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In response to mechanical forces and the aging process, bone in the adult skeleton is
continuously remodeled by a process in which old and damaged bone is removed by
bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming
cells, osteoblasts. During this essential process of bone remodeling, osteoclastic
resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells,
multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic
lineage and their differentiation is driven by distinct signaling molecules and transcription
factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-
CSF) and Receptor Activator Nuclear Factor-kB Ligand (RANKL). Besides their resorption
activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast
precursors to the bone surface, regulating thus the whole process of bone remodeling.
Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved
in numerous molecular and signaling pathways, have significant role in osteoblast-
osteoclast communication and significantly impact bone remodeling. It is well known
that BMPs help to maintain healthy bone by stimulating osteoblast mineralization,
differentiation and survival. Recently, increasing evidence indicates that BMPs not only
help in the anabolic part of bone remodeling process but also significantly influence bone
catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased
osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates
coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The
dual effect of BMPs on bone mineralization and resorption highlights the essential role of
BMP signaling in bone homeostasis and they also appear to be involved in pathological
processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and
-7) were approved for clinical use; however, increased bone resorption rather than
formation were observed in clinical applications, suggesting the role BMPs have in
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osteoclast activation and subsequent osteolysis. Here, we summarize the current
knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone
remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical
application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Keywords: BMPs, osteoclast differentiation, bone resorption, osteoblast-osteoclast coupling, bone fracture
healing, recombinant BMP therapy
INTRODUCTION

Bone homeostasis can be defined through balance of bone
formation and bone resorption. In bone remodeling, a
continuous and dynamic process that is going on throughout
life, old or damaged mineralized bone is removed by bone-
resorbing cells, osteoclasts, and is replaced by new bone matrix
(osteoid) made by osteoblasts. Osteoid subsequently becomes
fully mineralized bone tissue (1).

Bone morphogenetic proteins (BMPs) were first discovered in
1965 by Marshall Urist as endogenous factors which could
induce ectopic bone formation (2). Subsequent research
confirmed the role of BMPs in bone formation (3, 4). Today, it
is known that all BMPs do not have the same effect and some of
them do not induce ectopic bone formation, but for osteogenic
BMPs, namely BMP2, -4, -5, -6, -7 and -9, bone-inducing
properties in vitro and in vivo have been shown (5, 6). While
most of earlier research was focused on effect of BMPs on bone
forming cells, like osteo- and chondroprogenitors, increasing
evidence indicates that BMPs effect osteoclasts as well,
influencing also bone resorption and impacting thus the
overall bone homeostasis. In this review, we focused on the
role of BMPs on osteoclast differentiation and function and
subsequently on bone resorption, as observed on in vivo and in
vitro models.
GENERAL ASPECTS OF BMP FAMILY

BMPs are secreted signaling molecules which belong to the large
protein family consisting of more than 30 ligands, called
transforming growth factor-b (TGFb) superfamily (7, 8) and
comprise an evolutionary conserved family of cytokines required
for numerous developmental processes. Among the TGFb
superfamily members, the bone-formation activity is unique to
BMPs (9); however, it was shown that BMPs have many other
biological activities (10). Since their isolation as promotors of
bone and cartilage formation, BMPs have been extensively
studied and, besides their confirmed role in bone and cartilage,
have been found to hold multiple functions in the embryonic
development of other tissues and organ systems, including blood
vessels, brain, liver, heart, lung, gut, limb, eye, teeth, or kidney.
The role of BMP family members in development was confirmed
when the deletion of some Bmp genes (including Bmp2 and
Bmp4) and their receptors resulted in early embryonic lethality,
at the beginning of the development of most gastrointestinal
organs (11). Although most BMPs are expressed in a diversity of
org 2
tissues during embryogenesis (12–14), the expression of some
BMP members becomes limited to specific tissues after
birth (15).

BMP family members have been identified in vertebrates and
invertebrates. Among vertebrates, BMPs have highly conserved
structures shared by the members of the TGFb superfamily.
Based on structural homology and known functions, the BMP
family members can be further classified into several subgroups,
including the BMP2/4 group, BMP5/6/7/8 group, BMP9/10
group, and BMP12/13/14 group. BMP-3, -4, -5, and -6 are
highly expressed in lung, whereas BMP7 is mostly expressed in
kidney of human embryos (12, 15) and of adult mice (16).
Further, BMP4, -7, and -14 are important for proper
reproductive tissue development and BMP2, -3, and -7
contribute to cartilage regeneration (17). In vitro experiments
using pluripotent mesenchymal progenitor C3H10T1/2 cells and
preosteoblastic C2C12 cells showed that BMP-2, -6, and -9
exhibit high ability to induce both early and late osteogenic
markers as well as matrix mineralization, while most BMPs can
effectively promote the terminal differentiation of committed
osteoblastic precursors and osteoblasts (18, 19). In contrast to
other BMPs, BMP3 has been proposed to act as an inhibitor of
osteogenic BMPs and antagonizes the osteogenic activity of
BMP-2, -4, -6, -7, and -9 (20), while deletion of Bmp3 gene
results in increased skeletal bone volume (21).

Before being secreted into extracellular space where they
become active, BMPs, as well as other TGFb superfamily
members, are first synthesized and folded as precursor proteins
in the cytoplasm. BMP precursors form dimers that are
subsequently cleaved by proteases during secretion of mature
BMP into extracellular space (22). Mature BMPs are secreted as
monomers which contain three intramolecular disulfide bonds,
whereas fourth disulfide bond dimerizes with another BMP
monomer, producing a biologically active dimer which
activates corresponding BMP receptors (23, 24).

BMPs have been shown to be activated through reassembling
with their prodomain in the process where antagonistic proteins
and decoy receptors modulate BMP activity (25). In contrast,
TGFb proteins form a latency complex where TGFb in inactive
form as homodimer, bound by latency-associated peptide (LAP)
and latent TGFb binding protein (LTBP), forms large latent
complex (LLC) (26). For its activation, the noncovalent bond
between LAP and TGFb has to be disrupted. Among many
activators of TGFb, a significant role belongs to BMP1. Although
able to induce bone and cartilage, BMP1 is not part of the TGFb
superfamily of proteins. Instead, it possesses a metalloproteinase
structure and acts as a procollagen C-proteinase which regulates
April 2022 | Volume 13 | Article 869422
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collagen maturation (27, 28). In a process of TGFb activation,
BMP1 cleaves LTBP at two distinct sites enabling thus
subsequent cleavage of LAP by other matrix metalloproteinases
and liberation of active TGFb which can then exert its biological
functions (29). BMP1 appears to be not only the activator of
TGFb, but is also a significant regulator of its activity (30, 31).

Like other TGFb superfamily members, BMPs induce their
effects through two types of serine-threonine kinase
transmembrane receptors, type I and type II receptors. Upon
binding to the receptors, a heterotetrameric complex is formed,
consisting of two dimers of type I and type II receptors (32).
BMPs are able of binding to type I receptors in the absence of
type II receptors but their binding affinity increases when both
type I and type II receptors are present (33). Activated receptor
complexes at the cell surface activate two main types of
intracellular pathways, canonical (SMAD-dependent signaling
pathway) or non-canonical (p38 mitogen-activated protein
kinase, p38 MAPK) (34, 35). Canonical signaling pathway is
highly conserved and involves three types of intracellular signal
transducer SMAD molecules. Phosphorylated SMAD proteins
form complex accumulating in the nucleus, where it binds to the
responsive DNA elements and regulates target gene expression
(36). On the other hand, non-canonical pathway includes
activation of different pathways associated with various protein
kinases, like Rho-GTPase, JNK/P38, PI3K/AKT, and MAPK
pathway (37).
OSTEOCLAST DIFFERENTIATION AND
IN VITRO MODELS

Osteoclasts, cells primarily responsible for bone resorption,
develop from hematopoietic stem cells in bone marrow, passing
through several stages of differentiation (38). The two main
differentiation factors that drive osteoclast maturation are
Macrophage Colony Stimulating Factor (M-CSF) and Receptor-
Activated Nuclear kB ligand (RANKL) (39–41), recognized by
RANK (a RANKL receptor) expressed on osteoclast surface (42).
During maturation, pre-osteoclasts differentiate into mononuclear
cells expressing tartrate-resistant acid phosphatase (TRAP), and
those TRAP-positive, mononuclear cells then fuse together into
giant, multinucleated and polarized mature osteoclasts which can
degrade skeletal matrix by secreting lytic enzymes (42, 43). The
process of preosteoclast fusion is mediated by transmembrane
protein DC-STAMP (44). Bone resorption occurs at the ruffled
border, a morphological structure specific for mature osteoclasts
consisting of complex folds of plasma membrane surrounded by
an actin ring, adherently to the bone surface (45) (Figure 1).
Osteoclast formation and subsequent bone resorption are
inhibited by osteoprotegerin (OPG), a soluble factor produced
by osteoblasts (41, 46).

Bone cell morphology, differentiation patterns and signal
transduction are studied using widely used bone cell cultures
as models in vitro. Single cell-type culture is commonly used,
however, this model cannot reliably reproduce signal
transduction between different cell types. On the other hand,
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simultaneous presence of osteoblasts and osteoclasts can mimic
cellular cross-talk and mechanisms of intercel lular
communication (47). In preclinical studies, usage of co-culture
of osteoblasts and osteoclasts is advantageous as it presents more
relevant model of bone remodeling process (48).

When describing co-cultures of osteoblasts and osteoclasts,
indirect or direct models can be utilized. In indirect models, use
of conditioned media (media from one cell type transferred to
the other) or transwell inserts, which provide two culture
surfaces in the same well by the use of permeable insert, allow
the exchange of soluble factors, but without a direct contact
between two cell types. Direct co-cultures imply both cell types
on the same surface, in two-dimensional (2D) cell culture, or in a
three-dimensional scaffold, which allows the immediate physical
contact between cell types and enables exploring the effects of
membrane-bound signaling factors (49).

Differentiation of osteoclasts is under control of osteoblast
paracrine factors, such as RANKL, interleukins (IL) 1 and 6 and
Tumor necrosis factor a (TNFa) (50). Another important way of
intercellular communication is direct cellular contact between
osteoblasts and osteoclasts, driven mainly by Ephrin, Semaphorin
3A and FAS ligand-activated pathways (51). However, osteoclasts
also in turn influenceosteoblasts by secretingdiffusible factors suchas
sphingosine-1-phosphate, Semaphorin 4D, platelet-derived growth
factor and others, as well as by releasing growth factors from
extracellular matrix (ECM) during bone resorption, in particular
TGFb1 and insulin-like growth factor (IGF-1) (50, 51). Additionally,
osteocytes, cells derived from osteoblasts and embedded in bone
matrix, secrete sclerostin (SOST), a protein which inhibits osteoblast
differentiation but stimulates osteoclastogenesis (52) (Figure 2).
TGFb, a multifunctional cytokine, has been demonstrated to
regulate osteoclastogenesis; however, its role in osteoclast
maturation appears to be very complex, since TGFb has both
stimulatory and inhibitory effect on osteoclast precursors and
mature osteoclasts (53–55), depending also on intracellular
signaling pathways activated upon its binding to the cell surface (56).
ROLE OF OSTEOCLASTS IN BONE
REMODELING

Bone remodeling process consists of several phases: 1) recruitment
and activation of preosteoclasts and their differentiation into
osteoclasts, 2) resorption of the mineralized matrix by mature
osteoclasts through acidification of extracellular environment, 3)
reversal - end of resorption process, apoptosis of osteoclasts and
recruitment of preosteoblasts, and 4) deposition of osteoid by
mature osteoblasts and subsequent mineralization (48, 57). Upon
mineralization, mature osteoblasts undergo apoptosis or
differentiate into quiescent osteocytes (58). The majority of new
bone formation takes place on resorbed bone surfaces (59) and
sites of bone remodeling activity are called basic multicellular units
(BMUs), distributed throughout the skeleton in different stages of
remodeling cycle, i.e. asynchronously (60).

Bone resorption is followed by bone formation in tightly
controlled coupling process in order to preserve bone balance
April 2022 | Volume 13 | Article 869422

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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and prevent bone loss (59). As unique cell type which have
capability to resorb mineralized bone matrix, osteoclasts have the
crucial role in bone remodeling. The dissolution of bone mineral
matrix (composed mainly of crystalline hydroxyapatite) is
possible due to the osteoclast secretion of hydrochloric acid
into resorption lacunae (61). However, besides their catabolic
role in bone homeostasis, evidence from human diseases and
mouse genetic models indicate that osteoclasts also have anabolic
role in this process by coupling activity with osteoblasts (62, 63).
Independently of their resorption activity, osteoclasts secrete
coupling factors which most likely promote recruitment of
osteoblast precursors to the bone surface (60). Osteogenesis-
related mRNAs in osteoblasts (Alph, RunX2, Col1) are up-
regulated in co-culture of osteoblasts and osteoclasts,
indicating their mutual influence (64).
Frontiers in Immunology | www.frontiersin.org 4
Among wide variety of potential coupling factors [presented
in (60)], BMPs have significant role in this process, and central
role might have BMP receptor type IA (65), as seen from studies
on animal knockout models. Mice with deletion of BMPRIA in
osteoclasts showed increased osteoblastic bone formation, which
suggests that BMPRIA signaling in osteoclasts negatively
regulates osteoblast differentiation and bone mass (66, 67).
Another study demonstrated that BMPRIA deletion changed
expression of several genes involved in osteoblast-osteoclast
communication, notably Cx43/Gja1 which encodes one of gap
junction proteins (50). Recently, SMAD1/5 suggested to be
regulatory pathway for osteoblast-osteoclast coupling via WNT
and sphingosine kinase (SPHK1) (68). Collectively, BMPs act as
important mediators in osteoblast-osteoclast communication
and thus balance the rate of bone remodeling process (69),
FIGURE 1 | Schematic representation of osteoclast differentiation. Macrophage Colony Stimulating Factor (M-CSF) induces hematopoietic stem cells to become
osteoclast precursors, which, under influence of Receptor-Activated Nuclear kB ligand (RANKL) develop into mononucleated osteoclasts. Further, mononucleated
osteoclasts undergo fusion, mediated by DC-STAMP protein, into giant multinucleated osteoclasts, which then, upon interaction with osteoblasts, differentiate into
mature bone-resorbing osteoclasts with ruffled border, which secrete acids and matrix metalloproteinases. Image created with BioRender.com.
FIGURE 2 | Interaction between osteoblasts and osteoclasts in bone remodeling process. Differentiated, mature osteoclasts secrete acids and matrix metalloproteinases
which degrade mineralized bone. Bone resorption mediated by osteoclasts releases TGFb and IGF-1 from bone matrix, which induce osteoblast activity and subsequent
bone formation. M-CSF, RANKL and OPG secreted by osteoblasts additionally influence osteoclast differentiation and activity. In turn, osteoclasts secrete various factors
which positively (S1P, PDGF) or negatively (SEMA4D) influence osteoblast differentiation. At the end of demineralization process, osteoblast precursors (preosteoblasts)
are recruited at the resorption site, differentiating into mature osteoblasts which then form new, unmineralized matrix (osteoid). Upon mineralization, mature osteoblast
differentiate into osteocytes which secrete sclerostin, additionally stimulating osteoclastogenesis but inhibiting osteoblast differentiation. OPG, osteoprotegerin; TGFb,
transforming growth factor b; IGF-1, insulin-like growth factor 1; S1P, sphingosine-1-phosphate; PDGF, platelet-derived growth factor; SEMA4D, semaphorin 4D; SOST,
sclerostin. Image created by BioRender.com.
April 2022 | Volume 13 | Article 869422
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which could be of significant importance when considering
potential therapies targeting BMP signaling pathways (65).
BMPs AND OSTEOCLASTS – MODELS
IN VIVO

Better understanding of the important role of BMPs on skeletal
development and bone homeostasis came from studies on
genetically manipulated mice with global or conditional
deletion of some of BMP ligands or their receptors (70, 71).
Bmp genes and their downstream signal transducers are
expressed early during development, before gastrulation (11).
The critical role of BMP signaling during bone formation and
developmental processes of whole body has been elucidated
through numerous studies on genetically modified mice with
conditional or global deletions of various Bmp genes. While
some of global BMP deletions (BMP5, BMP6) have minor
impact on development, complete loss of function of some
BMPs results in prenatal (BMP2, BMP4) or early postnatal
death (BMP7) (Table 1). To avoid embryonic lethality, for
genetical studies on BMPs in mice a conditional knockout
system (Cre-LoxP) has been used in further studies (80).

Among BMP knockout models listed in Table 1, BMP2 is most
extensively studied. Conditional ablation of BMP2 in skeletally adult
mice revealed that BMP2 affects functions in both osteoblasts and
osteoclasts, with its deletion, in combination with deletion of BMP4,
leading to the diminished osteoid formation and trabecular bone
loss (74). Similar to BMP2 knockout, BMP4 knockout mice die
before birth and show abnormal mesodermal differentiation (75).
Interestingly, in contrast to BMP2 conditional deletion in
chondrocytes, conditional deletion of BMP4 in these cells shows
only minor changes in cartilage phenotype (73). During limb
development in Bmp2, Bmp4 and Bmp7 conditional knockout
mice, initiation of chondrogenesis and chondrogenic
differentiation starts in the absence of both BMP2 and BMP4 or
BMP2 and BMP7, however, both, BMP2 and BMP4 together are
required for completion of osteogenesis (81). An opposite animal
model, mice with overexpression of Bmp4 in osteoblasts developed
osteopenia due to the increased osteoclastogenesis, implicating
mutual influence between main bone cell types (82). It must be
Frontiers in Immunology | www.frontiersin.org 5
emphasized that BMP-induced ectopic bone formation does not
mirror the real situation in bone microenvironment, since bone
formation at ectopic site initially does not include osteoclasts, which
are a significant factor not only in bone resorption, but also in new
bone formation and its homeostasis (83).

Besides deletions of BMP ligands, models with mutations in
BMP receptors were especially useful in studies of BMP
signaling. Complete loss of BMP receptor type 1A due to the
null mutation in Bmpr1A gene causes embryonic lethality and
no mesoderm formation (84). However, conditional deletion of
this gene targeted to osteoclasts caused increased bone volume
and increased osteoblastic bone formation, indicating important
role BMP signaling might have in osteoblast-osteoclast
communication (67). Other transgenic mouse models involving
BMP receptor genes are discussed in more detail in the
subheading “BMP signaling “later in this review.
BMP FUNCTION IN OSTEOCLASTS

It is known that BMPs coordinate many developmental
processes, including body axis determination, germ layer
specification and tissue morphogenesis (85), and that BMP
signaling pathway remained conserved during evolution across
distant animal species. In the cell, BMPs are produced as
precursor proteins, consisting of a signal peptide, pro-domain
and mature peptide. Upon cleavage of the signal peptide,
precursor protein undergoes glycosylation and dimerization
inside cytoplasm and is secreted in dimeric form as mature
protein, whereas the pro-domain is cleaved (86). On the cell
surface, BMPs bind to Type I or Type II BMP receptors which
are transmembrane proteins with intracellular serine/threonine
kinase domain. Activated receptors then mediate signal
transduction mainly via canonical SMAD-dependent signaling
pathway (SMAD 1/5/8 or SMAD 2/3) (87, 88).

The role of BMPs in bone formation is well described in
literature (89). BMP2, -4, -5, -6, -7 and -9 exhibit high osteogenic
activity (5, 34). It is known that BMP2 and -7 increase
osteoblastic differentiation markers (34, 90), and that BMP
signaling promotes chondrocyte differentiation (91). By acting
on osteoblasts and chondrocytes, BMPs enable process of
TABLE 1 | An overview of BMP knockout rodent models.

Bmp ligand deleted Type of deletion Phenotype Reference

BMP2 Global Lethal - abnormal cardiac development (72)
Conditional (chondrocytes) Chondrodysplasia (73)
Conditional (skeletally mature mice) Trabecular bone loss (74)

Diminished osteoid formation
Impaired both osteoblast and osteoclast function

BMP4 Global Lethal - abnormal mesodermal differentiation (75)
Conditional (chondrocytes) Minor effects on cartilage phenotype (73)

BMP5 Nonsense mutation (naturally occurred) Short ear phenotype and brachypodism due to the slowed formation of new cartilage (76)
BMP6 Global Minor sternal defects (77)
BMP7 Global Underdeveloped kidney mesenchyme, no eye development (78)

Skeletal patterning defects (79)
Lethal due to the kidney failure
April 2022 | Volume 13 | Art
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Bordukalo-Nikšić et al. BMPs in Osteoclasts
endochondral bone formation and ossification (92). In
osteoblasts, BMPs act in a complex interaction with several
signaling pathways, including Wnt, Notch, Hedgehog and FGF
(89, 93). Loss of BMP function caused by genetic deletion of
certain BMP genes and BMP receptors induces multiple skeletal
defects in various mouse genetic models (80).

BMP activity in bone cells is additionally regulated by several
proteins which act as BMP antagonists. The most important
BMP inhibitors are noggin and chordin, which bind BMPs
(especially BMP2 and -4) with high affinity, preventing thus
their interaction with receptors (94). Addition of noggin to bone
marrow cultures inhibited both osteoblast and osteoclast
formation, whereas addition of noggin-specific antibody
increased osteoblast progenitor formation (69). Hence, BMPs,
in balance with noggin as their main antagonist, may provide
baseline control for the bone remodeling rate (95).

Extracellular matrix is another important regulator of BMP
biological activity in bone (96). Binding of TGFb proteins to type
IV collagen, a major component of ECM of basement
membrane, has been demonstrated (97), as well as binding of
BMP4 (98) and BMP7 (15). Besides collagen, other ECM
components, such as small leucine-rich proteoglycans and
fibrillins, can also bind BMPs and thus act as regulators of
their bioavailability in the extracellular space (26, 34, 99).
Extracellular BMP-binding components can act as its
inhibitors by sequestering BMPs from their target cellular
receptors, but can also promote BMP signaling by different
mechanisms (100).

Although the role of BMPs in osteoblast maturation and
function is well-known, their role in osteoclasts is not so
extensively studied (92). Several studies demonstrated that
osteoclasts endogenously express several BMP ligands (BMP2,
BMP4, BMP6 and BMP7), BMP receptors (BMPR1A, BMPR1B
and BMPR2) and SMAD proteins (57, 101–103). In particular,
there are several studies underlining the role of BMP2 and BMP4
in osteoclastogenesis and bone resorption (82, 102–105).
Transgenic mice overexpressing Noggin (inhibitor of BMP
action) in osteoblasts showed decreased bone formation rate
and significant decrease in osteoclast number, implicating the
important role of BMP signaling in osteoclasts as well as in
osteoblasts (82). Osteoclasts and osteoclast precursors express
BMP receptors, which was confirmed in numerous studies (57,
67, 102, 103). These receptors are of key importance for
intracellular BMP signal transduction, a process which enables
BMPs to exert different effects on osteoclast maturation
and function.

Various studies demonstrated different effects of particular
BMPs on osteoclasts, depending on the model used and type of
experimental cell treatment (Table 2). Most of studies performed
so far report stimulatory effect of BMPs on osteoclast formation
(117). In the following sub-section, the effect of most frequently
studied BMPs on osteoclasts will be presented, which is also
summarized in Figure 3.

Bmp2
BMP2, which has been the most studied of BMPs in osteoclasts
as well as in osteoblasts, initially demonstrated stimulatory effect
Frontiers in Immunology | www.frontiersin.org 6
on osteoclast differentiation and activity only in the presence of
stromal cells, which implicated indirect action of BMP2 on
osteoclasts (106). Other studies in vitro also indicated the
indirect effect of BMP2 on osteoclasts, acting via regulation of
RANK expression in osteoblasts (118), and including 1,25(OH)
2D3 as a mediator which decreases product ion of
osteoprotegerin, accelerating thus osteoclastogenesis (119).
However, a number of studies demonstrated that BMP2
derived from bone marrow macrophages has also a direct
autocrine effect on osteoclast differentiation and maturation,
activating canonical intracellular signaling pathway (69, 103,
105). It was also shown that BMP2 in osteoclasts can activate
both canonical and non-canonical signaling pathway, depending
on the stage of osteoclast differentiation, with p38
phosphorylation in the pre-fusion osteoclasts, and increased
SMAD phosphorylation occurring at osteoclast fusion
stage (102).

Recently, osteoblast-osteoclast contact ex vivo was facilitated
by introduction of BMP2 immune complexes consisting of
immobilized antibodies specific for BMP2 which sequestered
endogenous BMP2. As a consequence, facilitated osteoblast-
osteoclast interaction in vitro stimulated osteoblastogenesis and
suppressed osteoclastogenesis, most probably via enhanced
EphrinB2/EphB4 signaling pathway (120), suggesting the role
of BMP2 not only in particular cell type, but also in their
mutual communication.

Bmp4
BMP4 is closely related to BMP2 and both molecules are
required, not only for osteoblastogenesis, but also for proper
osteoclastogenesis (69). Mouse overexpression models confirmed
the stimulatory role of BMP4 in osteoclast differentiation (82,
121), most likely acting indirectly through stimulation of
osteoblasts (69, 82). In bone marrow-derived stromal cells
BMP4 was shown to induce expression of osteoprotegerin
through the activation of p38 kinase, which could be the
mechanism for regulation of osteoclast differentiation (122).
However, BMP4, as well as BMP2, also acts directly on mature
osteoclasts stimulating their bone-resorbing activity (104, 123).

In vivo, both BMP4 and BMP2 are essential for completion of
osteogenesis (81). As seen from mouse knock-out models, BMP4
is also essential for mesoderm formation during development
(75). Osteoclasts near the fracture site express BMP4, as well as
BMP2 and BMP7, implicating their role in bone remodeling and
fracture healing (124).

Bmp5
In primary cultures murine bone marrow cells, BMP5 stimulated
osteoclastogenesis, but with a biphasic effect, with higher
concentrations (>300 ng/mL) being less stimulative on
osteoclast formation than lower concentrations (0.1-100 ng/
mL), and maximal effect was achieved at 1 ng/mL BMP5 (108).
Similar study on primary rat bone marrow cells demonstrated
stimulative effect of BMP5 on osteoclast-specific marker
expression, it was significantly lower than for BMP2 or BMP4
(109). In cultured bone marrow cells, BMP5 likely acts by
decreasing OPG and increasing RANKL mRNA expression,
April 2022 | Volume 13 | Article 869422
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stimulating thus osteoclast differentiation (108). In vivo,
numerous non-fatal skeletal defects were described in mice
with inactivated Bmp5 gene (76), suggesting the role of BMP5
in bone remodeling. The stimulatory effect of BMP5 seems to be
more expressed in osteoblasts than in osteoclasts (108), and
stimulation of osteoclastogenesis is enhanced in combination of
BMP5 and BMP2 (125).

Bmp6
Among multiple types of BMPs tested, BMP6 was one of most
potent osteogenic BMPs (18, 109, 126), also due to its resistance
to noggin (127), but it seems to be less potent in stimulation of
osteoclasts than in osteoblasts (65, 108, 128). Structurally closely
related to BMP5, BMP6 has also been shown to have stimulatory
effect on osteoclasts at some concentrations, although both,
BMP5 and BMP6, were less effective in stimulating
osteoclastogenesis in comparison with BMP2 (108). BMP6 is
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expressed by mature osteoclasts and it was identified as one of
the factors responsible for coupling bone resorption and
osteoblast maturation, acting through increased activation of
BMP pathways and activating thus osteoprogenitor cells (111).
Osteoclasts contain relatively high levels of Bmp6 mRNA, which
could be important for regulation of overall bone homeostasis,
not only for osteoblastic stimulation, but also for fine regulation
of osteoclastogenesis (57). Systemic administration of BMP6 on
rat model of osteoporosis in vivo increased osteoprotegerin
serum levels uncoupling thus osteoclast from osteoblast activity
(110). Interestingly, mice with inactivated BMP6 have only
minor skeletal defects, such as prolonged ossification of
sternum (77), but after revised phenotype, haemochromatosis
with high iron content in organs has been discovered (129).
Preferential stimulation of osteoblasts rather than osteoclasts
gives advantage to BMP6 when considering its therapeutic use in
bone healing (130, 131).
TABLE 2 | An overview of BMP action on osteoclasts.

BMP ligand Effect on osteoclast activity References

BMP2 Promotes osteoclast differentiation (103)
Stimulates osteoclasts in the presence of stromal cells (106)
Stimulates bone resorption in cultured osteoclasts (104)
Stimulates osteoclast formation in the presence of IL-1a (107)

BMP4 Stimulates bone resorption by osteoclasts and promotes bone loss (82)
(104)

BMP5 Biphasic stimulatory effect on osteoclast generation, depending on concentration (108)
(109)

BMP6 Increases number of TRAP+ cells at optimal concentration, in higher concentrations its stimulatory effect declines (109)
Uncouples osteoblast from osteoclast activity, reduces bone resorption and increases bone formation in rat model (110)
BMP6 expression increased in mature osteoclasts, activated Wnt pathway to promote osteoblast differentiation and bone formation (111)

BMP7 Increases osteoclast formation in vitro in combination with vitamin D3 (112)
(69)

Increases number of TRAP+ cells at optimal concentration (109)
Inhibits osteoclast differentiation in cultured C14+ monocytes (113)

BMP9 Promotes osteoclast differentiation in vitro (114)
Increases bone resorption by mature osteoclasts in culture (115)
Inhibits osteoclastogenesis and bone resorption on in vitro and in vivo models (116)
April 2022 | Volume 13 | A
FIGURE 3 | Effects of individual BMPs on osteoclasts. BMPs can influence osteoclasts either directly, stimulating their differentiation (BMP2, -5, -6, -7) and
resorptive activity (BMP4, -7), or indirectly, through stimulation of osteoblasts (BMP2, -4, -7) which then increase expression of RANKL and stimulate osteoclast
maturation. In addition, BMP6 expressed by osteoclasts stimulates osteogenic activity of osteoblasts. Image created by BioRender.com.
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Bordukalo-Nikšić et al. BMPs in Osteoclasts
Bmp7
Also known as osteogenic protein-1 (OP-1), BMP7 is, together
with BMP2, one of BMPs with recognized therapeutic potential,
first in animal studies and then in clinical trials (132). However,
its osteogenic activity was accompanied by side effects including
enhanced bone resorption and osteolysis at the osteotomy site
(133, 134). Several studies in vitro showed that BMP7 promotes
osteoclast formation in rodent bone marrow cell cultures, where
its effect depends on the applied concentration (109, 112, 135). In
combination with 1,25(OH)2D3, BMP7 stimulated not only
osteoclast formation, but also resorption activity (112). In
contrast, in human CD14+ monocyte culture, BMP7 inhibited
osteoclast formation, apparently by down-regulation of
transcription factor NFATc1, which is necessary for proper
osteoclastogenesis (113). The reason for this difference could
be in model of cell culture used (mouse or rat vs. human). It is
possible that BMP7, similarly to the BMP2, acts on osteoclasts
indirectly, through activation of osteoblasts (6).

Bmp8
With its sequence being closely related to BMP7, BMP8, at first
known as osteogenic protein 2 (OP-2) was identified in mouse
embryos (16, 136). A recent transcriptomic analysis revealed that
BMP8, similarly to BMP2,-4 and -7, can induce SMAD-signaling
pathway in mesenchymal stem cells (137). BMP8 seems to have a
protective role in osteoblasts exposed to glucocorticoids (138);
however, studies about BMP8 action on osteoclasts are
still lacking.

Bmp9
First studies in vitro demonstrated positive effect of BMP9 on
osteoclastogenesis. In human blood cord monocyte culture,
BMP9 did not affect osteoclast formation, but increased their
resorption activity, acting probably via SMAD1/5/8 and ERK1/2
pathway (115). Subsequent study on mouse spleen macrophages
showed that BMP9 promoted proliferation and differentiation of
osteoclast precursor cells in dose-dependent manner (114).
However, a recently published study demonstrated an opposite
efect of BMP9 on osteoclasts, suppressing RANKL-induced
osteoclast differentiation of bone marrow macrophages in vitro,
and preventing bone loss in mouse ovariectomy model in vivo,
showing thus strong osteogenic effect (116).
BMP SIGNALING IN OSTEOCLASTS

BMP stimulates the downstream signaling pathways by activating
two types of BMP receptors. Type I and type II BMP receptors are
the only known class of transmembrane cell surface receptors in
humans with serine/threonine kinase activity. These two types of
receptors share similar structural properties comprised of a
relatively short extracellular domain and a single pass
transmembrane protein with an intracelular serine/threonine
kinase domain. Type II receptors are constitutively active, and
after ligand binding they phospohorylate a Gly/Ser-rich domain of
type I receptors and activate a kinase activity. Type I BMP
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receptors are Ser/Thr-protein kinase receptor R3 (ALK1), activin
receptor type−1 (ACVR1/ALK2), BMP receptor type−1A (ALK3)
and BMP receptor type−1B (ALK6), whereas BMP receptor type
−2 (BMPR2), activin receptor type−2A (ACVR2A) and ACVR2B
can function as type II BMP receptors (87, 139). Several studies
revealed that osteoclasts express Bmpr1a, Bmpr1b and Bmpr2
mRNA or protein (50, 67, 102). Regulation of BMP receptor
expression in osteoclasts is not yet fully explained.

BMP ligands in osteoclasts act either through the canonical or
non-canonical signaling pathways. The canonical pathway, also
known as SMAD signaling pathway, involves three types of
SMAD proteins: receptor SMADs (R-SMADs) transduce
signals, common SMADs (Co-SMADs) support gene
transcription activation and inhibitory SMADs negatively
regulate BMP signaling. SMADs are homologues of Drosophila
melanogaster Mad proteins (mothers against decapentaplegic)
and Caenorhabditis elegans SMA proteins (small body size), and
encode cytoplasmic proteins required for responsiveness to BMP
superfamily ligands (140). Activated (phosphorylated) type I
receptors recruit and phosphorylate pathway-specific R
−SMADs (SMAD1, SMAD5 and SMAD8), which can form
trimers with SMAD4 (Co-SMAD) and translocate to the
nucleus where they target the genome via consensus SMAD-
binding motifs, integrate with tissue-specific transcription
factors and recruit chromatin remodeling machinery (141). A
number of studies have shown that osteoclasts express SMADs as
well as phosphorylated SMADs (68, 102, 103). An inhibition of
SMAD signaling pathway leads to smaller and less active
osteoclasts which suggests that BMP-mediated SMAD
signaling plays a role in osteoclast fusion and activation (102,
135, 142). Deletion of Smad4 in systems in vitro demonstrated
that loss of Smad4 during the early stages of osteoclast
differentiation results in the loss of osteoclast differentiation as
was measured by decreased expression of Nfatc1 and DC-
STAMP, as well as decrease in pSMAD2/3 expression (143).
However, conditional deletion of Smad4 in mature osteoclasts
resulted in osteopenia due to increased osteoclast formation and
bone resorption, and lead to an osteopenic phenotype caused by
changes in the sensitivity to TGFb signaling but not due to
changes in BMP signaling (144). Additionaly, research on mice
with conditionally deleted Smad1/5 in osteoclast precursors led
to mild bone gain due to reduced bone resorption and stimulated
bone formation (68). Importance of canonical BMP signaling
during the time of osteoclast fusion was shown when using
dorsomorphin in fusion staged osteoclasts, where inhibition of
type I receptors inhibited intracellular SMAD signaling and
osteoclast differentiation (102, 103, 143).

Studies on osteoclasts and osteoclast precursors in transgenic
mouse models have indicated different roles of type I and type II
BMP receptors in osteoclast formation and bone resorption with
complex mechanisms of signal transduction involving both
canonical and non-canonical pathways. Conditional knockout of
the BMPRIa receptor in osteoclast progenitors resulted in a
decrease in osteoclastogenesis and expression of DC-STAMP
(145), the master regulator required for preosteoclast fusion (44,
146). Its expression is regulated by an essential transcription
April 2022 | Volume 13 | Article 869422
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factor, Nfatc1, which is activated downstream of RANKL and
BMP-signaling pathway (147). Inhibition of BMP signaling leads
to a decrease in DC-STAMP and Nfatc1 gene expression, resulting
in fewer, smaller, and less active osteoclasts, showing the
requirement of BMP signaling in preosteoclast fusion (82, 103).
In osteoclasts derived from BMPRIA conditional knockout mice
mRNA levels of Pu.1 and Mitf, transcription factors required for
osteoclast commitment and early differentiation, were increased,
whereas the mRNA levels of late osteoclast differentiation markers
and Nfatc1 were downregulated, indicating that BMPRIA
deficiency enhanced the initial differentiation but disrupted the
maturation of osteoclasts (145). Addition of (soluble) BMPRIA on
osteoclast formation in bone marrow macrophage cultures
suppressed osteoclast formation induced not only by the
combination of RANKL and BMP2, but also by RANKL alone
(105). Therefore, BMP signaling may be required for RANKL-
mediated osteoclastogenesis.

In contrast to the deletion of Bmpr1a, in mice with global
knockout of Bmpr1b enhanced proliferation and survival of
osteoclast precursor was observed, along with reduced
apoptosis and reduced resorption activity (148). Despite
decreased resorption, these mice showed transient osteopenia,
probably due to the compromised differentiation of osteoblasts
where BMP signaling also plays an important role. However,
osteoblast and osteoclast activity in vivo were not observed (148),
implicating more subtle role of BMPRIB receptor in the
regulation of bone remodeling.

Mutations in BMPRII are more extensively explored in
diseases not related to the bone metabolism, such as
pulmonary arterial hypertension (PAH) (149). A study with
bone marrow-derived Bmpr2-deficient osteoclasts showed
decreased osteoclast differentiation and resorptive activity
(102). Mice with Bmpr2 conditional knockout had increased
bone volume and trabeculae with osteopetrotic phenotype due to
the reduced bone resorption. At the cellular level, these mice had
changes in the non-canonical signaling (MAPK) and no changes
in the canonical signaling (SMAD) pathway, as was measured by
levels of phosphorylated and nonphosphorylated forms of
SMAD proteins and downstream elements of non-canonical
signaling pathway, suggesting rather complex mechanism of
intracellular signalization with non-canonical pathway being
important for proper osteoclastogenesis (102).

The non-canonical BMP signaling pathway consists of
mitogen-activated protein kinase (MAPK) and several
downstream signaling molecules, including c-Jun N-terminal
kinase (JNK), mitogen-activated protein kinase 38 alpha (p38a)
and extracellular regulated kinases (ERK), all of which are
activated by BMP 2 in osteoclasts (102, 115). One of upstream
signalingmolecules of the non-canonical signaling pathway, TGFb
Activated Kinase 1 (TAK1), is required for osteoclast
differentiation, as seen from the specific knockout of TAK1 in
osteoclasts, which lead to an osteopetrosis-like phenotype with
decreased resorptive activity (150). TAB1, an activator of TAK1
protein, participates together with TAK1 in the BMP signaling
pathway. It was found that another regulatory molecule, X-linked
inhibitor of apoptosis protein (XIAP), serves as an adaptor protein
Frontiers in Immunology | www.frontiersin.org 9
linking the BMP receptors and TAB1-TAK1 complex. XIAP was
determined as a TAB1-binding protein and interacts not only with
TAB1 but also with BMP type I and type II heteromeric receptor
complex, linking BMP signaling pathway with intracellular
regulators of osteoclastogenesis (151).

Besides BMP2, which activates MAPKs, ERK1/2, JNK and
p38 in osteoclasts (102), it has been shown that BMP9 in
osteoclasts also stimulates the activation of two signaling
pathways, as seen from activation of both SMAD1/5/8 and
ERK1/2 (115), suggesting that BMPs can activate both non-
canonical and canonical signaling and that TAK1 has a crucial
role in this process (115, 151, 152) (Figure 4).
BMPs AND BONE LOSS IN
INFLAMMATORY CONDITIONS

In bone healing, inflammatory response, a sequentional process
involving complex interaction between multiple cell types,
modulates microenvironment at the fracture site, and is crucial
in initial phase of fracture healing (153). The significance of
inflammatory process in fracture healing is additionally
underlined by studies on animal models where healing is
delayed in the absence of proinflammatory cytokines such as
interleukin-6 (IL-6) or tumor necrosis factor-a (TNFa) (154,
155). During fracture healing, mesenchymal stem cells are
recruited from the periosteum and bone marrow and
differentiate into chondrocytes and osteoblasts which form
callus and new bone (156). Among numerous cytokines and
growth factors involved in this process, BMPs released by
immune and osteoprogenitor cells play a crucial role in
inducing osteogenic differentiation following inflammatory
phase. Studies on inflammatory and autoimmune disorders
pointed to the fine regulation of this process and to the
complex interaction between BMPs and inflammatory
cytokines. Mostly studied conditions are rheumatoid arthritis
(RA) and ankylosing spondylitis (AS), where BMPs seem to have
opposite roles. In RA, increased expression of BMP2, -6 and -7
observed in synovial fluid of RA patients indicated the role of
BMPs in the development of this disease, probably by inducing
proinflammatory phenotype of endothelial cells, stimulating
adhesion of monocytes to the endothelium and, additionally,
osteoclast differentiation, which subsequently leads to the bone
loss observed in RA patients (157). On the other hand, enhanced
BMP signaling in AS stimulates osteogenesis and induces
heterotopic endochondral bone formation (158, 159).
Proinflammatory cytokines upregulate expression of BMP2
and -6, indicating association between BMP activity and
inflammatory processes in affected joints (160).

Since BMPs belong to the TGFb superfamily of proteins, it is
noteworthy that patients with chronic inflammation have
elevated serum TGFb levels, due to macrophage activation at
the inflammation site. In those patients, decreased bone density
is often observed, most likely due to the enhanced osteoclastic
bone resorption stimulated by TGFb (161). In parallel, chronic
exposure of osteoblasts to TGFb leads to the loss of their
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functionality, probably due to the continuous SMAD2/3 activity
with concomitant decreasing of SMAD1/5/8 activity, which is
otherwise activated by BMPs (162). Similarly, bone loss observed
in affected joints of patients with RA is attributed to the increased
osteoclastogenesis enhanced by proinflammatory cytokines (IL-
1, IL-6, IL-17, TNFa), which induce RANKL expression in
stromal cells and thus stimulate osteoclast precursors (163). IL-
1 also directly stimulates osteoclast activity, even in absence of
stromal cells (164). Proinflammatory cytokines not only
stimulate osteoclastogenesis, but also inhibit osteoblast
differentiation contributing to the overall bone loss (158). For
example, TNFa acts opposite to the osteogenic transcriptional
factors induced by BMPs (165), whereas IL-1 inhibits
recruitment and migration of osteoblasts (166). Therefore, in
addition to regulation of bone remodeling, BMPs are also
involved in inflammatory conditions which indirectly affect
bone homeostasis (167).
BONE RESORPTION IN CLINICAL USE
OF BMPs

In order to overcome complications associated with non-healing
bone fractures, therapeutic concepts using BMPs were developed
(83). Numerous studies confirmed the effectiveness of BMPs in
promoting osteogenesis (18, 168). In clinical use, therapeutic BMP
devices usually consist of bovine collagen matrix as a carrier with
added BMP2 (Infuse Bone Graft) or BMP7 (Osigraft) as an active
substance (132, 169). However, complexity of biological effects of
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BMPs lead to side effects in vivo which were not observed in
experimental systems in vitro, among whichmost prominent effect
was stimulation of osteoclastic bone resorption (117). First clinical
studies involving BMP-based therapies, namely BMP2, resulted in
increased bone resorption rather than formation (170, 171),
suggesting the role BMPs have in osteoclast activation (172) and
subsequent osteolysis (142). When applied to the bone, BMP2 and
BMP7 caused increased bone resorption, as demonstrated in
preclinical (173) as well as in clinical studies (174, 175).
Although it is well known that BMPs induce new bone
formation, conditional deletion of BMP signaling in osteoblast
appeared to have an inhibitory effect on osteoclastogenesis,
implicating the complex role BMPs have on bone remodeling in
vivo (176). Additionally, mice overexpressing BMP4 developed
osteopenia due to the increased osteoclast number (82). Based on
in vitro and in vivo studies, it became obvious that effect of BMPs
on bone in vivo is a result of a stimulation of not only osteoblasts,
but also osteoclasts and their progenitors which express BMP
receptors (104, 177). It was also shown that BMP2 stimulates
osteoclast formation in the presence of proinflammatory cytokine
IL-1a and therefore it could enhance bone resorption due to the
inflammatory environment at the site of the surgery (107).
Furthermore, in ectopic bone formation the development of
osteoclasts induced by BMP2 was demonstrated (178).

For BMP2 and BMP7, which were first BMPs tested in clinical
trials, it was shown that, although promoting osteoblast
differentiation, have significant impact also on osteoclasts,
resulting in a net bone loss (83). Indeed, in clinical studies
using BMP7 for distal radial osteotomy (133) and spinal fusion
surgery (175, 179), pronounced bone resorption was observed.
FIGURE 4 | BMP mechanisms of canonical and non-canonical signaling in osteoclasts. After BMP ligand binding type II receptors phosphorylate (P) the type I receptors.
Activated type I receptors recruit and phosphorylate canonical pathway specific R-SMADs (SMAD1/5/8) which, with the help of co-SMAD (SMAD4), transduce the signal
into the nucleus. The non-canonical BMP signaling pathway is transduced by the recruitment of TAB1/TAK1 complex through XIAP. Activated TAK1 kinase can stimulate
the downstream non-canonical MAP kinase effector proteins or canonical SMAD proteins. Activated MAPKs can translocate to the nucleus to phosphorylate a number of
transcription factors (TF), thereby changing target gene transcription. BMPR1 and BMPR2, BMP receptor 1 and 2; XIAP, X-linked inhibitor of apoptosis protein; TAK1,
TGFb Activated Kinase 1; TAB1, TGFb Activated Kinase 1 binding protein; p38, mitogen-activated protein kinase 38; JNK, c-Jun N-terminal kinase; ERK, extracellular
regulated kinases; SRF, serum response factor; TCF, ternary complex factor family member; AP1, activator protein 1 complexes; ATF2, activating transcription factor 2.
Image created by BioRender.com.
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This effect was especially prominent in patients receiving BMPs
in spinal fusion (95, 170, 180), whereas use of BMP7 in unstable
thoracolumbar fracture resulted in segmental collapse due to the
severe bone resorption (134). This pronounced effect on
vertebrae was likely caused by the stimulatory effect of large
amounts of BMP2 and BMP7 used on osteoclasts at endosteal
and trabecular surfaces (83). The stimulation of endosteal
osteoclasts could be an important step in bone healing,
removing nonfunctional bone pieces following a fracture,
accompanied by parallel formation of the new bone tissue
(173), however, in clinical use, this BMP-induced osteoclast
stimulation could lead to unwanted osteolysis. Further, if
applied BMPs promote both bone resorption and formation,
the end result may be impaired healing (181). The effect of BMP2
and BMP7 in clinical trials depends also on the amounts used;
however, large amounts of BMPs usually used in spinal fusion
may lead to the increased resorption in localized areas (95). Also,
in currently available commercial devices, large amounts of
BMP2 or -7 significantly exceed the biological need. Increased
bioavailability due to the large amounts of applied BMP2 or -7
could finally result in unwanted side effects (174, 175), although
studies on animal models demonstrated that systemic BMP2 and
-7 will not stimulate generalized bone loss (182).

Recently, a new osteogenic device was developed, using BMP6
as an active substance and autologous carrier made from the
peripheral blood (83, 183). This device, named Osteogrow, could
overcome the limits of previously used BMP2 and BMP7 which
were applied in large concentrations (131). BMP6 uses most of
BMP receptors type I for signal transduction and stimulates
osteoblast activity in cell cultures (102, 148). Studies of osteoclast
cultures in vitro demonstrated preferential expression of Bmp6
mRNA compared to expression of other BMPs (57); however,
osteoclastogenesis in vitro is more stimulated by addition of
BMP2 or BMP5 than by BMP6 (108). Although data on specific
BMP6 effects on osteoclasts are scarce, it seems that BMP6
stimulates osteoblasts more than osteoclasts, which puts this
protein into advantageous position regarding potential clinical
use when compared to other BMPs. Indeed, in recently published
clinical studies which applied Osteogrow in patients with distal
radius fracture and high tibial osteotomy, no side effects related
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to the use of BMP6 were recorded, and no osteolysis or other
signs of increased osteoclast activity were observed in these
patients (184, 185). Therefore, when considering BMPs as
therapeutics in delayed bone healing and other complex
orthopaedic indications, the potential effect of particular BMPs
on osteoclast proliferation and activity would be of great
clinical importance.
CONCLUDING REMARKS

A large number of in vitro and in vivo studies indicate that
osteoclasts are not merely bone-degrading cells, but they also
have an important function in osteoblast activation, bone
remodeling and maintenance of bone homeostasis. Among
numerous signaling molecules regulating their differentiation
and activity, BMPs in particular seem to have important role
in regulating osteoblast-osteoclast communication. Since BMPs
have a therapeutic potential as bone-healing agents, it is of major
importance to consider their effects on osteoclasts as well as on
osteoblasts, in order to avoid potential unwanted side effects such
as increased bone resorption and osteolysis.
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