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Abstract A multivariate study was performed aiming at

the optimization of a recombinant rhamnose inducible E. coli

induction system with alkaline phosphatase as target prod-

uct. The effects of typical factors with impact on post- as well

as pre-induction feeding rates were investigated with respect

to the space–time yield of the target product. The goal was

increased understanding as well as quantitative character-

ization of these factors with respect to their physiological

impact on the model system. The optical density (OD) at

which the culture was induced had a strong positive effect on

the space–time yield. Pre-induction growth rate (k) had a

second-order effect, while induction feed rate drop (J), a

factor defining the linear post-induction feed rate, was

interacting with (k). However, explanation of the observed

effects to acquire more understanding regarding their effect

on cell metabolism was not straight forward. Hence, the

original process parameters were transformed into physio-

logical more meaningful parameters and served as the basis

for a multivariate data analysis. The observed variance with

respect to observed volumetric activity was fully explained

by the specific substrate uptake rate (qs) and induction OD,

merging the process parameters pre-induction growth rate

(k) and feed rate drop (J) into the physiological parameter

specific substrate uptake rate (qs). After transformation of the

response volumetric activity (U/ml) into the biomass specific

activity (U/gbiomass), the observed variance was fully

explained solely by the specific substrate uptake rate (qs).

Due to physiological multivariate data analysis, the inter-

pretation of the results was facilitated and factors were

reduced. On the basis of the obtained results, it was con-

cluded that the physiological parameter qs rather than pro-

cess parameters (k, J, induction OD) should be used for

process optimization with respect to the feeding profile.
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List of symbols

t Time (h)

S Total amount of substrate in the cultivation broth

(C-mol)
_S Substrate feed rate (C-mol/h)

r Conversion rate (C-mol/h)

q Specific rate (g/g/h)

Y Yield (C-mol/C-mol)

F Flow/feed rate (g/h) for liquid

C Concentration (C-mol/l)

X Total amount of biomass in the cultivation broth

(C-mol)

N Total amount of ammonium in the cultivation broth

(mol)

O2 Total amount of oxygen in the cultivation broth

(mol)

Zi Elemental composition of component i in biomass

pi Elemental composition of component i in substrate
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V Volume of the cultivation broth (l)

M Molecular weight (g/c-mol)

qfeed Density of feed (g/l)

S0 Feed concentration (g/l)

OD Optical density 600 nm

J Drop factor in percent of feed rate at end of exp.

feed profile (%)

k Specific growth rate if used for feed rate

calculations (h-1)

l Measured specific growth rate (h-1)

Indices

in Input

out Output

conv. Conversion

acc. Accumulation

s Substrate

x Biomass

CO2 Carbon dioxide

O2 Oxygen

N Ammonium

b Base

O Oxygen

H Hydrogen

n Nitrogen

m Measured

c Estimated

i Item number i

j Item number j

t Time point t

0 Initial

Introduction

Quality by design (QbD approach)

Following the recent quality by design (QbD) initiatives,

pharmaceutical process development based on sound sci-

ence to increase process understanding emerged as a key

demand from the side of the regulatory bodies [1–3]. There

is a clear regulatory drive for more science and risk eval-

uation-based process development in place of empiric

approaches. Besides the possibility for more process flex-

ibility granted by the regulatory authorities, the enhanced

process knowledge gained through QbD can pave the way

for safer and more efficient processes, reducing product

recalls, compliance procedures and post-approval modifi-

cations of change. The toolset for gaining process under-

standing includes design of experiments (DOE),

multivariate data analysis (MVDA), quality risk manage-

ment (QRM) and process analytical technology (PAT), as

proposed from the regulatory authorities and exemplified in

several excellent recent publications [4–9].

While the initiatives PAT and QbD are there for several

years now, few processes are being registered as QbD

processes. One of the problems might be that the idea is

still very new and involved parties are lacking experience

with QbD. This contribution aims at providing a generic

methodology on how to apply QbD in recombinant bio-

process development to gain and demonstrate process

understanding. We want to show feeding profile optimi-

zation for a recombinant process, describing the impact of

typical feeding strategy-related process parameters from a

cell’s perspective. Furthermore, we want to stress that a

process should be optimized for real quality attributes such

as enzyme activities or product purity rather than plain

concentrations. On the basis of this study, a generic sci-

ence-based QbD methodology for the development of a

feeding strategy for a process in red biotechnology is

suggested, involving the use of physiological scaling

parameters rather than empirically determined process

parameters for the benefit of a faster, more cost-efficient

process development according to QbD principles.

Quantitative data analysis for physiological state

identification

In complex systems such as bioprocesses, experimentation

provides the basis for process understanding. Following the

path to process understanding [10], information needs to be

extracted from the vast amount of measurable data and

checked for consistency in order to distinguish between

sensor, process and biological variability. The toolset for

this task includes, but is not limited to, quantitative, mul-

tivariate evaluation of process data, statistical experimental

design (DOE) and PAT. Information can refer to variables

describing the process such as specific rates and yields

[11]. Relevant process information is further analyzed to

acquire knowledge on the process [3].

In a bioprocess, the product quality attributes and the

process productivity are results of the trajectory of the

physiological state of the culture [12, 13], hence we are

looking for time-resolved variables describing that state.

One way to do this is quantification of stress-related signal

molecules such as ppGpp [14] and/or approaches such as

metabolomics [15, 16] or transcriptomics [17, 18]. These

methods can provide valuable insight into cell physiology,

however, they tend to be very time consuming and it is not

always possible to do this in industrial bioprocess devel-

opment. Similar information can be acquired by analysis of

primary metabolism, e.g. by quantification and comparison

of specific rates and yields [12, 19, 20] which is faster and

can be also done in real time using appropriate methods. To

extract scale-independent information from bioprocesses

and exclude effects related to the size of the cell population

and initial conditions, specific rates and yields rather than
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concentrations can be used as a valuable alternative for the

comparison of experiments [10]. Following the calculation

of rates and yields, the system of interest can be subjected

to elemental balancing (system consistency check). This

constitutes a valuable tool for the detection of gross errors

or wrong assumptions, e.g. a sensor miscalibration or the

formation of an unknown metabolite. In this contribution,

the described rate-based methodology for quantitative

bioprocesses analysis is applied on each run of a statistical

experimental design, extracting information that is used to

decipher the physiological state of the culture.

Optimization of feeding profiles in process

development

Currently, empiricism and tedious, time-consuming

experimentation efforts dominate the development and

optimization of multiple parameters describing feeding

profiles for (bio-) processes aiming at recombinant pro-

tein production. Next to the non-induced feed profile, an

induction-phase feeding strategy (=time trajectory for the

feed rate) must be developed that meets technical

requirements of the industrial reactor as well as physi-

ological requirements of the investigated host/vector/

product system. While the former task is simply depen-

dent on technical limits that need to be considered, the

latter is typically overcome with elaborate experimenta-

tion in small-scale bioreactors, desirably by DoE

approaches. Typically, the goal of optimization of bio-

processes is maximum space–time yield, which is

defined as the target product in relation to space and

time (in this contribution: active enzyme per culture

broth volume (U/ml) in a defined time window, also see

Fig. 2). The optimum feeding strategy with regard to

optimum space–time product yield is connected to mul-

tiple physiological factors. It is typically promoter and/or

product related [21], but also related to the primary

metabolism including effects such as carbon depletion

[22] as well as metabolic load and byproduct formation

[23, 24]. Hence, finding the best feeding strategy

requires optimization between the poles of production

bioreactor capabilities and physiological requirements of

the production system. The biomass or the amount of

catalyst is an important factor when setting up a feeding

strategy, since the target for optimization of the feeding

strategy should be product related to biomass (catalyst),

which is also a real quality attribute rather than protein

concentrations and was shown by many authors [25–27].

It is known that there is a rapid break down of cell

division in induced E. coli cultures [12, 28, 29], hence

the biomass present at the beginning of the induction

(induction OD) is an interesting tuning factor, which is

also easily accessible. Pre-induction, the feed profile is

typically further defined by the specific growth rate.

While some authors showed a clear impact on the

product yield and specific productivity [30], other

authors have not found such an effect [31, 32]. Another

important tuning factor for feed profile optimization is

the post-induction feeding rate. The C-flux into the cell

typically has significant impact on the cell physiology

and the product yield [25, 29, 33]. Summing up, a feed

profile for a recombinant bioprocess can be described by

induction OD, pre-induction growth rate and post-

induction feed rate. In this contribution, the impact of

such typical feed strategies-related process parameters on

the specific and volumetric activity of a recombinant

model system is investigated in lab-scale by means of a

multivariate study. Consecutively, the physiological

impact of the investigated process parameters on the

biological system is discussed using specific rates and

yields in combination with multivariate data analysis.

Goals

The goal of this contribution is the quantitative optimiza-

tion of an expression system (lab-scale bioreactor). We

want to increase process understanding and explore of

interactions of key process variables using multivariate

data analysis. Finally the relevancy of conventional feeding

profile factors is discussed regarding optimization. On the

basis of the obtained results, we suggest a methodology to

replace conventional parameters related to the feed profile

with physiologically more meaningful parameters.

Materials and methods

Expression system

Host

A modified K12 E. coli strain (kindly provided by Lonza

Ltd., Visp, Switzerland) was used as a model system for the

project. The strain has a Rhamnose-inducible expression

system (rhaBAD promoter). The recombinant protein

product was alkaline phosphatase. This is the same as

native E. coli alkaline phosphatase, hence induced pro-

ductivity has to be differentiated from native activity. The

strain is unable to utilize Rhamnose as a C-source, there-

fore one time addition of low amounts of inducer was

sufficient.

Media

A stoichiometrically defined media from the literature [26]

was used in this contribution.
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Bioreactor setup and on-line analytics

Bioreactor

Two stainless steel bioreactors Techfors-S with working

volumes of 10 and 20 l from Infors (Bottmingen, Swit-

zerland) were used. The system comes with a controller

unit, which was used to adjust the process parameters: pH,

temperature, aeration, reactor pressure and stirrer speed.

Dissolved oxygen (DO2) was controlled using a step con-

trolled with reactor pressure, stirrer speed and air flow as

manipulated variables. The pH was controlled using a

Techfors-S integrated digital peristaltic pump and NH4OH

as a base. Air was filtered by a membrane-type filter and

dispensed by a ring sparger. The culture vessel was ster-

ilized at 121 �C for 20 min by in situ steam sterilization

prior to inoculation.

Off-gas analysis

CO2 and O2 in the off-gas were quantified by a gas analyzer

(Servomex, UK; M. Müller AG, Switzerland), using

infrared and paramagnetic principle, respectively. Air flow

was quantified by a mass flow controller (Vögtlin, Aesch,

Switzerland).

Process management

For recording of process data, the process information

management system Lucullus from Biospectra (Schlieren,

Switzerland) was used. This system was also used for

closed loop control (feed bottle on balance) of the different

feed profiles in the project.

Culture mode

A shake flask preculture (100 ml for inoculation of 6 l

batch medium, in 1 l shaking flask with baffles) was

inoculated from frozen stocks. After 8 h at 35 �C, 180 rpm

in the shaker, the preculture was used to inoculate the

bioreactor. After depletion of glycerol in the batch mode,

which was detected by a drastic drop in the CO2 off-gas

signal and an increase in dissolved oxygen (DO2), an

exponential fed-batch with specific growth rates from 0.1

to 0.2 (h-1) was initiated to increase biomass concentration

to OD 50 or up to 100. This was followed by sterile

addition (membrane filtration 0.2 lm, directly into the

reactor using a syringe filter) of low amounts of inducer

(Rhamnose). Afterwards, a linear fed-batch phase with

varying drop factors (J) was initiated, specified in relation

to the feed rate at the end of the exponential growth phase.

Such linear feed profiles are commonly used in industrial

fed-batch processes to deal with limits for mass transfer of

the bioreactor system. Oxygen demand is directly con-

nected to the feed rate and the feed profile is often designed

in a way to reach near the limit for oxygen mass transfer at

the end of the exponential growth phase.

Feed profiles and inoculation OD were varied according

to the experimental plan (see ‘‘Design of experiments’’).

An example for one DoE experiment, and how the DoE

factors (OD, k, J) impact on the feed fed profile, is given in

Fig. 1. The batch was followed by an exponential fed-batch

and a linear induction phase. Equations 1 and 2 were used

to calculate the feed profile for the exponential fed-batch.

Symbols for these formulas are explained in Table 1. The

linear feed in the induction phase was set equal to the last

feed rate of the exponential feed profile adjusted by a drop

factor according to the DoE experiment.

Feed rate in exponential fed-batch

FðtÞ ¼ F0 � ek�s ð1Þ

Initial feed rate in exponential fed-batch

F0 ¼
k � X0 �Ms � qfeed � V

S0 � Yx=s �MX

: ð2Þ

Cultivation parameters for both the 10 and 20 l

bioreactor were set as shown in Table 2.

Off-line analytics

Biomass

Biomass concentrations were quantified by gravimetric

measurement after drying for 72 h at 105 �C. Samples

were centrifuged (5,000 rpm, 10 min) and the pellet was

washed twice with distilled water to remove salts. The

initial biomass concentration, which was required for the

Fig. 1 Definition of factors with impact on the feed profile: OD,

k and J. Units were normalized between 0 and 1
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calculation of F0 (Eq. 2) and also for the induction OD

(Fig. 1), was measured by photometric principle (OD

600 nm). Samples were diluted to OD \ 0.8 and when

applicable converted to a biomass concentration by means

of a previously established linear regression.

Substrate and small metabolites

Substrate and small metabolite concentrations were quan-

tified by enzymatic photometric principle in a roboting

system (CuBiAn XC; Innovatis, Germany). As photometric

principle can interfere with colored samples (supernatant of

cultivation broth had a brownish color which increased in

intensity with induction time), results were cross checked

using an HPLC method (Supelcogel C-610, Sigma Aldrich,

flowrate: 0.5 ml/min, eluent: 0.1 % H3PO4/NaN3, 30 �C,

RI detector).

The feed density was determined gravimetrically. Feed

substrate concentration was determined by a density/feed

concentration correlation.

Homogenization procedure

Two milliliters of the cell suspension was washed twice

with 0.1 M Tris buffer pH 8.4 and frozen at -20 �C for

further cell rupture. Samples were re-suspended in 20 ml of

Tris buffer and pre-treated (2 min, setting 6) using a mixer

(UltraTurrax, IKA, Staufen, Germany) to break up any

aggregates [50 lm which is the limit for the subsequent

high pressure homogenization (Avestin EmulsiFlex,

Canada). Cells were finally disrupted at 700 bar for 11

passages, which means more passages with lower pressure

compared to the standard settings for E. coli recommended

by the supplier (about 3 passages at 1,100 bar). A DoE

study showed that this is beneficial for the alkaline phos-

phatase activity (data not shown), probably due to cavita-

tion stress at higher pressures.

AP activity assay

Alkaline phosphatase catalyzes the de-phosphorylation of

phosphate groups on a broad range of substrates at alkaline

pH (Eq. 3). Product activity was determined by monitoring

the absorption change (415 nm) of the substrate pNPP at

37 �C, pH 9.8. The Alkaline Phosphatase Yellow (pNPP)

Liquid Substrate System for ELISA (Sigma, P7998) was

implemented in an enzymatic analyzer robot (CuBiAn XC,

Roche Diagnostics, Rotkreuz, Switzerland). After dilution of

the sample, the reaction of the substrate was started by

automatic pipetting of 10 ll of the sample to 120 ll of the

substrate system. An absorption change rate was calculated

from the time window between 20 and 60 s after reaction

start. For direct calculation of activities from the reaction rate

with the CuBiAn XC analytical robot, a calibration ranging

from 0 to 1.6 U/ml with alkaline phosphatase from E. coli

(Sigma, P5931) as standard was established. Activities are

given with respect to this standard. The limit of quantitation

(blank ? 9 standard deviations) was determined to be 0.007

(U/ml) with a residual standard deviation of 0.0005 (U/ml).

Enzymatic reaction used in AP assay

p-Nitrophenyl-phosphate þ H2O! p-nitrophenolþ Pi:

ð3Þ

Gel electrophoresis

SDS-PAGE was used for the qualitative assessment of

intra- and extracellular protein according to methods in the

literature [34].

Quantitative evaluation of bioprocess data

Data pretreatment

Off-line data were smoothed using the cubic smoothing

spline function csaps included in the Matlab curve fitting

toolbox (Curve Fitting Toolbox Software Version 3.2,

Matlab R2011b). To get on- and off-line data on a uniform

time interval for further data evaluation, the interp1 Matlab

function was used.

Table 1 Constants for Eq. 2

Label Symbol Source

Specific growth rate before

induction

k DoE factor

Feed concentration S0 Gravimetric determination

Feed density qfeed Gravimetric determination

Initial biomass concentration X0 OD600

Molecular weight of substrate MS Literature

Molecular weight of biomass MX Literature or CHON

analyzer

Biomass yield Yx/s Literature or previous

experiments

Table 2 Cultivation parameters for 10 and 20 l reactor

Parameter Symbol

Temperature (�C) 35

Pressure (bar gauge) 0.3–1.6

Air flow rate (l/min) About 1 vvm

Oxygen flow rate (l/min) 0–2

Stirring speed (rpm) 900–1,495

DO2 [20 %

pH 7 ± 0.01
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Conversion rates

Assuming oxidative metabolism, the bioreaction can be

described by the following stoichiometric equation.

Although there are many different chemical reactions

running in parallel in living cells, the conversion rates in

Eq. 4 represent the overall summarized effect of all the

different reactions.

Stoichiometric equations for oxidative growth

rSCHpHOpOþrO2
O2þrNNHþ4 !rxCHzHOzONznþrCO2

CO2:

ð4Þ

General material balance

Conversion = accumulation� input + output ð5Þ

The conversion rates in Eq. 4 for the species substrate

(S), biomass (X), carbon dioxide (CO2), ammonia (N) as

well as oxygen (O2) can be derived from the general form

of the material balance equation 5.

In fed-batch mode, the conversion rates can be calcu-

lated as follows (Eqs. 6 and 7):

Conversion rate for substrate uptake

rS ¼
dðSÞ
dt
� _Sin þ _Sout ¼ �

F tð Þ
qfeed

S0 ð6Þ

In fed-batch mode, the outflow term _Sout is zero and the

accumulation term
dðSÞ
dt can be neglected, as long l\ lmax

hence the conversion rate rs is only dependent on the

inflow term _Sin which is calculated from the feed rate.

Conversion rate for biomass production

rx ¼
dðXÞ

dt
� _Xin þ _Xout ¼

dðXÞ
dt

ð7Þ

Since there are no in- and outflow terms, rx is equal to

the accumulation term
dðXÞ

dt (Eq. 7).

Specific rates and yields

Conversion rates are the basis for the computation of yields

(Eq. 8). Specific rates are calculated according to Eq. 9.

Calculation of yields

Yi
j
¼ ri

rj
ð8Þ

Calculation of specific rates

qi ¼
ri

X
ð9Þ

Design of experiments

A standard central composite face design (CCF) was

applied to model the dependency of enzymatic activity on

variables of the feed profile: induction optical density

(OD), pre-induction specific growth rate (k) and a factor

related to the induction feed rate, the drop factor (J), also

see Fig. 1. These factors were selected after a literature

survey on factors frequently used to define the feed profile

(see ‘‘Optimization of feeding profiles in process devel-

opment’’). The factor J was specified in percent of the

feed rate at the end of the exponential feed profile. The

experimental plan was implemented in a DoE Tool

(Modde, Umetrics, Sweden). The CCF design provides

information on the curvature of the relation between factors

and responses and allows for quadratic type models

requiring a low amount number of experimental runs. The

design resulted in 17 experiments including 3 center points;

ranges for the factors are shown in Table 3. The factors are

shown in coded format (3 level setting for the factors:

-1 = low, 0 = mid, 1 = high), which is frequently used

in design of experiments.

Results

Multilinear regression (MLR) model development:

impact of process parameters on the volumetric activity

A design of experiments (DOE) with feed profile param-

eters (OD, k, J) as factors (see Tables 3, 4) was carried out.

The intracellular volumetric activity (U/ml) was chosen as

a response, hence as CQA, since this factor represents

quality with respect to the space time yield of the active

Table 3 DoE experiment coded factors

Exp

no.

Exp

name

k exp.

feed

OD at

induction

Jump at

induction

1 Edge 1 -1 -1 -1

2 Edge 2 1 -1 -1

3 Edge 3 -1 1 -1

4 Edge 4 1 1 -1

5 Edge 5 -1 -1 1

6 Edge 6 1 -1 1

7 Edge 7 -1 1 1

8 Edge 8 1 1 1

9 Face 1 -1 0 0

10 Face 2 1 0 0

11 Face 3 0 -1 0

12 Face 4 0 1 0

13 Face 5 0 0 -1

14 Face 6 0 0 1

15 Center 1 0 0 0

16 Center 2 0 0 0

17 Center 3 0 0 0

-1, low; 0, mid; 1, high

1642 Bioprocess Biosyst Eng (2012) 35:1637–1649

123



product. Typically maximum activity was reached after

about 10 h of induction, afterwards the measured activities

started to decline (Fig. 2). For a commercial process the

maximum activities are of interest. Consequently, results

from samples after 10 h of induction ±5 h were averaged

(=active enzyme per culture broth volume (U/ml) in a

defined time window, which corresponds to space–time

yield) and used as responses for the first MLR model

development. Recombinant expression of alkaline phos-

phatase was further observed using SDS gel electrophore-

sis. A timely increasing band at 49 kDa in the supernatant

of disrupted cells was identified as alkaline phosphatase

(Fig. 3).

The volumetric activity was set in context with the

original factors (OD, k, J, see ‘‘Design of experiments’’).

A MLR model was developed using backward selection.

All process parameters proved to be significant. Figure 4

shows that the optical density at induction (OD) had a

strong positive impact on the volumetric activity. Pre-

induction growth rate (k) had a quadratic effect while

induction feed rate drop (J) was interacting with (k).

Although insignificant, pre-induction growth rate (k) and

feed rate drop (J) were included as linear factors due to the

obligatory hierarchy of the model. Figure 5 displays the

model in the form of a response-surface plot. High volu-

metric activities can be found at high induction OD values.

The quadratic effect of the pre-induction growth rate

k results in predicted high activities at low and high k val-

ues. The positive interaction effect of the pre-induction

growth rate k and the feed rate drop J impacts on the

predicted activity in a positive way, therefore J shows a

positive effect at high k values and a negative effect at low

k values. Statistical evaluation of the model yielded a

residual standard deviation of 1.453 and an R2 of 0.918.

ANOVA (F statistic, [35]) showed that the model was

statistically significant and had no lack of fit.

Physiological multivariate data analysis and reduction

of DoE factors

While the model in ‘‘Multilinear regression (MLR) model

development: impact of process parameters on the volu-

metric activity’’ can be used to predict the volumetric

activity, it provides limited physiological insight or process

understanding. It is not straight forward to explain the

various local maxima and minima which are shown in

Fig. 5 based on the factor OD, k and J. The obtained data

was further analyzed using multivariate data analysis and

quantitative evaluation by rates and yields. These are

basically linear combinations of the original factors; hence

they can be directly calculated and contain condensed

information. The initial induction feed rate specific to the

biomass or initial specific substrate uptake rate (qs) can be

calculated by Eq. 10 and depends on factors k and J. It

decreases with induction time since the biomass further

increases while the feed rate is linear.

Calculation of initial specific substrate uptake rate qs (g/g/h)

qsinitial
¼ k � J

100� Yx=sfed-batch

ð10Þ

Hence, two of the factors in model 1 (k, J) are directly

connected to the induction feed rate specific to the biomass

and, since no substrate accumulation was detected, to the

specific substrate uptake rate (qs) as well. It was tested,

whether the factors (k) and (J) can be condensed to the factor

specific substrate uptake (qs) without the loss of information.

A second model was built with the induction OD and the

computed specific substrate uptake rate qs as factors

(averaged in the time window of induction time = 10 ±

5 h, as established in ‘‘Multilinear regression (MLR) model

development: impact of process parameters on the volumetric

activity’’) and the volumetric activity as response. The MLR

model was built in analogy to the process parameter model of

‘‘Multilinear regression (MLR) model development: impact

of process parameters on the volumetric activity’’. Similarly

induction OD showed a positive impact on the volumetric

activity. The gross of the remaining variation was

successfully explained by the specific substrate uptake rate

qs, which was included in the model also as a quadratic and

cubic factor (Fig. 6). Figure 7 displays the obtained

regression model as response contour plot. Values for qs

were normalized between 0 and 1, while OD is shown as

coded factor (low, mid, high = -1, 0, 1). Statistical

evaluation of the model yielded a residual standard

deviation of 1.647 and an R2 of 0.871. ANOVA (F statistic)

showed that the model was statistically significant and had no

lack of fit. Summarising, the observed variation in volumetric

activity was successfully explained by the induction OD and

the feed profile condensed physiological parameter qs which

means the factors were reduced from three to two.

Table 4 Verification of the volumetric activity models and the specific activity model

Model OD k J qs Predicted activity

(U/ml), (U/g)

Lower Upper Actual activity

(U/ml), (U/g)

1 1 1 1 – 13.09 10.68 15.50 11.62

2 1 – – 0.80 12.71 10.48 14.94 11.62

3 – – – 0.80 0.350 0.286 0.414 0.306
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Specific activities versus volumetric activities

The induction time OD had impact on both the process

parameter model of ‘‘Multilinear regression (MLR) model

development: impact of process parameters on the volu-

metric activity’’ and the physiological parameter model

developed above, in a positive way. This is most probably

due to the size of the cell population, hence the increased

amount of catalyst (biomass) present at the time of

induction. While the CQA should be the volumetric

activity, since it directly relates to the space–time yield of

the active enzyme, further knowledge can be acquired by

looking at specific activities. For this purpose, it was tested

whether the observed variation can solely be explained by

the specific substrate rate qs or also the C-flux per cell, with

the specific activity (activity/biomass) as a response

accordingly. In analogy to regression model development

of ‘‘Multilinear regression (MLR) model development:

impact of process parameters on the volumetric activity’’ a

very simple model with qs as the only remaining factor

Fig. 2 Typical progression of AP activity after induction

Fig. 3 SDS gel electrophoresis for experiment center 3 (see ‘‘Design

of experiments’’). Alkaline phosphatase standard (AP Std), molecular

weights (MW), Intracellular samples (Intra, supernatant of disrupted

cells). Dilution 1:10

Fig. 4 Scaled and centered coefficients for the model described in

‘‘Multilinear regression (MLR) model development: impact of

process parameters on the volumetric activity’’. Volumetric activity

served as response. Induction OD (OD), pre-induction growth rate

(k) as well as the feed rate drop (J) were included as linear terms. Pre-

induction growth rate (k) was included as quadratic term. The

interaction term of J and k was included as well. The interaction term

of pre-induction growth rate (k) and the induction OD (OD) showed

the highest coefficient

Fig. 5 Response contour plot of the model described in ‘‘Multilinear

regression (MLR) model development: impact of process parameters

on the volumetric activity’’. The predicted volumetric activities as a

function of the pre-induction growth rate (k) and the feed rate drop

(J) are displayed in three plots at fixed OD values. Factors are shown

in coded format (low, mid, high = -1, 0, 1). Isolines are labeled with

the volumetric activity given in U/ml
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(Figs. 8, 9) was built. Very similar to the physiological

parameter volumetric activity model described above, the

specific substrate uptake rate (qs) showed a significant

linear, quadratic and cubic effect. Statistical evaluation of

the model yielded a residual standard deviation of 0.04875

and an R2 of 0.796. ANOVA (F statistic) showed that the

model was statistically significant and had no lack of fit.

In addition to the analysis of the qs on the specific and

volumetric activity, it was checked whether similar infor-

mation can be extracted from the specific growth rate l.

Hence, correlation of the specific- or volumetric activity

with the specific growth rate l was evaluated (Fig. 10). No

statistically significant correlation was found, ANOVA

(F statistic) showed that the model was not statistically

significant hence the model coefficients may be due to

random noise. R2 for this model was 0.259.

Verification

To confirm the results of the DoE, the run with the maxi-

mum volumetric activity was repeated (OD = 1, k = 1,

J = 1). The resulting activities were within the error bars

(a = 0.05) of the three models (see Table 4). The measured

Fig. 6 Scaled and centered coefficients for the model described in

‘‘Physiological multivariate data analysis and reduction of DoE

factors’’. Volumetric activity served as response. Induction OD (OD)

and the specific substrate uptake rate (qs) were included as linear

terms. The specific substrate uptake rate (qs) was furthermore

included with a quadratic term and a cubic term

Fig. 7 Response contour plot of the model described in ‘‘Physiolog-

ical multivariate data analysis and reduction of DoE factors’’. The

predicted volumetric activities as a function of the induction OD

(x axis, coded values: low, mid, high) and the specific substrate uptake

rate qs (y axis, normalized between 0 and 1). Isolines are labeled with

the volumetric activity given in U/ml

Fig. 8 Scaled and centered coefficients for the specific activity model

described in ‘‘Physiological multivariate data analysis and reduction

of DoE factors’’. Specific activity served as response. The specific

substrate uptake rate (qs) was used as a factor in a cubic model

Fig. 9 Response prediction plot for the specific activity model

describes in ‘‘Physiological multivariate data analysis and reduction

of DoE factors’’. The predicted specific activities (x axis, triangles) as

a function of the specific substrate uptake rate qs (y axis), which was

normalized to values between 0 and 1. Confidence intervals at a 95

(balls, squares) are given
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qs in the verification run was lower (qs = 0.8, normalized

value) than the qs of the run in the corresponding DoE

experiment (qs = 1, normalized value).

Discussion

Impact of the specific substrate rate qs

on the biological system

The multivariate data analysis based on the physiological

parameters showed that the observed variance in specific

activity can solely be explained by the different specific

substrate uptake rates qs (Fig. 8). The effect is cubic with a

minimum at medium to low substrate uptake qs = 0.3

(normalized value, Fig. 9). Third-order terms should be

supported by a sufficient number of experiments or reso-

lution along the axis of the factor. Since there were enough

experiments with different levels for qs, the resolution was

sufficient. For the limits set in this contribution, the max-

imum was found at highest substrate take (qs = 1, nor-

malized value), hence higher C-flux into the cell means

elevated expression rates. A positive effect of qs on the

specific activity, in an E. coli fed-batch process for

recombinant protein production, was also found by other

authors [36], up to a level of qs = 0.85 (g/g/h). A local

maximum was also found at lowest substrate uptake

(qs = 0, normalized value). This can probably be attributed

to the elevated native expression rates induced by C-star-

vation stress [37]. From a physiological point of view, a

negative third-order term was expected, since it seems

reasonable that higher qs and also higher protein expression

comes with diminishing returns, due to increased metabolic

load. Other authors have shown that foreign protein

expression will even break down at some point with

increased qs ([0.85 (g/g/h)) [36]. Together with the

observed effects at lowest qs, the resulting kind of rela-

tionship has to be cubic.

All DoE models (see ‘‘Multilinear regression (MLR)

model development: impact of process parameters on the

volumetric activity’’, ‘‘Physiological multivariate data

analysis and reduction of DoE factors’’, ‘‘Specific activities

versus volumetric activities’’) were able to predict the

enzymatic activity of the verification run accurately within

the error bars (see ‘‘Verification’’). The measured qs in the

verification run was lower than in the DoE run (see

‘‘Verification’’), which seems to be due to the feed forward

kind of feed profile (without direct control of qs, see

‘‘Culture mode’’) and also due to measurement error.

Nevertheless, also model 1 (see Table 4) was able to pre-

dict the enzymatic activity within error bars, even though it

does not include qs as factor. This seems to be due the

diminishing returns of qs at higher values as discussed

above.

Optimization of feeding profiles using the specific

substrate rate qs according to QbD principles

The goal of optimization of process parameters is typically

maximization of the space–time yield. The highest volu-

metric activities in this contribution were found after about

10 h of induction. Specific activity was not dependent on

the induction OD, only on the specific uptake rate (Fig. 8).

Consequently the highest space–time yield can be expected

at highest specific uptake rates and highest induction OD.

Furthermore, the observed variation in activity specific to

the induction parameters was successfully explained solely

by specific substrate uptake rate qs, hence the linear posi-

tive effect of induction OD (Fig. 6) can be explained

straight forward as an increase in biomass (catalyst). This

simple relation yielded the same amount of information as

the more elaborate 3-factor design with conventional fac-

tors. It was also shown that it is not important how biomass

is produced before inoculation, which was also found by

previous experiments [28]. Though this seems to be strain

or expression system dependent, since other authors came

up with different results [30], this is a very interesting

understanding, since this makes developing feeding strat-

egies much easier. From an experimental design point of

view, feed strategy-related process parameters can be

condensed into one physiological factor (qs). Furthermore,

the induction OD or also amount of catalyst (biomass)

available for the production of alkaline phosphatase had

strong positive impact. While this positive dependency on

Fig. 10 Scaled and centered coefficients for the specific activity

model described in ‘‘Physiological multivariate data analysis and

reduction of DoE factors’’. Specific activity served as response and

the specific growth rate (l), which was normalized to values between

0 and 1, was used as a factor in a cubic model. As error bars indicate

the model was not statically significant and the effects may be due to

random noise
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induction OD does not necessarily hold true for any kind

bioprocess, still a fair amount of experimentation efforts

can be saved by using induction OD and qs as DoE factors

instead of the original three factors. The information con-

tent is the same and the feed profile can be optimized with

significantly less experiments. Furthermore, this facilitates

interpretation of results for the sake of increased process

understanding and speeds up process development.

While the highest space–time yield was found at highest

specific substrate uptake rates (=high C-flux into the cell)

in this contribution, this is probably also dependent on

other items such as strain, product and promoter. More

importantly, the effect of different feed profiles can be

analyzed by simply applying different levels of starting qs

or even qs trajectories for the induced culture, also con-

sidering prior knowledge if available. Hence, this approach

may be especially beneficial when extrapolating from a

platform technology to a new recombinant product.

Highest and lowest qs as shown in Fig. 9 are also

practical limits for this process. At highest qs, it is

increasingly challenging to supply sufficient oxygen to the

culture. With a qs near zero, the culture runs into mainte-

nance issues; also it is doubtful whether lowest substrate

uptake is beneficial if a foreign recombinant protein is

produced contrary to one which is also expressed natively.

An (approximate) control of the qs is necessary fol-

lowing this approach. The authors suggest that the specific

substrate uptake rate qs is controlled utilizing real-time

biomass estimation using available in-line hard or soft

sensors. The optimum qs for the individual process is found

by adjusting different constant levels. This is a significant

improvement from conventional empiric feed profiles to

optimization by a physiological parameter such as qs. As

this requires equipment and/or know-how which is not

available everywhere, we propose an alternate strategy

which is much easier to execute in any lab. The specific

rates can be adapted using OD correlations [25] or initial qs

values can be included in experimental designs. At

induction, the biomass should be quantified by OD or any

other fast off-line method. Afterwards the induction feed

rate (g/h) is set by relation to the biomass (g) resulting in

different starting levels of qs. The disadvantage of this

method is that during induction, the biomass will increase

resulting in a decrease in specific uptake rate which

approaches zero with various slopes, hence results will

only be comparable within the first few hours. However,

the adaption of the feed profile can be repeated in time to

maintain a certain specific rate.

Other authors [38, 39] have also found dependency of

the space–time yield on another physiological parameter,

the specific growth rate (l), but in this contribution the

effect was not statistically significant, if present. This

might be due to higher standard deviation on l due to more

unfavorable error propagation from off-line samples com-

pared to gravimetric feed rate measurement, which is in

favor of the specific uptake rate over specific growth rate.

Another problem with the specific growth rate is that it is

not always straight forward to quantify and control this

variable due to varying biomass stoichiometry.

Physiological downscale models based on qs

In the course of this study it was shown that the variance in

volumetric activity can be solely explained by the induc-

tion OD and qs during the induction phase. Volumetric and

also specific activity is independent of how the biomass is

produced before induction. This opens new perspectives

with respect to physiological downscale models for fast

optimization of recombinant industrial processes. Typi-

cally, optimization efforts are carried out in fully equipped

lab-scale bioreactors, using downscale models based on the

volumetric power input, the stirrer tip speed or similar

bioreactor-related parameters [40]. Furthermore, bioproc-

ess-related parameters such as feeding profiles, media

concentration and biomass concentrations are typically

held constant during scale-up. From a physiological point

of view, it would be more desirable to keep physiological

parameters such as the specific substrate rate (qs) constant,

instead of process parameters detailed above. However,

this is not straight forward due to inhomogeneity in the

bioreactor mainly as a result of limitations in the power

input for mixing [41, 42]. The dependency of space–time

yield on substrate uptake, as shown in this contribution,

clearly shows once more that this is a very important issue

and should be considered during process development. The

optimization of the specific substrate rate can be performed

in small scale, e.g. multi bioreactor systems, also at low

biomass concentrations, since it is not important how the

biomass was produced and/or using diluted feeding solu-

tions, which allows for very large range of different levels

of specific substrate rates. If the inhomogeneity in a large

scale bioreactor can be properly understood using appro-

priate models [43, 44], it is possible to predict the effect of

nutrient inhomogeneity, once the relation between specific

substrate uptake rate and space–time yield is identified.

Conclusion

• While Design of Experiments can be a useful tool, DoE

factors have to be carefully selected e.g. by risk-based

approaches involving a team of experts [3]. This is

important, since one fails to do that, results of the DoE

are useless. The interpretation of results in this contri-

bution was greatly facilitated by using physiologically

meaningful factors such as specific rates in contrast to
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the original factors (OD, k, J). A statistically relevant

relation between the specific uptake rate (qs) and the

specific activity was detected. No such statistically

relevant relation could be shown for the specific growth

rate due to increased noise on that rate, hence qs is

superior to l.

• We want to stress that physiological variables such as

the specific rates contain condensed information, which

can accelerate process development due to a reduced

number of experiments. Looking at specific activities it

was shown that one specific rate contains the same

information as three conventional factors describing the

feed profile, while for volumetric activities the induc-

tion OD was required as well.

• Scale-up is potentially easier with condensed factors,

since fewer factors have to be scaled.

• If information on the inhomogeneity in a large scale

bioreactor is available, it is possible to predict the effect of

nutrient inhomogeneity, once the relation between spe-

cific substrate rate and space–time yield is identified.

Acknowledgments The authors are very grateful to Lonza Ltd.

(Visp, Switzerland) for their support and providing the E. coli strain

used in this study. The study was financially supported by the Aus-

trian Science Fund (FWF Project P24154-N17).

References

1. FDA (2003) Guidance for industry PAT-A framework for inno-

vative pharmaceutical development, manufacturing, and quality

assurance. http://www.fda.gov. Accessed March 2012

2. ISPE (2007) Creating QbD/PAT management awareness. http://

www.ispe.org. Accessed March 2012

3. ICH (2008) Q8, Pharmaceutical development (R1). http://www.

ich.org. Accessed March 2012

4. Rathore AS (2009) Roadmap for implementation of quality by

design (QbD) for biotechnology products. Trends Biotechnol

27(9):546–553

5. Harms J, Wang X, Kim T, Yang X, Rathore AS (2008) Defining

process design space for biotech products: case study of Pichia
pastoris fermentation. Biotechnol Prog 24(3):655–662

6. Mandenius C-F, Graumann K, Schultz TW et al (2009) Quality-

by-design for biotechnology-related pharmaceuticals. Biotechnol

J 4(5):600–609

7. Rathore AS, Bhambure R, Ghare V (2010) Process analytical

technology (PAT) for biopharmaceutical products. Anal Bioanal

Chem 398(1):137–154

8. CMC-Biotech-Working-Group (2009) A-Mab: a case study in

bioprocess development. 1–278. http://www.ispe.org/pqli/a-mab-

case-study-version-2.1. Accessed March 2012

9. Thomas Garcia, Craham Cook, Roger N (2008) PQLI key top-

ics—criticality design space and control strategy. J Pharm Innov

3:60–68

10. Wechselberger P, Herwig C (2012) Model-based analysis on the

relationship of signal quality to real-time extraction of informa-

tion in bioprocesses. Biotechnol Prog 28(1):265–275

11. Wechselberger P, Seifert A, Herwig C (2010) PAT method to

gather bioprocess parameters in real time using simple input

variables and first principle relationships. Chem Eng Sci

65:5734–5746

12. Looser V, Hammes F, Keller M, Berney M, Kovar K, Egli T

(2005) Flow-cytometric detection of changes in the physiological

state of E. coli expressing a heterologous membrane protein

during carbon-limited fedbatch cultivation. Biotechnol Bioeng

92(1):69–78

13. Christiansen T, Michaelsen S, Wuempelmann M, Nielsen J

(2003) Production of savinase and population viability of Bacillus
clausii during high-cell-density fed-batch cultivations. Biotech-

nol Bioeng 83(3):344–352

14. Striedner G, Cserjan-Puschmann M, Poetschacher F, Bayer K

(2003) Tuning the transcription rate of recombinant protein in

strong Escherichia coli expression systems through repressor

titration. Biotechnol Prog 19(5):1427–1432

15. Korneli C, Bolten CJ, Godard T, Franco-Lara E, Wittmann C

(2012) Debottlenecking recombinant protein production in

Bacillus megaterium under large-scale conditions-targeted pre-

cursor feeding designed from metabolomics. Biotechnol Bioeng

(Epub ahead of print)

16. Wittmann C, Weber J, Betiku E, Kroemer J, Boehm D, Rinas U

(2007) Response of fluxome and metabolome to temperature-

induced recombinant protein synthesis in Escherichia coli.
J Biotechnol 132(4):375–384

17. Singh AB, Sharma AK, Mukherjee KJ (2012) Analyzing the

metabolic stress response of recombinant Escherichia coli cul-

tures expressing human interferon-beta in high cell density fed

batch cultures using time course transcriptomic data. Mol Biosyst

8(2):615–628

18. Duerrschmid K, Reischer H, Schmidt-Heck W, Hrebicek T,

Guthke R, Rizzi A, Bayer K (2008) Monitoring of transcriptome

and proteome profiles to investigate the cellular response of

E. coli towards recombinant protein expression under defined

chemostat conditions. J Biotechnol 135(1):34–44

19. Herwig C, Marison I, Von Stockar U (2001) On-line stoichiom-

etry and identification of metabolic state under dynamic process

conditions. Biotechnol Bioeng 75(3):345–354

20. Jazini M, Herwig C (2011) Effect of post-induction substrate

oscillation on recombinant alkaline phosphatase production

expressed in Escherichia coli. J Biosci Bioeng 112(6):606–610

21. Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Car-

mona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang

C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A

(2008) Protein folding and conformational stress in microbial

cells producing recombinant proteins: a host comparative over-

view. Microb Cell Fact 7

22. Sanden AM, Prytz I, Tubulekas I, Forberg C, Le H, Hektor A,

Neubauer P, Pragai Z, Harwood C, Ward A, Picon A, Teixeira de

Mattos J, Postma P, Farewell A, Nystrom T, Reeh S, Pedersen S,

Larsson G (2003) Limiting factors in Escherichia coli fed-batch

production of recombinant proteins. Biotechnol Bioeng 81(2):

158–166

23. Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattano-

vich D (2008) Hypoxic fed-batch cultivation of Pichia pastoris
increases specific and volumetric productivity of recombinant

proteins. Biotechnol Bioeng 100(1):177–183

24. Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D

(2004) Effects of gene dosage, promoters, and substrates on

unfolded protein stress of recombinant Pichia pastoris. Biotech-

nol Bioeng 85(4):367–375

25. Dietzsch C, Spadiut O, Herwig C (2011) A dynamic method

based on the specific substrate uptake rate to set up a feeding

strategy for Pichia pastoris. Microb Cell Fact 10(1):14

26. Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M,

Altenbuchner J (2001) High-cell-density fermentation for pro-

duction of L-N-carbamoylase using an expression system based

1648 Bioprocess Biosyst Eng (2012) 35:1637–1649

123

http://www.fda.gov
http://www.ispe.org
http://www.ispe.org
http://www.ich.org
http://www.ich.org
http://www.ispe.org/pqli/a-mab-case-study-version-2.1
http://www.ispe.org/pqli/a-mab-case-study-version-2.1


on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng

73(2):95–103

27. Lin HY, Neubauer P (2000) Influence of controlled glucose

oscillations on a fed-batch process of recombinant Escherichia
coli. J Biotechnol 79(1):27–37

28. Zabriskie DW, Wareheim DA, Polansky MJ (1987) Effects of

fermentation feeding strategies prior to induction of expression of

a recombinant malaria antigen in Escherichia coli. J Ind Micro-

biol 2(2):87–95

29. Wong HH, Kim YC, Lee SY, Chang HN (1998) Effect of post-

induction nutrient feeding strategies on the production of bioadhe-

sive protein in Escherichia coli. Biotechnol Bioeng 60(3):271–276

30. Curless C, Pope J, Tsai L (1990) Effect of preinduction specific

growth rate on recombinant alpha consensus interferon synthesis

in Escherichia coli. Biotechnol Prog 6(2):149–152

31. Shin CS, Hong MS, Lee J, Bae CS (1997) Enhanced production

of human mini-proinsulin in fed-batch cultures at high cell den-

sity of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol

Prog 13(3):249–257

32. Jensen EB, Carlsen S (1990) Production of recombinant human

growth hormone in Escherichia coli: expression of different

precursors and physiological effects of glucose, acetate, and salts.

Biotechnol Bioeng 36(1):1–11

33. Levisauskas D, Galvanauskas V, Henrich S, Wilhelm K, Volk N,

Lubbert A (2003) Model-based optimization of viral capsid

protein production in fed-batch culture of recombinant Esche-
richia coli. Bioprocess Biosyst Eng 25(4):255–262

34. Laemmli UK (1970) Cleavage of structural proteins during the

assembly of the head of bacteriophage T4. Nature (London, UK)

227(5259):680–685

35. Funk W, Dammann V, Donnevert G (2005) Qualitätssicherung in

der Analytischen Chemie

36. Ramalingam S, Gautam P, Mukherjee KJ, Jayaraman G (2007)

Effects of post-induction feed strategies on secretory production

of recombinant streptokinase in Escherichia coli. Biochem Eng J

33(1):34–41

37. Ozkanca R (2002) b-Galactosidase activity of Escherichia coli
under long-term starvation, alterations in temperature, and different

nutrient conditions in lake water. Int Microbiol 5(3):127–132

38. Yoon SK, Kwon SH, Park MG, Kang WK, Park TH (1994) Opti-

mization of recombinant Escherichia coli fed-batch fermentation

for bovine somatotropin. Biotechnol Lett 16(11):1119–1124

39. Kilikian BV, Suarez ID, Liria CW, Gombert AK (2000) Process

strategies to improve heterologous protein production in Esche-
richia coli under lactose or IPTG induction. Process Biochem

(Oxford) 35(9):1019–1025

40. Santek B, Novak S, Horvat P, Maric V (2004) Scale-up criteria of

bioreactor. Kem Ind 53(1):7–24

41. Bylund F, Guillard F, Enfors SO, Tragardh C, Larsson G (1999)

Scale down of recombinant protein production: a comparative

study of scaling performance. Bioprocess Eng 20(5):377–389

42. Neubauer P, Junne S (2010) Scale-down simulators for metabolic

analysis of large-scale bioprocesses. Curr Opin Biotechnol

21(1):114–121

43. Moilanen P, Laakkonen M, Aittamaa J (2006) Modeling aerated

fermenters with computational fluid dynamics. Ind Eng Chem

Res 45(25):8656–8663

44. Delvigne F, Destain J, Thonart P (2005) Structured mixing model

for stirred bioreactors: an extension to the stochastic approach.

Chem Eng J (Amsterdam, The Netherlands) 113(1):1–12

Bioprocess Biosyst Eng (2012) 35:1637–1649 1649

123


	Efficient feeding profile optimization for recombinant protein production using physiological information
	Abstract
	Introduction
	Quality by design (QbD approach)
	Quantitative data analysis for physiological state identification
	Optimization of feeding profiles in process development
	Goals

	Materials and methods
	Expression system
	Host
	Media

	Bioreactor setup and on-line analytics
	Bioreactor
	Off-gas analysis
	Process management

	Culture mode
	Off-line analytics
	Biomass
	Substrate and small metabolites
	Homogenization procedure
	AP activity assay
	Gel electrophoresis

	Quantitative evaluation of bioprocess data
	Data pretreatment
	Conversion rates
	Specific rates and yields

	Design of experiments

	Results
	Multilinear regression (MLR) model development: impact of process parameters on the volumetric activity
	Physiological multivariate data analysis and reduction of DoE factors
	Specific activities versus volumetric activities
	Verification

	Discussion
	Impact of the specific substrate rate qs on the biological system
	Optimization of feeding profiles using the specific substrate rate qs according to QbD principles
	Physiological downscale models based on qs

	Conclusion
	Acknowledgments
	References


