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Urbonavičius, J.; Moosavi, S.M.H. A

Study on Machine Learning Methods’

Application for Dye Adsorption

Prediction onto Agricultural Waste

Activated Carbon. Nanomaterials 2021,

11, 2734. https://doi.org/10.3390/

nano11102734

Academic Editors: Gabriella Salviulo

and George Z. Kyzas

Received: 30 August 2021

Accepted: 11 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University,
10223 Vilnius, Lithuania; jaunius.urbonavicius@vilniustech.lt

2 Romanian Academy, Center for Financial and Monetary Research “Victor Slavescu”,
050711 Bucharest, Romania; otilia.manta@rgic.ro

3 Research Department, Romanian-American University, 012101 Bucharest, Romania
4 Chemistry Department, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif 21944, Saudi Arabia;

y.elbadry@tu.edu.sa
5 National Water Research Centre, P.O. Box 74, Shubra EI-Kheima 13411, Egypt; enas_el-sayed@nwrc.gov.eg
6 Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;

zeinelbahy@azhar.edu.eg
7 Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS),

University for Malaya (UM), Kuala Lumpur 50603, Malaysia; farizafawzi@um.edu.my
8 Faculty of Engineering, Centre for Transportation Research (CTR), University of Malaya (UM),

Kuala Lumpur 50603, Malaysia; mh.moosavi65@gmail.com
* Correspondence: m.moosavi1987@gmail.com

Abstract: The adsorption of dyes using 39 adsorbents (16 kinds of agro-wastes) were modeled using
random forest (RF), decision tree (DT), and gradient boosting (GB) models based on 350 sets of
adsorption experimental data. In addition, the correlation between variables and their importance
was applied. After comprehensive feature selection analysis, five important variables were selected
from nine variables. The RF with the highest accuracy (R2 = 0.9) was selected as the best model
for prediction of adsorption capacity of agro-waste using the five selected variables. The results
suggested that agro-waste characteristics (pore volume, surface area, agro-waste pH, and particle
size) accounted for 50.7% contribution for adsorption efficiency. The pore volume and surface area
are the most important influencing variables among the agro-waste characteristics, while the role
of particle size was inconspicuous. The accurate ability of the developed models’ prediction could
significantly reduce experimental screening efforts, such as predicting the dye removal efficiency
of agro-waste activated carbon according to agro-waste characteristics. The relative importance of
variables could provide a right direction for better treatments of dyes in the real wastewater.

Keywords: machine learning; wastewater treatment; dye adsorption; agricultural waste;
activated carbon

1. Introduction

Approximately 10,000 dyes are commercially available, and annually, about 1.6 mil-
lion tons of dyes are produced for industrial use [1], of which 10–15% of these dyes are
disposed of as wastewater [2]. This pollution is caused by the use of dyes in the clothing,
paper, dyeing, and plastics industries. Because the dyes are very stable and solvable in
water, failed dye treatment and disposal of these wastes into receiving waters causes huge
damages to the environment: affecting photosynthetic activity [3]; being toxic to aquatic
life due to the presence of metals, chlorides, etc. [4]; and inherent toxicity, mutagenicity,
and carcinogenicity [5]. In addition, overexposure to dyes has resulted in potentially life
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threatening complications such as skin harms, respiratory problems, and the probability of
human carcinoma [6].

Most of these synthetic dyes are chemically and thermally stable, non-biodegradable,
and quite toxic [7]. Due to toxicity of dyes, it is necessary to remove them from wastewater
before them discharge to the natural environment. Adsorption is generally considered to
be the most prominent approach due to its effectiveness [8], economy, and simplicity for
quickly lowering the concentration of dissolved dyes in an effluent, as it does not require
a pretreatment step before its application [9]. This method is very dependent upon the
type of the adsorbent used (e.g., activated carbon (AC), biomass, polymer, nanomaterial,
etc.) [10]. The cost of adsorbent production is not the only factor involved in developing
an excellent adsorbent. The adsorption performance, regeneration ability, and adsorbent
separation are other important features of an effective adsorbent [11].

Among the large number of adsorbents, activated carbons (ACs) exhibited advantages
over other adsorbents for their high surface area, microporous character, chemical nature
of their surface, and high adsorption capacity when used on wastewater with different
dye molecules [12]. Most of the activated carbon materials used for adsorption research
come from fruit peel [13], rubber tires [14], textile sludge [15], crab shell [16], and egg
shell [17]. Recently, agricultural wastes have received considerable attention due to their
abundant surface functional groups, porous structures, additional inorganic minerals, and
high surface area. Many researchers study the dyes’ adsorption on various agro-waste
materials such as corn cobs [18], oil cake [19], rice husk [20], sugarcane bagasse [21], gram
husk [22], sawdust [23], pine cone [24], tobacco residue [25], white sugar [26], Astragalus
bisulcatus tree [27], tea residue [28], vinasse [29], groundnut shell [30], and so on. This
class of activated carbons have a valuable potential for the wastewater dye removal. Agro-
waste ability in the treatment of wastewater containing dyes such as MB dyes could
reach the maximum value of 2251 mg/g [29]. Most of current research followed similar
methods for AC for preparation under appropriate pyrolysis temperature, followed by
measuring the removal value of any types of dyes at different environmental conditions
like solution pH and initial dye concentration. The adsorption kinetic, isotherm, and
maximum dye removal value were subsequently modelled and confirmed based on the
obtained data. The adsorption capacity of adsorbate onto the adsorbent is determined
at ambient condition (under certain experimental conditions). The procedure to obtain
relative contributions of adsorption mechanisms (like initial concentration) using different
agro-waste AC characteristic (like surface area, pore volume, pH, and particle size) were
time consuming and complex. In the above, holistic adsorption mechanisms were not
considered. In order to better deal with dyes in real water and wastewater, it is essential
to understand the relative importance of each variable so as to gain the right solution for
improving the adsorption capacity.

In recent years, machine learning (ML), playing an important role in computer science,
artificial intelligence, chemistry, and biomedicine, has attracted people’s attention [31].
Unlike empirical models, such as the Freundlich and Langmuir models used to detect the
adsorption equilibrium, which can barely predict conclusions and make the relationship
between operating conditions and adsorption capacity unavailable [26]; today, the machine
learning (ML) method is preferred through modeling and learning the behavior of adsorp-
tion on agro-waste [32]. It may be preferred to resolve the problem through modeling and
learning the adsorption behavior of dyes onto agro-wastes. High-quality machine learning
models used to predict the adsorption efficiency have the ability to reduce the complexity,
numbers, and time of experiments and to find a non-linear mathematical relationship
between dependent and independent input variables. In recent studies, developing ML
models could remarkably decrease the material resources and amount of manpower for
future experiments and research. The emerging machine learning models, especially the
decision tree (DT), random forest (RF), and gradient boosting models, have been success-
fully proved to have the merit to model and predict complex and non-linear mathematical
relationships between dependent and independent factors. Therefore, the three machine
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learning models were selected and compared to (i) develop models for predicting the
efficiency of dye adsorption onto the agro-wastes AC, based on the agro-waste character-
istics, initial concentration, type of dyes, and conditions of adsorption; (ii) evaluate and
select the relative importance of each variables and select the most important variables;
and (iii) predict dyes adsorption efficiency and find the intrinsic information behind the
models based on the agro-waste characteristics, which is valuable for reducing unnecessary
repetitive experiments.

The models developed in this study are used to predict dye adsorption efficiency in
wastewater based on measurable agro-wastes AC characteristics such as surface area, pH,
pore volume, and particle size. This study with the aid of machine learning, which would
be valuable for future applications with the increasing accumulation of big data in the
scientific literature, while detecting the relative importance of each factor in improving
adsorption efficiency; it provides a comprehensive understanding of dye removal using
agro-wastes and proposed guidelines for the treatment of wastewater and contaminated
water containing dyes.

2. Materials and Methods
2.1. Data Collection

The dye adsorption experimental data on the agro-waste AC were obtained from
previous studies. The adsorption value data were collected directly from the tables or
extracted from the Supplementary Material data and graphs with Getdata 2.21 in the
published papers. Ultimately, 350 sets of adsorption experimental data of different dyes on
the agro-waste AC were selected [15,16,22,25,26,30,33–39]. Some of data were missing and
needed to be deleted, because dealing with missing data could cause errors in our whole
dataset. The detailed data were shown in the Table S1 in Supplementary Materials data file.
All the 39 adsorbents were produced all from agro-wastes (16 kinds of agro-wastes) at the
temperature range of 400–800 ◦C. The characteristics of the agro-wastes were varied due
to different feedstock and pyrolysis conditions, where the statistical distributions of the
factors related to the agro-waste characteristics were acquired via boxplots.

In this study, the adsorption process was modelled and the dyes’ adsorption capacity
onto the agro-waste AC was predicted. Ten variables were considered as influencing
factors and divided into four parts: (i) agro-waste characteristics, including surface area
(SA, m2/g), agro-waste pH in water (pHH2O), pore volume (PV, cm3/g), and particle size
(PS, mm); (ii) adsorption conditions, including adsorption temperature (T, ◦C) and pH of
the solution (pHsol); (iii) dye initial concentration (C0, mg/g); and (iv) type of dyes. These
explainable variables and adsorption efficiency values are summarized in Table S1.

2.2. Data Pre-Processing (Pre-Processing) and Model Estimators

The data processing algorithm was developed using the SK-learn module in Python
3.6 (Python Software Foundation, Beaverton, OR, USA). To eliminate the measurement
unit, the predictors were normalized by mean and standard deviation before fitting in
regression. In this paper, three methods were mainly used to compare model performance,
gradient boosting (GB), decision tree (DT), and random forest (RF) models. To evaluate the
accuracy of the model, the correlation coefficient (R), the mean squared error (MSE), and
the root mean squared error were used.

R =

√√√√1− ∑N
i=1(ŷi − yi)

2

∑N
i−1(ŷi − y)2 (1)

MSE =
1
N

N

∑
i=1

(ŷi − y)2 (2)

RMSE =
√

MSE (3)
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The Pearson correlation coefficient (PCC) measured the linear dependences between
any two selected variables or between each feature and the target variable, which were
calculated with Equation (4):

rxy =
∑n

i=1(xi − x)∑n
i=1(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(4)

where x or y = mean of factors x or y, respectively. Then, each variable’s data were
normalized into the range of 0 and 1 with Equation (5):

y =
(xi − xmin)

(xmax − xmin)
(5)

where y = normalized value of initial xi,and xmax and xmin = maximum and minimum value
of xi, respectively.

2.3. Models Built with Decision Tree, Gradient Boosting, and Random Forest Methods

Decision tree classifiers (DTCs) are used successfully in many diverse areas such as
radar signal classification, character recognition, remote sensing, medical diagnosis, expert
systems, and speech recognition, to name only a few. Perhaps the most important feature of
DTCs is their capability to break down a complex decision-making process into a collection
of simpler decisions, thus providing a solution that is often easier to interpret [40]. Decision
trees classify inputs into branch-like segments by taking paths from the root node (implies
the prediction or that gives the best split of the target class values) through internal nodes
to leaf nodes [41]. Each internal node contains splits and holds two or more child nodes,
and further, splitting is applied iteratively to the subgroups until leaf nodes are obtained.
The decision tree process is completed in one of these aspects: (a) the class label of the leaf
node is the same as the target class value, (b) every prediction is used to split a partition,
and (c) there are no more records for a particular value of a prediction or variable.

The training process is used to build and evaluate the decision tree model by min-
imizing the difference between the measured and predicted outputs. These procedures
are applied to estimate the accuracy of the decision tree by comparing predicted outputs
with actual data. Finally, a decision tree can be employed for classification and prediction
purposes using a new dataset [41].

The random forest (RF) model, which works on the basis of bootstrap aggregation and
multiple decision trees, is known as a supervised ensemble ML technique. It is included in
the scope of the ensemble learning field. RF is in fact a bagging algorithm-based additive
model. It should be noted that unlike bagging, RF builds each tree with the use of a random
sample predictor before each node segmentation. This strategy results in a significant
reduction in bias. The RF algorithm is a technique of classification, which makes use of a
CART decision tree as the base classifier. In this model, every decision tree is produced in
parallel, which could be either a regression tree or a classification tree. Each node within
a decision tree is divided with the help of the optimal features capable of producing the
optimum solution amongst all the available features. RF has been widely used in the
literature in order to extract valuable, but there is hidden information in large volumes of
data. This algorithm produces the training sets first with the application of the bootstrap
method; afterward, it constructs a decision tree for each training set.

Each training subset was used to train various classifiers of the same type. After
that, simple majority voting was applied to combining the individual classifiers. RF was
implemented through three steps as follows: (1) performing the sampling process in a
random way through dividing datasets into a number of subsamples; (2) training the
decision trees with various subsamples, where each tree grew to the maximum degree on
the basis of a bootstrap replicate of the training data, and each leaf node resulted the mean
of all label values in the node; and (3) obtaining the final prediction through averaging the
performance of all trees. To obtain the most desired model, the trial-and-error approach
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was used to optimize a number of tuning hyper-parameters, e.g., the number of trees
(Ntree), the maximum number of features at each node (Nfeature), and the other input
parameters. For the N case of each input variable, the relative importance was measured
by means of the mean decrease impurity method. In this method, one can calculate how
much each feature reduces the weighted impurity in a tree, and then they can average the
reduction in the impurity from each feature and rank it for the developed forest.

Gradient boosting (GB) work based on the boosting principle, that is, to combine
models with low variance error and high bias in a way to decrease bias and, at the same
time, keep a low level of variance. Boosting learns multiple classifiers through altering the
samples weight in the course of each training process. Then, it linearly integrates these
classifiers with the aim of improving the classification performance. More specifically,
boosting trees does not employ deep trees and various training datasets, rather, they
prefer to make use of shallow trees trained in the same dataset; in this system, each tree
is specialized in a definite characteristic of the relation between the input and output. In
other words, succeeding shallow trees are trained in series, where the nth tree is trained in
order to decrease the estimation errors of the former (n − 1)th trees.

GB is essentially aimed at developing an additive model to minimize the loss function.
First, at the initialization step, GB starts with a constant value minimizing the loss function.
After that, in each iterative training process, the negative gradient of the loss function
is predicted as the residual value in the current model, and then a novel regression tree
is trained in a way to be fitting the current residual. Then, the final step involves the
addition of the current regression tree to the former model and updating the residual.
The algorithm’s operation is continued iteratively until the stopping criterion (reaching
the maximum number of iterations) is met. GB has been successful in improving the
former poor performance of data through persistently employing the regression tree for
the purpose of fitting the residuals. In the following, the GB algorithm is described briefly.

2.4. Statistical Evaluations

To evaluate the accuracy of the model, the correlation coefficient (R) and the root mean
squared error (RMSE) were used.

R2 = 1−
∑N

i=1

(
Yexp

i −Ypred
i

)2

∑N
i=1

(
Yexp

i −Yexp
ave

)2 (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Yexp

i −Ypred
i

)2
(7)

where Yexp
i and Ypred

i = experimental value and predicted values, respectively, and Yexp
ave =

average of the experimental value.

3. Results and Discussion
Comparison of the Models

Table 1 presents the nine independent variables’ weight based on output of the DT,
RF, and GB techniques. According to this table, some mutual important variables were
detected (for example, adsorption capacity, agro-waste pH, and surface area with highest
weights in all three methods). The importance rank of the nine independent variables based
on the DT, RF, and GB techniques is shown (in different colors) and presented in Figure 1.
In this study, we adopted different feature selection methods to select only the important
variables and develop our model based on selected variables. The main reason behind
reducing the number of variables (based on their level of importance and correlations)
is to reduce the complexity and improve the applicability of the final model. As shown
in Figure 1, the weight values of each variable were summed up and compared. The
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accumulated weight values of the nine variables were sorted out from highest to lowest
values in Table 1. As Table 1 presents, the initial concentration, surface area, and pore
volume were detected as the most important variables, which is confirmed by previous
studies. Therefore, the variables’ importance is used based on three different tree-based
supervised machine learning techniques and the five most important variables according
to the sum of three models are selected. Table 2 presented the variable importance of the
five selected variables based on feature selection criteria.

Table 1. Importance score (weight) of variables based on three machine learning (ML) methods.

DT RF GB

Attribute Weight Attribute Weight Attribute Weight

C0 0.281 Pore volume 0.291 C0 0.279

Surface area 0.122 C0 0.267 Pore volume 0.086

Agro-waste pH 0.042 Surface area 0.131 Agro-waste pH 0.082

Pyrolysis
temperature 0.03 Agro-waste pH 0.067 Surface area 0.055

Particle size 0.029 Adsorption pH 0.031 Dye type 0.032

Adsorption
temperature 0.027 Particle size 0.029 Adsorption

temperature 0.026

Adsorption pH 0.025 Pyrolysis
temperature 0.022 Particle size 0.025

Pore volume 0.007 Adsorption
temperature 0.013 Pyrolysis

temperature 0

Dye type 0.004 Dye type 0.002 Adsorption pH 0
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Table 2. Variable importance of the five selected variables based on the feature selection criteria.

Attribute RF DT GB

C0 0.267 0.281 0.279
Pore volume 0.291 0.007 0.086
Surface area 0.131 0.122 0.055
Biochar pH 0.067 0.042 0.082
Particle size 0.029 0.029 0.025

The modeling using RF, GB, and DT was performed using nine variables (Table 3) and
five selected variables (Table 4). According to Table 3, the R2 has a maximum value of 0.92
using the RF models and minimum R2 using the GB model. In addition, the RMSE and
error have the lowest values using the RF models. Therefore, the overall RMSE value and
R2 value developed by the RF algorithm were acceptable and more accurate compared to
the other two models. The prediction ability of RF model for the pollutant adsorption onto
the agro-waste was proved in another study [42].

In this study, the ML methods including RF, DT, and GB were used and discussed to
determine the deep relationship between adsorption capacity and five selected influencing
variables. Table 4 presents the modeling performance with the five variables. According to
Table 4, RF had highest accuracy (R2 = 0.90) and lowest RMSE (0.0148) and absolute error
(0.092) among the other two models. As it was expected, with decreasing the number of
variables using feature selection, the accuracy decreased but only by 0.02. The modeling
performance using the five variables was more valuable as we could reduce the complexity,
and 2% difference is not much difference. Therefore, RF was competent and chosen as the
most accurate model.

Table 3. Modeling performance with nine variables.

Train Test

Index R2 RMSE Absolute Error R2 RMSE Absolute Error

RF 0.92 0.116 0.076 0.84 0.127 0.098
G.B 0.84 0.162 0.076 0.76 0.081 0.100
D.T 0.83 0.178 0.098 0.71 0.130 0.167

Table 4. Modeling performance with five variables.

Train Test

Index R2 RMSE Absolute Error R2 RMSE Absolute Error

RF 0.90 0.148 0.092 0.81 0.150 0.098
G.B. 0.83 0.164 0.100 0.72 0.169 0.124
D.T 0.82 0.178 0.105 0.72 0.188 0.114

According to the Pearson correlation matrix (Table 5), the adsorption capacity was
found to be the adsorption efficiency positively correlated with initial concentration, surface
area, pore volume, and particle size and negatively correlated with the agro-waste pH.
Some internal connections between the agro-waste characteristics were also detected with
the Pearson correlation coefficient (PCC): (1) The particle size of agro-waste showed positive
correlation with surface area and pore volume. This is because finer particles have a larger
external surface exposed to heat, resulting in an extensive pore widening; thus, the surface
area and micropore volume decreased as the latter transformed into mesopores [43]. (2) The
agro-waste pH had an inverse correlation with pore volume and surface area. According
to the previous studies, the higher carbonization degree meant removal of volatile matter
agro-waste (has direct influence on carbon and nitrogen dynamics in soil) while higher ash
percentage could reduce the surface area by filling micropores [44]. Moreover, ash content
plays a main role in pH [45]. Therefore, the surface area of agro-waste showed a negative
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relation with the agro-waste pH (Table 5). In order to determine the deep relationship
between the adsorption efficiency and these influencing factors, ML methods were used in
the study and will be discussed in the next sections.

Table 5. Pearson correlation matrix between any two features of agro waste, and between any variable and the target
variable (adsorption efficiency).

Attributes Adsorption
Efficiency Biochar pH C0 Particle Size Pore Volume Surface Area

Adsorption efficiency 1 −0.558 0.739 0.084 0.666 0.690
Biochar pH −0.558 1 −0.424 0.102 −0.5401 −0.252

C0 0.739 −0.424 1 0.095 0.546 0.664
Particle size 0.084 0.102 0.095 1 0.154 0.277
Pore volume 0.666 −0.540 0.546 0.154 1 0.669
Surface area 0.690 −0.252 0.664 0.277 0.669 1

The Random Forest model was performed using the five selected variables and the
importance of the variables is presented in Table 6. According to this table, the adsorp-
tion efficiency is highly affected by initial concentration (0.347), surface area (0.287), and
pore volume (0.131), which is in line with previous findings [46,47]. The initial dye con-
centration has the highest effect on the adsorption capacity [47,48]. The increase of dye
concentration gradients between the aqueous solution and adsorbent surface facilitated
the adsorption of dye onto the agro-waste. Ins addition, the contribution of the main
agro-waste characteristics was furtherly assessed in detail. It was found that pore volume
was the main factor of agro-waste over the other properties of agro-waste. According to
Table 6, the surface area is the second important factor of agro-wastee. A higher surface area
could afford more active sites and an enhanced carbon/substrate interaction to improve
the adsorption efficiency [49–51]. The impact of surface area on the adsorption capacity
continuously increased within the range below ~600 m2/g, but a further increase in the
range of 600–1700 m2/g showed a restrained trend, and over 1700 m2/g there was a sharp
decrease in adsorption efficiency. A very large surface area (over 1700 m2/g) might have
a negative impact on the other physicochemical characteristics of agro-waste like limited
micropore accessibility, slow mass transfer, and diminished surface functional groups,
which reciprocally influence the overall adsorption performance [39,52,53]. The evaluation
of results in this study can contribute to present the adsorption of relevant water pollutants
as dyes on adsorbents with high surface areas (like agro-waste).

Table 6. Importance of variables based on RF model.

Attribute RF

C0 0.347
Pore volume 0.287
Surface area 0.131

Agro-waste pH 0.056
Particle size 0.033

Additionally, the random forest (RF) model was optimized by simultaneously adjust-
ing Ntree ranging from 20 to 140 and the maximal depth from 2 to 7 with a step size of
1 (Table 7). Model assessment was repeated 12 times using a different number of trees
from 20 to 140, and the results are shown in Table 7. The minimum value of error rate was
acquired when the Ntree and maximal depth were set as 140 and 7, respectively, which
was easy to understand because the RF performance generally ameliorates with maximal
depth increment due to higher number of available features to consider [54]. However,
the best optimal model was acquired with the Ntree of 20 and maximal depth of 7 (no. 9
in Table 7). As shown in Table 7, the lowest error rate belonged to optimal model no. 12
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(error rate = 0.347), which is very close to the error rate of model no. 9 (error rate = 0.351).
Optimal model no. 9 was selected as the best model, because of it had the lowest Ntrees
(20) in comparison with Ntrees of 140 (No. 12), and the error rate difference was only 0.004.
The Ntree = 20 and maximal depth = 7 was used to assess the lowest error rate, as shown in
Figure 2.

Table 7. The optimization process of RF models with error rate.

No. Number of Trees Maximal Depth Error Rate

1 20.0 2.0 0.672
2 60.0 2.0 0.671
3 100.0 2.0 0.673
4 140.0 2.0 0.679
5 20.0 4.0 0.405
6 60.0 4.0 0.392
7 100.0 4.0 0.398
8 140.0 4.0 0.402
9 20.0 7.0 0.351
10 60.0 7.0 0.348
11 100.0 7.0 0.350
12 140.0 7.0 0.347

The predicted results in the test groups plotted versus the corresponding experimental
data with the RF models are presented in Figure 3. The blue line represented the regression
line. As it can be seen in Figure 3, the predicted outputs were satisfactory and the RF model
could present valuable overall predicted ability (R2 = 0.90).
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For us, the accurate ability of the models’ prediction was valuable, but the underlying
models’ information was more important based on such accurate predictions. For example,
pore volume, surface area, and pH of agro-waste were illustrated as the most efficient
variables for dyes’ adsorption, so this class of agro-wastes are quite appropriate to be used
for wastewater treatment with dyes. For the target pollutants (dyes), the selected model
narrowed down the target of searching to get the best agro-waste AC adsorbents and
decreased the unnecessary attempts with adsorption experiments. Additionally, this could
decrease the potential harm for environmental systems and researchers in doing routine
experiments. In addition, the RF, DT, and GB only took 3, 8, and 32 s for one job in the
study, respectively, which could significantly accelerate the research and applications of
dye adsorption onto the agro-waste. Table 8 showed the optimized value of the selected
variables’ values.

Table 8. The predicted importance of variables on the adsorption efficiency.

Attribute Optimum Values
(Normalized)

Optimum Values
(Actual Value)

Maximum
Adsorption

Maximum
Adsorption

(Actual Value)

C0 (mg/L) 0.357 355

0.81

Pore volume (cm3/g) 0.889 1.027

Surface area (m2/g) 0.863 2106 1813

Agro-waste pH 0.272 2.53

Particle size (mm) 0.112 0.013

4. Conclusions

This study modelled the dye adsorption capacity onto agro-waste activated carbon
using a machine learning approach based on nine variables: agro-waste characteristics,
including surface area, agro-waste pH in water, pore volume, and particle size; (ii) adsorp-
tion conditions, including the adsorption temperature and pH of the solution; (iii) dye
initial concentration; and (iv) type of dyes. RF, GB, and DT models were performed with a
high accuracy of 0.92, 0.84, and 0.83, respectively. Five variables (initial concentration, pore
volume, surface area, agro-waste pH, and particle size) were selected as the most effective
variables on adsorption capacity. The three models were performed again on the five
selected variables. The RF model with the highest accuracy (R2 = 0.9) was selected as the
best model for the prediction of adsorption capacity on agro-waste AC. The results showed
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that agro-waste characteristics (pore volume, surface area, agro-waste pH, and particle size)
accounted for a 50.7% contribution for adsorption capacity. The pore volume and surface
area are the most effective variables among the agro-waste characteristics, while the role of
particle size was inconspicuous. The accurate prediction for adsorption efficiency of dyes
and the intrinsic information behind the models based on the agro-waste characteristics
was valuable to reducing unnecessary repetitive experiments and the rational design and
optimal selection of agro-waste material for dye removal from industrial wastewater with
minimal experimental screening efforts.

5. Future Perspectives

The future research suggestions of ML models in the field of dye adsorption for
carrying out extensive studies are as follows:

• The dye adsorption capability using other ML models such as the group method of
data handling (GMDH).

• The application of machine learning models on dye adsorption using raw bio-waste.
• Specific study on the capability of ML models on the adsorption of pollutants like

BOD and COD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11102734/s1. Table S1. A Study on Machine Learning Methods’ Application for Dye
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