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Simple Summary: Climate change effects strongly and negatively influence the health and produc-
tivity of marine bivalves and particularly bivalve aquaculture. It is therefore of critical importance
to study the physiological response of bivalves against marine heatwaves under field conditions.
Thus, in the present study, we evaluated the pathophysiological pathways of the Mediterranean
mussel originating from mortality events attributed to extreme seawater temperatures in the context
of Marteilia refrigens infection. Our study is focused on the Thermaikos Gulf, the most important
mussel cultivation area in Greece, comparing the traditional bouchot-like mussel farming system
with the modern long-line system. Heatwaves increased all examined molecular, biochemical and
pathophysiological markers in M. galloprovincialis mussels, which were reinforced in Marteilia in-
fected individuals. Therefore, these results enlighten us on the biological impacts of heatwaves,
providing valuable information regarding the underlying mechanisms. Thus, insights for the future
management of the marine aquatic sector could be provided and subsequently address measures for
the decrease or elimination of this phenomenon and restoration of marine production.

Abstract: Marine heatwaves (excessive seawater temperature increases) pose high risk to bivalves’
health and farming. The seawater temperature increase is responsible for various pathogen popu-
lation expansions causing intense stress to marine organisms. Since the majority of knowledge so
far derives from laboratory experiments, it is crucial to investigate stress responses in field condi-
tions in order to understand the mechanisms leading to bivalves’ mortality events after exposure to
temperature extremes. Thus, we evaluated the pathophysiological response of the Mediterranean
mussel Mytilus galloprovincialis originating from mortality events enhanced by intense heatwaves
in Thermaikos Gulf, north Greece, along with Marteilia refrigens infection. Mussels that have been
exposed to high environmental stressors such as high temperature were examined for various molec-
ular and biochemical markers, such as hsp70, bax, bcl-2, irak4 and traf6 gene expression, as well as
the enzymatic activity of the hsp70, hsp90, bax, bcl-2, cleaved caspases, TNFa and ll-6 proteins.
Furthermore, histopathology and molecular positivity to Marteilia sp. were addressed and correlated
with the gene expression results. Our findings elucidate the molecular and biochemical pathways
leading to mortality in farmed mussels in the context of Marteilia infection, which according to the
results is multiplied by heatwaves causing a significant increase in pathophysiological markers.

Keywords: marteiliosis; bouchot mussel farming; histopathology; parasite molecular identification;
defense response
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1. Introduction

Aquaculture continues to thrive among food industry production sectors, expanding
faster than any other livestock sector worldwide during recent decades [1–3]. Particularly,
bivalve farming represents an important marine aquaculture activity worldwide, raising
production from nearly 1 million tons in 1950 to 14.54 million tons in 2013, with an annual
value of more than USD 15 billion [4,5]. In Greece, although oyster and clam farming
have been recently licensed, bivalve cultivation is still represented exclusively by the
Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819) farming [6–8]. Mussel
culture is depending on wild stocks since in the process of mussel farming, spat (juveniles)
is collected from collector ropes or traps and transferred to neighboring mussel farming
areas for cultivation, or occasionally to longer distances [9]. Thus, compared with fish or
shrimp farming, bivalve culture depends on adequate eutrophication of the culture site
and has to have less impact on the local ecosystems [10,11]. In contrast to fish and shrimp
aquaculture, capture-based mussel culture is totally exposed to environmental factors in
the whole process of farming [12].

Despite the positive impacts of mussel farming on the national economy and local
ecosystems [6], human pressures including anthropogenic climate change tend to cause
complications that result in a reduction of productivity. Rapid fluctuations of abiotic factors,
as an impact of climate change, negatively affect production, leading to financial distress in
culture farms [13]. Acute temperature increases in surface sea water are one of the driving
impacts of climate change in aquatic ecosystems and thus have been studied intensively in
recent decades, having been found to correlate with the down-regulation of both physiolog-
ical and immunological functions in marine bivalves [14,15]. Specifically, thermal stress has
been correlated with increased oxidative stress in marine invertebrates [16–19], the down-
regulation of metabolic markers and anaerobiosis in marine bivalves [20]. Concerning
immune responses, increased temperatures result in high levels of phagocytic ability and
total number of hemocytes in marine bivalves [15,21–23]. Furthermore, in the context of
climate change, increasing temperature has been shown to induce several cellular signaling
pathways, including that of apoptosis [24–26].

The temperature rise also does not only affect marine species’ physiological and im-
munological processes but also affects the spread of microorganisms that are endemic to ma-
rine ecosystems [27]. Despite the beneficial roles of the microorganisms [27], many of them,
which have been described as temperature dependent, constitute opportunistic pathogens
for marine bivalves [28]. Several recent studies have confirmed the role of temperature in
emerging infectious diseases resulting from vibrios [29]. Specifically, Vibrio tubiashii was
initially described as a temperature-dependent, hard-shell clam pathogen [28,30]. Vibrio
tapetis was isolated for the first time in 1987 in France and later on other Mediterranean
coasts and in Norway, Korea and Japan in mortality events in the Ruditapes philippinarum
clam [31–33]. Temperature and salinity have been considered to be inhibitors in the growth
of this bivalve pathogen at temperatures above 22 ◦C and salinities greater than 5% [34].
Vibrio mediterranei were isolated and correlated with dead Pinna nobilis individuals in an
experiment conducted in order to describe disease outbreak in stabled individuals [35,36].
Although the latter pathogen triggered its virulence mechanisms at temperatures above
24 ◦C, it was also present in P. nobilis natural populations at lower temperatures without
triggering mortalities, similar to those exhibited at 24 ◦C [35–37].

Despite the bacterial infectious diseases in bivalve populations, protozoan parasites
can be also influenced by climate change-induced temperature increase [38–40]. Among
the Perkinsus spp., Perkinsus marinus and Perkinsus olseni have been associated with mor-
tality events in Crassostrea virginica and Ruditapes decussatus and Ruditapes philippinarum
clams [40,41]. These parasites seem to be favored by higher temperatures and secondarily
by other external stressors such as food availability [40,42]. Regarding Haplosporidian
parasites (the phylum comprises over 40 described species), mostly Bonamia spp. and
Haplosporidium spp. have been implicated in mortalities in marine bivalve populations [43].
Both genera have been strongly correlated to temperature and salinity, which affect their
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distribution patterns and seasonal prevalence [38,44]. Martelia spp., which was identified
for the first time in Ostrea edulis oysters in France, is the main protozoan species iden-
tified in Greek mussel culture sites in the past [45–47]. Similar to the above, increased
temperature through the year seems to be a driving factor implicated in the life cycle of
this parasite [48,49].

Concerning bivalve farming in Greece, Thermaikos Gulf is the culture site with the
highest productivity of mussels, representing 90% of the total mussel production, while
80% is exported to other European countries [50]. However, in 2020 and 2021, reinforced by
the COVID-19 pandemic situation that delayed harvesting, mass mortality events in Greek
mussels farms resulted in the collapse of productivity, reaching 100% loss of the production
in northern Greece’s farms. Mortalities began with the rise of the temperature and eventu-
ally killed the total of the population when surface sea water temperature reached 30 ◦C
in the hanging park “bouchot type” culture, a traditional culture technique, similar to the
French bouchot culture as well as to raft culture (Figure 1), with the modification that the
vertical poles are embedded in the shallow waters (up to 1.5–2 m) of the Axios River Delta
(north Greece). This technique provides the advantage to the farmers of controlling the
mussel sleeves more easily and using smaller boats than in the modern longline technique
that utilizes floats and needs larger boats, but at the same time mussels are more vulnerable
to abiotic factors due to the shallow waters.
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Figure 1. The hanging park bouchot type traditional technique applied in mussel farming in Axios
River Delta (Kymina, Thermaikos Gulf, north Greece).

Keeping in mind the lack of complete knowledge concerning the physiological re-
sponse of infected or uninfected M. galloprovincialis against various pathogens during
intense heat waves, the objective of this study is the investigation of this species’ patho-
physiological responses originating from mortality events, in order to identify the causative
agent(s) of the mortalities. To assess the above, hsp70 gene expression as well as Hsp70
and Hsp90 induction levels, apoptotic indicators such as Bax/Bcl-2 ratio (transcription and
translation levels) and cleaved caspase levels, immunological indicators such as the mRNA
expression of irak4 and traf6 genes, and TNFα (tumor necrosis factor) and Il-6 (interleukin 6)
levels, as well as histopathology and molecular positivity to Marteilia sp., were addressed.
In an effort also to correlate the expression of stress- and immunology-related genes at
both mRNA and protein levels, the expression levels were compared between infected
and non-infected individuals regardless of the parasite load. It should also be noted that
although co-infections in aquatic species are frequent [37], mussels are mainly affected by
Marteilia refrigens, which constitutes the etiological agent of several mortality events in the
past [47], and thus, only this pathogen was examined.
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2. Materials and Methods
2.1. Sampling Procedure

Sampling of adult M. galloprovincialis [22.43 ± 3.21 g (mean ± SD), shell length
5.62 ± 0.35 cm and shell width 2.89 ± 0.11 cm] was conducted in both of the culture
processes (traditional culture-Bouchot (TC) and long-line system (LC)) three times during
the period of mortalities in the area of Thermaikos Gulf (Figure 2). More specifically, in 2022,
at the beginning of July, when surface sea water temperature reached 28 ◦C, mortalities were
also observed. Large-scale precipitation during the next 3 days (8 July 2022–11 July 2022)
decreased surface sea water temperature to 26 ◦C. Afterwards, on 25 July 2022, temperature
increased to 28.2 ◦C, resulting again in mortalities in both culture processes. These mortali-
ties continued their increase until they reached 100% in bouchot culture on 1 August 2022,
when surface sea water temperature reached 29.5 ◦C.
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Figure 2. Balcanic peninsula including Greece. Sampling site (red dot) Kimina site (40.474678,
22.723543) of both sampling techniques.

Ten individuals from each culture process were sampled in each effort in order to
evaluate the physiological condition of the cultured mussels. Half of the digestive gland
and mantle were extracted from each sample, stored in 1.5 mL eppendorfs and kept in
liquid nitrogen immediately after the dissection process. Thereafter, samples were stored at
−80 ◦C until further biochemical analyses.

2.2. Histopathological Procedure

The other half of the digestive gland was fixed immediately in Davidson fixative agent
for the histological scanning for potential pathogen identification, according to Shaw and
Battle [51]. After dehydration through graded alcohols, M. galloprovincialis tissues were
embedded in paraffin wax and sectioned in 5 µm using a rotary microtome. Afterwards,
staining of the samples was conducted using hematoxylin and eosin according to the
protocol of Howard et al. [52].

2.3. SDS-PAGE/Immunoblot and Dot Blot Analysis
2.3.1. Preparation of Tissue Samples

Tissue samples were homogenized (1/3 w/v) in cold lysis buffer (20mM β-glyceropho
sphate, 50 mM NaF, 2 mM EDTA, 20 mM Hepes, 0.2 mM Na3VO4, 10 mM benzamidine,
pH 7, 200 µM leupeptin, 10 µM trans-epoxy succinyl-L-leucylamido-(4-guanidino)butane,
5 mM dithiotheitol, 300 µM phenyl methyl sulfonyl fluoride (PMSF), 50 µg mL−1 pepstatin
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and 1% v/v Triton X-100). After a 30-min extraction on ice, samples were centrifuged
(10,000× g, 10 min, 4 ◦C), and the supernatants were boiled (3/1 v/v) with sample buffer
(330 mM Tris-HCl, 13% v/v glycerol, 133 mM DTT, 10% w/v SDS, 0.2% w/v bromophenol
blue). Protein concentrations were determined using the BioRad protein assay.

2.3.2. SDS-PAGE/Immunoblot

Indicators of the heat shock response (HSR) and immunological and apoptotic path-
ways were determined in mantle samples according to well-established protocols for
SDS-PAGE/immunoblot analysis. Specifically, equivalent amounts of proteins (50 µg) were
separated on 10% (w/v) acrylamide and 0.275% (w/v) bisacrylamide slab gels and trans-
ferred electrophoretically onto nitrocellulose membranes (0.45 µm, Schleicher & Schuell,
Keene, NH 03431, USA). Nonspecific binding sites on the membranes were blocked with 5%
(w/v) nonfat milk in TBST (20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.1% (v/v) Tween 20) for
30 min at room temperature. Nitrocellulose membranes resulting from the above procedure
were subjected to overnight incubation with: monoclonal mouse anti-hsp70 (H5147, Sigma,
Darmstadt, Germany), monoclonal mouse anti-hsp90 (H1775, Sigma, Darmstadt, Germany),
anti-IL-6 (CSB-PA06757A0Rb, Cusabio, Houston, TX, USA), anti-TNFα (CSB-PA07427A0Rb,
Cusabio, Houston, TX, USA), anti-Bcl2 (7973, Abcam, Cambridge, UK) and anti-Bax (B-9)
(2772, Cell Signaling, Beverly, MA, USA). Quality transfer and protein loading were assured
by Ponceau stain and actin (anti-β actin 3700, Cell Signaling, Beverly, MA, USA) (data not
shown). Antibodies were diluted as recommended by the manufacturer’s guidelines. After
washing in TBST (3 periods, 5 min each time), the blots were incubated with horseradish
peroxidase-linked secondary antibodies and washed again in TBST (3 periods, 5 min each
time), and the bands were detected using enhanced chemiluminescence (Chemicon, Darm-
stadt, Germany) with exposure to Fuji Medical X-ray films. Films were quantified by
laser-scanning densitometry (GelPro Analyzer Software, GraphPad, San Diego, CA, USA).

2.3.3. Dot Blot Analysis

Cleaved caspase levels were determined in mantle and PAM samples with the employ-
ment of a dot blot apparatus. Specifically, samples were diluted to a concentration of 5 µg
mL−1 in a saline solution (150 mM NaCl); 100 µL volumes were loaded onto a pre-soaked
nitrocellulose membrane (0.45 µm) in a dot blot vacuum (BioRad, Hercules, CA, USA) and
gravity fed through the membrane. The membrane was blocked with 5% (w/v) nonfat
milk in TBST [20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.1% (v/v) Tween 20] for 30 min
at room temperature. The resulting nitrocellulose membrane was subjected to overnight
incubation with anti-cleaved caspase antibody (Cat. No.8698 Cell Signaling, Beverly, MA,
USA). Antibodies were diluted as recommended by the manufacturer’s guidelines. After
washing in TBST (3 periods, 5 min each time), the dots were incubated with horseradish
peroxidase-linked secondary antibodies and washed again in TBST (3 periods, 5 min each
time), and the dots were detected using enhanced chemiluminescence (Chemicon, Darm-
stadt, Germany) with exposure to Fuji Medical X-ray films. Films were quantified by
laser-scanning densitometry (GelPro Analyzer Software, GraphPad, San Diego, CA, USA).

2.4. Molecular Identification of the Pathogen

For the molecular identification of the Marteilia protozoan pathogen, a small piece of
approximately 25 mg of the homogenized digestive gland and mantle tissue was subjected
to DNA extraction, using the Nucleospin Tissue DNA extraction kit (Macherey Nagel,
Düren, Germany), following the manufacturer’s guidelines. The primer pair SS2/SAS2
was used in a 10 µL volume PCR for each individual, containing 1 µL extracted DNA
of approximately 50 ng/µL concentration, 0.3 pmol of each primer, 5 µL FastGene® Taq
ReadyMix (2×) and water up to the final volume of 10 µL. Conditions were 95 ◦C for 3 min
and then 94 ◦C for 30 s, 52 ◦C for 40 s and 72 ◦C for 45 s, repeated 36 times and followed
by an extension step of 5 min at 72 ◦C. PCR products were visualized in an agarose gel
after electrophoresis stained with ethidium bromide. A previously identified Marteilis



Animals 2022, 12, 2805 6 of 18

refrigens sample [53] was utilized in each reaction as a positive control. Positive samples
were cleaned using the NucleoSpin Gel and PCR Clean-up kit (Macherey Nagel, Düren,
Germany) and bidirectionally sequenced for identification of the species.

2.5. RNA Extraction and cDNA Synthesis

Total RNA was extracted using NucleoZOL reagent (Macherey-Nagel, Düren, Ger-
many) according to the manufacturer’s instructions. The optional phase separation step
was not carried out, but all the other steps followed the protocol. Briefly, 50 mg of mantle
tissue of each mussel was manually homogenized by pestling in 500 µL NucleoZOL, and
RNAase-free water was added to the lysate. After shaking, samples were centrifuged, and
isopropanol was added to the supernatant for RNA precipitation. Subsequently, samples
were centrifuged, and two ethanol washes were performed. The washed RNA pellet was
diluted in 60 µL nuclease-free water. Total RNA was kept at −80 ◦C. RNA quality and
concentration were determined on a Quawell UV-Vis 5000 spectrophotometer (Quawell
Technology, San Jose, CA, USA). Approximately 500 ng of total RNA of each sample were
reverse transcribed, using a PrimeScript kit (Takara, Kusatsu, Shiga, Japan) and the oligodT
primers, according to the manufacturer’s protocol. cDNA concentration was measured and
the samples were kept at −20 ◦C, until the qPCR application.

2.6. Analysis of Gene Expression with Quantitative PCR

Five genes, heat shock protein 70 (hsp70), bcl-2 associated protein X (bax), B-cell
lymphoma 2 (bcl-2), Interleukin-1 receptor-associated kinase-4 (irak4) and TNF receptor-
associated factor 6 (traf6) were selected for gene expression analysis. The gene-specific
primers used in this study are listed in Table 1. The comparative CT method (2−∆∆CT) was
applied to quantify the relative expression level of the genes, using the mantle cDNA of
animals collected on the 26th of May as the control samples. Expression of target genes
was normalized with the selected reference gene (endogenous control), elongation factor
1 alpha, which was more stable than the beta actin gene. For every gene, three different
specimens from each group of mussels were run in real-time PCR. PCR reactions were
conducted using KAPA SYBR® FAST qPCR Master Mix (2× kit, in 10 µL total volume.
Each reaction contained 10 ng of mussel cDNA as template, 5 µL of KAPA SYBR® FAST
qPCR Master Mix (2×), 2 µM of each primer and PCR-grade water up to 10 µL. Runs were
performed in an Eco 48 Real-time PCR thermocycler (Illumina, San Diego, CA, USA) in
48-cell microplates.

Table 1. List of primers used in this study and their amplicon sizes and Genbank accession number.

Target Gene
Forward Primer (5′-3′)

Amplicon (bp)
GenBank Accession

Reference
Reverse Primer (5′-3′) No.

hsp70 CGGAGGCAAGCCAAAACTAC
109 AB180909.1

Giannetto
et al. [54]AGCCTCGGCAGTTTCTTTCA

bax
CCAACAGGTCCACCATTAGAAC

151 KC545830.1
Estevez-Calvar

et al. [55]CTCTTGGCCACAGTTAGGAATG

bcl-2 AGATAACGGTGGTTGGCAAG
TAACGCCATTGCGCCTAT 127 KC545829.1 Estevez-Calvar

et al. [55]

irak4
TTTGAGGAAGATGCTAAACCTG

127 KC994891.1
Toubiana
et al. [56]CAACTGAGAAACCCAAGAAAG

traf6 GAAGGCTGTAAAGTGATAGAAGTT
135 KC994893.1

Toubiana
et al. [56]CTGAGATAGATGATGAGGTAAGTC

β-actin CGACTCTGGAGATGGTGTCA
153 AF157491.1

Moreira
et al. [57]GCGGTGGTTGTGAATGAGTA

EF-1α
GATATGCGCCAGTCTTGGAT

223 AB162021
Moreira

et al. [57]CTCATGTCTCGGACAGCAAA
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2.7. Statistical Analysis

One-way analysis of variance (ANOVA) (GraphPad Instat 3.0) followed by Bonfer-
roni post hoc analysis was employed to test for significance at p < 0.05 (5%) between all
experimental groups examined herein. Since normality tests have little power to test the
homogeneity of data for small sample sizes (such as the ones described herein: n = 5),
Friedman’s nonparametric test and Dunn’s post hoc test were applied. Two-way ANOVA
(GraphPad Prism 5.0) with different aquaculture techniques and Martelia spp. presence as
fixed factors was employed to test for the significance of factor interactions.

3. Results
3.1. Histopathology and Molecular Identification of the Pathogen

The histopathological examination documented the presence of developmental stages
and mature stages in epithelium of digestive glands of M. galloprovincialis. Atrophic devel-
opment was documented in the epithelium of digestive glands in samples infected with
Marteilia refringens (Figures 3 and 4). Initial stages (nurse cells-arrow) of M. refringens sporu-
lation were detected in the epithelium of digestive tubules (Figure 3A), while mature stages
were detected in the epithelial cells of digestive glands (Figure 3B). Atrophic epithelium
along with damage in the epithelium indicates the release of sporangia from the lumen
of digestive tubules (Figure 3C,D). Strong hemocytic (star) infiltration was observed in
all samples regardless of M. refringens infection, although inflammation was observed in
samples infected with M. refringens. The presence of the pathogen in the histopatholog-
ically positive samples was confirmed by molecular examination, which was identified
as Marteilia refringens after BLAST searches of the derived sequences, exhibiting 100%
similarity with other 18S SSU rRNA M. refrigens haplotypes hosting M. galloprovincialis and
Ostrea edulis available in the GenBank database.
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Figure 3. Histological display of sampled M. galloprovincialis individuals. (A–C) represent sam-
ples from the first sampling (13 July 2022), (D–F) represent samples from the second sampling
(25 July 2022) and (G–I) are from the third sampling (1 August 2022). Regardless of the culture type
or the health condition of the samples, all samples presented heavy hemocyte infiltration (star),
while in samples infected with Marteilia refringens nodular type exhibited inflammation (arrow) and
epithelial tissue degeneration (arrowhead) [H&E staining (×20 Objective)].
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In the sampling of 13 July 2022, no infected individuals were detected in LC, indicat-
ing a 0% prevalence rate, while in TC, 1 sample was detected with marteliosis and was
characterized as heavily infected. In the sampling of 25 July 2022, the prevalence rate of
marteliosis was 20% in both culture types; in both culture types, infected individuals were
divided into light versus heavy infection rate. Finally, in the sampling of 1 August 2022,
M. refringens was detected only in LC (Table 2). The severity of M. refringens infection was
classified according to the histopathological results. Samples with a light infection rate were
characterized by the presence of young stages of the protozoan parasite in the epithelium of
the stomach and digestive tract (Figure 5), and samples with moderate infection rate were
characterized by mature parasite cells in the digestive tubules, while samples with heavy
infection rate were characterized by excessive presence of the parasite in all stages and
heavy degeneration processes in the digestive tubules. Both lightly and heavily infected by
M. refringens individuals showed similarly increased biochemical responses presented later,
compared with the non-infected individuals. Likewise, no obvious correlation could be
established between the rate of infection and the culture type (LC and TC)

Table 2. Classification of Marteilia refringens infection.

Sampling Date
Infection Rate

Heavy Moderate Light

13 July 2022 + − −
25 July 2022 + − +

1 August 2022 − − +
(+) represents presence and (−) absence of Marteilia refringens.
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3.2. Heat Shock Response

A generally increasing pattern was observed in hsp70 gene expression, the levels of
which increased in all samplings compared with the one in May. Specifically, the 25 July
exhibited the highest values. While only on 1 August was TC statistically higher than
LC, in general, samples infected by Martelia spp. exhibited lower hsp70 expression levels
compared with non-infected individuals (Figure 6).
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Figure 6. Relative hsp70 mRNA expression levels in the mantle of M. galloprovincialis specimens,
either infected with Martelia spp. (M) or not. Samples were collected from Thermaikos Gulf during
a summer heatwave both from traditional culture-Bouchot (TC) and long-line system (LC). Values
represent means ± SD; n = 5 preparations from different animals. Lower case letters indicate
statistically significant differences (p < 0.05) between samples.

Hsp70 and Hsp90 induction levels followed a similar pattern to that of the hsp70
gene expression regarding levels compared with the sampling from May. Specifically,
samplings on 13 and 25 July and 1 August exhibited statistically significant increases in
both Hsp70 and Hsp90 compared with May. Non-infected individuals exhibited higher
Hsp70 levels in August and higher Hsp90 levels on 13 July. Regarding the different
culture techniques, while Hsp90 exhibited no significant differences, interestingly, TC Hsp
70 levels were increased compared with LC in the 25 July and 1 August samplings. Both
proteins however, exhibited statistically significant increased levels in Martelia spp.-infected
individuals compared with non-infected at all sampling points (Figure 7).
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Figure 7. Hsp70 and Hsp90 levels in the mantle of M. galloprovincialis specimens, either infected by
Martelia spp. (M) or not. Samples were collected from Thermaikos gulf during a summer heatwave
both from traditional culture-Bouchot (TC) and long-line system (LC). Representative blots are shown.
Values represent means ± SD; n = 5 preparations from different animals. Lower case letters indicate
statistically significant differences (p < 0.05) between samples. Original blots: Figure S1.

3.3. Apoptosis

Regarding bax gene expression, its levels increased in all samplings compared with
May, exhibiting the effect of the thermal stress. However, significant differences between TC
and LC were only observed on 25 July and 1 August (TC > LC and LC > TC, respectively).
Interestingly, individuals infected with Martelia spp. exhibited the same or lower levels of
bax gene expression compared with non-infected individuals (Figure 8).
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Figure 8. Relative bax and bcl-2 mRNA expression levels in the mantle of M. galloprovincialis spec-
imens, either infected by Martelia spp. (M) or not. Samples were collected from Thermaikos gulf
during a summer heatwave both from traditional culture-Bouchot (TC) and long-line system (LC).
Values represent means ± SD; n = 5 preparations from different animals. Lower case letters indicate
statistically significant differences (p < 0.05) between samples.

On the other hand, bcl-2 gene expression exhibited the same or lower levels compared
with the sampling from May. The latter exhibits the effect of thermal stress on the sup-
pression of the anti-apoptotic bcl-2 gene expression. While in both July samplings, TC was
significantly higher compared to LC, interestingly, an opposite pattern was observed on
1 August. Similar to bax gene expression, Martelia-positive individuals exhibited the same
or lower levels of bcl-2 gene expression compared with non-infected individuals (Figure 8).
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Bax/Bcl-2 ratio exhibited statistically significant increased levels at all sampling points
compared with May, indicating increased apoptotic processes. TC was higher on 13 July
and 1 August compared with LC, while the opposite pattern was exhibited on the 25 July.
All Martelia spp.-infected individuals exhibited increased Bax/Bcl-2 ratio levels compared
with non-infected individuals. While LC non-infected individuals exhibited no differences
from 13 July to August, TC non-infected individuals exhibited their highest levels on 13 July
(Figure 9).
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Figure 9. Bax/Bcl-2 ratios and cleaved caspase levels in the mantle of M. galloprovincialis specimens,
either infected by Martelia spp. (M) or not. Samples were collected from Thermaikos Gulf during
a summer heatwave both from traditional culture-Bouchot (TC) and long-line system (LC). Repre-
sentative blots and dots are shown. Values represent means ± SD; n = 5 preparations from different
animals. Lower case letters indicate statistically significant differences (p < 0.05) between samples.
Original blots: Figures S2 and S3.

Cleaved caspase levels, determining the apoptotic fate of the cell, were also statistically
higher at all sampling points compared with May, depicting the heatwave’s devastating
effect. While no statistical differences were observed between LC and TC non-infected
individuals, 13 and 25 July exhibited higher caspases levels compared with 1 August.
Again, all Martelia spp.-infected individuals exhibited increased cleaved caspase conjugate
levels compared with non-infected individuals (Figure 9).

3.4. Immunology

In general, irak4 gene expression levels increased in all samplings compared with
May. Once again, the increase in these genes related to immunological processes during
the heatwave underline that this phenomenon placed significant stress on the mussels.
Regarding non-infected individuals, the heatwave differentially affected LC and TC. Indi-
viduals infected with Martelia spp. exhibited increased levels only on 13 July compared
with non-infected individuals, while those on 25 July and 1 August exhibited the opposite
pattern, which was also observed regarding the traf6 gene expression levels (Figure 8).
Likewise, traf6 gene expression exhibited the same seasonal pattern of expression as that of
irak4 (Figure 10).
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Figure 10. Relative irak4 and traf6 mRNA expression levels in the mantle of M. galloprovincialis
specimens, either infected by Martelia spp. (M) or not. Samples were collected from Thermaikos Gulf
during a summer heatwave both from traditional culture-Bouchot (TC) and long-line system (LC).
Values represent means ± SD; n = 5 preparations from different animals. Lower case letters indicate
statistically significant differences (p < 0.05) between samples.

As expected, post-translational immunological indicators were also statistically in-
creased during the heatwave. Specifically, TNFα levels exhibited statistically significantly
increased levels at all sampling points compared with May, with the highest levels observed
on 25 July. While no statistical differences were observed between LC and TC non-infected
individuals on 13 and 25 July, on 1 August, LC was statistically higher than TC. All Martelia
spp.-infected individuals exhibited increased TNFα and Il-6 levels compared with non-
infected individuals (Figure 9). Il-6 levels exhibited statistically significant increased levels
at all sampling points compared to May, with the highest levels observed on 13 July. While
no statistical differences were observed between LC and TC non-infected individuals on
13 and 25 July, on 1 August TC was statistically higher than LC (Figure 11).
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Figure 11. TNFα and Il-6 levels in the mantle of M. galloprovincialis specimens, either infected by
Martelia spp. (M) or not. Samples were collected from Thermaikos Gulf during a summer heatwave
both from traditional culture-Bouchot (TC) and long-line system (LC). Representative blots are shown.
Values represent means ± SD; n = 5 preparations from different animals. Lower case letters indicate
statistically significant differences (p < 0.05) between samples. Original blots: Figure S4.

4. Discussion

To the best of our knowledge, this study represents the first attempt directly performed
in the field to elucidate the mortality of cultured mussels M. galloprovincialis due to syn-
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ergistic effects of marteliosis and heatwave exposure in Thermaikos Gulf. Marteliosis or
‘’Aber disease” has been correlated with mortalities in Greek shellfish populations in the
past in M. galloprovincialis and O. edulis [46,58]. However, disease etiology is considered
complex in the concomitant presence of microorganisms and the ongoing rapid climate
changes [59,60]. M. refringens dynamics in Mediterranean marine bivalve species are cor-
related with temperature rise [61]. Although the multiplication and transmission of the
parasite are triggered at temperatures above 17 ◦C, many studies have indicated that the
parasite seems to be abundant at mature stages also when exposed to winter tempera-
tures [61–63]. The presence of protozoan parasites and specifically M. refringens has been
associated many times with down-regulation in the physiology and immune responses of
marine bivalves [60,64,65]. Apart from the presence of pathogenic microorganisms that
affect the physiology of the marine bivalves, abiotic factors also possess a key role in the
physiology of the marine organisms [4]. Acute and prolonged thermal stress resulting
from marine heatwaves have been related to higher energy costs due to increased oxygen
consumption [66] and higher antioxidant responses due to increased ROS production (at
temperatures beyond 26 ◦C) [67,68]. High, steady ROS production in combination with
higher energy costs may trigger mortality in M. galloprovincialis [19]. Regarding immune
responses of marine bivalves, temperature fundamentally affects their immune system. For
example, low total hemocyte count was demonstrated when Chamelea gallina was exposed
to increased temperatures [69]. Moreover, phagocytic activity was also induced by higher
temperatures alongside with lysozyme activity at increased temperatures [69].

Concerning the results of the current study, histopathological analysis documented
induced hemocytic infiltration at all exposure conditions and especially in samples infected
with M. refringens. However, increased hemocytic activity in individuals without the pres-
ence of the parasite may be induced by heat stress as a result of elevated temperatures [70].
Regarding the disruption, the thickness in the epithelial tissue and the inflammation in
infected individuals, our results are in agreement with Carella et al. [71], who demonstrated
the same results in infected individuals. The existence of all life stages of the parasite in
both culture techniques (TC and LC) is confirming the implication of the parasite’s role in
the mortalities and is in agreement with a previous study conducted in Thermaikos Gulf
in 2006, verifying the existence of the parasite [58]. Despite the hemocytic infiltration in
almost each sample, histopathological display confirmed the presence of the parasite as
etiological agent of the degeneration process alongside the epithelial tissue.

Furthermore, the results of the present study concerning biochemical indicators are in
line with other studies demonstrating the cumulative effects of multiple stressors [60,72,73].
Particularly, Hsp70 and Hsp90 demonstrated a similar pattern in each sampling in both
culture techniques. Moreover, individuals infected by M. refringens, exhibited higher levels
of expression of these genes than the non-infected ones. The higher expression pattern
of both Hsps indicates the important roles they have in enabling cells to adapt to various
stressors and maintaining normal cellular functions by counteracting misfolded cellular
proteins [74]. Regarding the function of apoptosis, the ratio of pro-apoptotic (Bax) and
pro-survival (Bcl-2) proteins, which is responsible for caspase activation, demonstrated
the significant increase in M. refringens infected mussels in comparison with non-infected
ones. Cleaved caspase levels followed the same pattern as the Bax/Bcl-2 ratio, exhibiting a
“constant” pattern of apoptotic pathway stages in infected individuals. The aforementioned
results lead to the conclusion that the activation of apoptosis is implicated in infection with
M. refringens [75]. Similarly, TNF-a, which is produced to induce an inflammatory response,
exhibited its involvement in M. refringens-infected individuals of M. galloprovincialis [76],
although not in any seasonal pattern. The latter shows that heatwave as a sole stress
factor does not trigger this stressor’s induction. Although Il-6, which is also an important
mediator in immune responses, and its induction pattern confirm its implication in the
inflammation process during M. refringens infection, the results of the present study are in
contrast to Lattos et al. [60]. The latter did not demonstrate any significant differences in
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Il-6 levels in individuals facing multiple stressors in comparison with individuals infected
only with one pathogen.

Apart from the post-translational level studies herein, mRNA expression was also
determined in order to assess the transcription part of the protein expression process.
Despite their role as environmental biomarkers, Hsps also play a vital role in several
physiological processes such as gametogenesis, embryogenesis and metamorphosis in
marine bivalve species [77,78]. In the case of mRNA expression, hsp70 did not exhibit any
significant differences between M. refingens-infected and non-infected animals. Specifically,
non-infected animals exhibited higher expression levels. This fact can be attributed to their
role in promoting immune responses involved in cellular protection against several stress
factors including pathogens [79]. On the other hand, it should be highlighted that Hsps
expression against stress factors varies and is in direct correlation with the involved stress
factor [79]. Regarding gene expression related to the apoptotic pathway, no significant
differences were observed regarding any of the different conditions examined: infection
status, seasonality, culture technique. Our results depict a correlation of Hsp70-induced
levels with reduced seasonal pattern expression of Bax [80]. The latter can be attributed to
the fact that although apoptosis is induced by heat stress in marine invertebrates, Hsp70
has been shown to possess an anti-apoptotic function [80,81]. Similarly, irak4 and traf6 did
not exhibit any seasonal pattern or any pattern with correlation with M. refringens.

The discrepancy between transcriptional and post-translational levels in the proteins
measured in the present study can be attributed to the fact that mRNA levels do not
accurately predict protein levels in eukaryotic cells. The latter is the case for our study,
which exhibits a weak correlation between transcription and translation products’ levels,
and therefore our results are in compliance with recent studies on eukaryotic cells that
exhibit a discrepancy between mRNA and protein levels [82–84]. Most of the biochemical
indicators measured herein are the result of versatile transcription and/or translation
and post-translational regulation [85–87]. It could also be that the intense and sudden
stress that mussels faced during temperature raise prohibited the defense mechanisms
reflected in mRNA-measured gene expression from re-triggering leading to mortality
events observed. Although the molecular mechanisms underlying widespread differences
in translational efficiency are poorly understood, it is accepted that proteome regulation
is the primary output of signaling pathways that connect cell physiology to internal and
external environmental cues. Thus, gene-specific differences in translation are at least as
important as transcriptional control in determining steady-state protein levels [88].

5. Conclusions

Since heatwaves are expected to be more often and severe due to ongoing climate
change, drastic measures are required to ameliorate their impact on marine organisms.
Moreover, the infection of marine organisms by pathogens that are favored by these
heatwaves subsequently leads to a dramatic loss in marine production due to extensive
mortalities. To this end, the present study aimed to identify the molecular and biochemical
pathways, as well as histopathological findings induced under these extreme conditions,
in order to provide insights for the future management of the marine and in general
aquatic sectors. Although the heatwave increased all the above-mentioned parameters
in M. galloprovincialis mussels, these responses as well as mortalities were enhanced in
infected individuals under all culture techniques. The lightly and heavily infected by M.
refringens individuals showed similarly increased biochemical responses in both LC and TC
(compared with the non-infected mussels), revealing a stress response depending merely
on the presence of the parasite. Therefore, our results evaluate for the first time the stress
response of M. galloprovincialis under field conditions against this biotic factor, elucidating
its biological impact. Because the concomitant effect of heatwave and M. refingens infection
has led to devastating results regarding M. galloprovincialis in northern Greece’s farms in
2020 and 2021, it is of critical importance to fully address measures for the decrease or
elimination of this phenomenon and restore marine production and the results described
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in this study are towards this scope. Finally, chronic exposure of mussels to heatwave
phenomena is a field of research that should be investigated in future studies to incorporate
such measures.
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individual parts comprising Figure 11 are specified using black boxes.
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