B

Fig. 7 Analysis of SDH inhibition effects upon retinoic acid-induced differentiation of SH-SY5Y neuroblastoma cells. a Representative confocal
microscopy images of SH-SY5Y cells treated with SDH complex inhibitor diethyl malonate (DEM, 5 mM) and/or all-trans retinoic acid (ATRA,
12 μM), visualized with actin and DAPI staining. b Quantification of neurite lengths for individual cells obtained via automated image analysis in
CellProfiler (N > 40 cells per condition,* Wilcox rank sum p-value <1E-4)
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perturbation in both SDH-loss and VHL-loss tumors,
but the overall contribution to tumorigenic transcrip-
tional patterns in both tumor types is underwhelming.
The reason for this is unclear. Analysis of SDHC-loss
MEF transcriptomic signature via TNI/MRA did, how-
ever, infer EPAS1 (HIF2α) as a MR, lending strong sup-
port to the pseudohypoxia hypothesis of prolyl
hydroxylase dioxygenase poisoning by accumulated suc-
cinate. Nonetheless, a key conclusion from our analysis
is that perhaps only 5% of differentially-expressed genes
are controlled by HIF2α in these pseudohypoxic tumors,
suggesting that other mechanisms must be invoked to
explain the remaining 95% of observed transcriptional
dysregulation. Categories of other potential mechanisms
include dysregulation of other TFs, classical epigenomic
derangement via dioxygenase poisoning of TET DNA
demethylases and Jumonji domain-containing histone
demethylases, as well as dysregulation of cellular acyl-
ation patterns, as recently described [59].
Our analysis of MRs consistently perturbed in both

human SDH-loss PPGL tumors and in SDHC-loss MEFs
suggests that at least a portion of the MR response to
SDH loss is conserved among vertebrates. Functional
analysis of ZFP423, the mouse ortholog of human
ZNF423, suggested that SDHC-loss MEFs might have a
differential cellular response to retinoic acid. Our experi-
ments show that this is indeed the case. We observe that
control immortalized MEFs respond to retinoic acid by
cell death, most likely through induction of apoptosis.
Remarkably, this induced cell death upon retinoic acid
exposure is not observed in SDHC-loss cells. We add-
itionally show that malonate-mediated inhibition of SDH
activity in the SH-SY5Y neuroblastoma cell line inhibits
the normal process of retinoic acid-induced neuronal
differentiation. These results suggest that SDH loss or
inhibition may fundamentally modulate the cellular re-
sponse to retinoic acid, one of the most potent known
endogenous morphogens. The provocative extension of
this observation is speculation that SDH-loss PPGL tu-
mors may originate in development through a failed
apoptotic response to retinoic acid concentration gradi-
ents. This concept of a putative developmental origin for
SDH-loss PPGL through failure to properly interpret
apoptotic cues has been previously raised in the context
of neuronal growth factor signalling [60]. Intriguingly,
this is not the first indication that retinoic acid responses
may be altered in SDH-loss paragangliomas. Previous re-
ports have suggested that expression of retinol binding
protein 1 (RBP1) is attenuated in SDH-null paraganglio-
mas relative to PPGL tumors of other genotypes [61].
We also observe that this is the case (Additional file 18:
Figure S7). Whether attenuated apoptotic response to
retinoic acid is a feature of SDH-loss PPGL tumors re-
mains to be confirmed.

Conclusions
We present here unbiased analyses nominating specific
MR TFs that collectively explain the observed patterns
of transcriptomic perturbation in SDH-loss, VHL-loss,
and MAML3 translocation-positive PPGL tumors. Our
analyses generally confirm the accepted mechanism of
pseudohypoxic activation of EPAS1/HIF2α in SDH-loss
and VHL-loss contexts, but suggest that this effect ac-
counts for only ~ 5% of differential gene expression,
leaving the vast majority of tumorigenic transcription
aberrations to be explained. Many of the other nomi-
nated MRs currently lack clear mechanistic connections
to their primary gene defects, but show characteristic
and consistent patterns of perturbation across tumor
specimens. Future investigation may help to elucidate
the relevant mechanistic details.
We also present analysis of MRs inferred in an SDHC-

loss MEF tissue culture model that suggests that a sub-
set of the SDH-loss MR response is conserved between
vertebrate species and across cell types. Subsequent ana-
lysis of one of the conserved MRs, ZFP423, suggests that
altered response to retinoic acid may be a distinguishing
feature of SDHC-loss MEFs, a hypothesis that we tested
and validated experimentally. We report that SDHC-loss
MEFs display an attenuated cell death response to retin-
oic acid and that SDH-inhibited SH-SY5Y neuroblast-
oma cells display attenuated retinoic acid-induced
neuronal differentiation. This retinoic acid resistance
suggests a possible developmental path to SDH-loss
PPGL tumorigenesis.
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sion signature. (CSV 14 kb)

Additional file 2: Dataset S2. VHL-loss PPGL differential gene expres-
sion signature. (CSV 11 kb)

Additional file 3: Dataset S3. MAML3 translocation-positive PPGL dif-
ferential gene expression signature. (CSV 19 kb)

Additional file 4: Dataset S4. SDHB-loss PPGL master regulators (dpi =
0.00). (CSV 18 kb)

Additional file 5: Dataset S5. VHL-loss PPGL master regulators (dpi =
0.00). (CSV 18 kb)
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ter regulators (dpi = 0.00). (CSV 19 kb)

Additional file 7: Dataset S7. SDHB-loss PPGL master regulators (dpi =
0.05). (CSV 22 kb)
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ter regulators (dpi = 0.05). (CSV 21 kb)
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molecular subtypes. Statistical simulations assessing the probability of the
observed differential expression gene set overlaps. Gray histogram bars
show the distribution of overlaps for randomly-selected gene sets of the
same size as those analyzed. Green dots and lines show Poisson fit to the
simulated data and estimated p-value for the observed overlap relative to
the simulated overlap distribution. (PDF 156 kb)

Additional file 13: Figure S2. Statistical analysis of differential
expression gene set overlaps for MAML3 translocation-positive
PPGL tumors and MAML3 translocation-positive neuroblastoma
tumors. Statistical simulations assessing the probability of the
observed differential expression gene set overlaps. Gray histogram
bars show the distribution of overlaps for randomly-selected
gene sets of the same size as those analyzed. Green dots and lines
show Poisson fit to the simulated data and estimated p-value for
the observed overlap relative to the simulated overlap distribution.
(PDF 73 kb)

Additional file 14: Figure S3. PPGL transcriptional network validation
by analysis of known TF-binding DNA motifs in inferred MR regulons
and analysis of transcriptional subnetworks. A,C,E) Red traces show
distribution of nearest pattern match for known TF-binding DNA mo-
tifs in inferred TF regulon. Gray traces show average nearest pattern
match for scrambled version of the same motif. B,D,F) Statistical ana-
lysis of regulon motif pattern searching. Red dot indicates the frac-
tion of nearest pattern matches for the original motif localizing to
within 2.5 kbp of the TSS. Gray bars show the distribution of values
yielded from the same quantification performed on scrambled ver-
sions of the original motif. Empiric p-values were estimated from the
data in the random distribution and expected likelihood of the ob-
served motif fraction with 2.5 kbp of the TSS. G-I) Analysis of tran-
scriptional subnetwork-specific functional term enrichment among
inferred target genes. Shown are the top 10 gene ontologies and/or
KEGG pathways unique to each subnetwork. Subnetworks refer to
those specified in Fig. 2b. (PDF 470 kb)

Additional file 15: Figure S4. Statistical analysis of master
regulators inferred in SDH-loss and VHL-loss PPGL tumors.
Statistical simulations assessing the probability of the observed
differential expression gene set overlaps. Gray histogram bars
show the distribution of overlaps for randomly-selected gene sets
of the same size as those analyzed. Green dots and lines show
Poisson fit to the simulated data and estimated p-value for the
observed overlap relative to the simulated overlap distribution.
(PDF 85 kb)

Additional file 16: Figure S5. t-SNE clustering of PPGL tumors by in-
ferred transcription factor activity profile. A) t-SNE clustering of discovery
cohort PPGL tumors by transcription factor activity profile. Colors of the
data points correspond to annotations for tumor genotype, malignancy,
and location, as indicated. B) t-SNE clustering of COMETE validation co-
hort PPGL tumors by transcription factor activity profile. Colors of the
data points correspond to annotations for tumor genotype, as indicated.
C) Assessment of EPAS1, ZNF423, and SOX11 activities in validation co-
hort specimens. Clustering pattern corresponds to genotype annotations
given in panel B. (PDF 150 kb)

Additional file 17: Figure S6. Analysis of transcription factor activity
profiles of SDHD-null head and neck tumors. A) Analysis of differen-
tial SDH-loss PPGL master regulator activity in SDHD-null tumors of
the abdomen and thorax vs. head and neck tumors. X-axis indicates
log2(fold change) in inferred transcription factor activity between tu-
mors of the and thorax relative to head and neck tumors. Y-axis indi-
cates degree of statistical significance for the comparison. The subset
of data with adjusted p-value < 0.05 are plotted in green and include
a text label. B-E) Boxplots showing distribution of activity profiles for
selected differentially active SDH-loss MRs. (PDF 174 kb)

Additional file 18: Figure S7. Analysis of RBP1 expression in validation
cohort PPGL specimens. A-B) t-SNE clustering of COMETE validation co-
hort PPGL tumors by transcriptional profile. Colors in panel A indicate
relative degree of RBP1 expression (red = low, blue = high). Colors in
panel B correspond to annotations for tumor genotype, as indicated.
(PDF 197 kb)
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