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ABSTRACT Neuraminidase is one of the two surface glycoproteins of influenza A
and B viruses. It has enzymatic activity that cleaves terminal sialic acid from glycans,
and that activity is essential at several points in the virus life cycle. While neuramini-
dase is a major target for influenza antivirals, it is largely ignored in vaccine devel-
opment. Current inactivated influenza virus vaccines might contain neuraminidase,
but the antigen quantity and quality are varied and not standardized. While there
are data that show a protective role of anti-neuraminidase immunity, many ques-
tions remain unanswered. These questions, among others, concern the targeted
epitopes or antigenic sites, the potential for antigenic drift, and, connected to that,
the breadth of protection, differences in induction of immune responses by vaccina-
tion versus infection, mechanisms of protection, the role of mucosal antineuramini-
dase antibodies, stability, and the immunogenicity of neuraminidase in vaccine for-
mulations. Reagents for analysis of neuraminidase-based immunity are scarce, and
assays are not widely used for clinical studies evaluating vaccines. However, efforts
to better understand neuraminidase-based immunity have been made recently. A
neuraminidase focus group, NAction!, was formed at a Centers of Excellence for In-
fluenza Research and Surveillance meeting at the National Institutes of Health in
Bethesda, MD, to promote research that helps to understand neuraminidase-based
immunity and how it can contribute to the design of better and broadly protective
influenza virus vaccines. Here, we review open questions and knowledge gaps that
have been identified by this group and discuss how the gaps can be addressed,
with the ultimate goal of designing better influenza virus vaccines.
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Influenza A and B viruses express two surface glycoproteins which have essential
functions in the viral life cycle. The more abundant glycoprotein is the hemagglutinin

(HA), a type I transmembrane protein. HA exists as a trimer and mediates binding of the
virus to host cells via interactions between its receptor binding site and the terminal
sialic acids on host cell glycans. Once the virus is taken up into the endosome, HA also
triggers fusion of viral and endosomal membranes after endosome acidification (1, 2).
Many antibodies that target the HA are neutralizing because they block the ability of
the receptor binding site of HA to interact with sialic acids on the host cell surface, thus
preventing attachment and entry. Because protection was classically recognized to be
related to anti-HA antibodies, currently licensed vaccines are designed to induce
antibodies against HA (3). The development of better, more broadly protective vaccines
is also mostly focused on the HA (4). However, the second surface glycoprotein,
neuraminidase (NA), might also play a key role in the development of a better influenza
virus vaccine. NA is a tetrameric type II transmembrane protein with an enzymatic
function that cleaves terminal sialic acid from glycans on the host cell surface, a process
termed receptor-destroying activity (5, 6) (see Fig. 1 for an overview). This activity is
very important at several stages of the viral life cycle. As influenza viruses enter a host,
they need to penetrate mucosal barriers in order for HA to reach the sialic acids on the
host cell surface (7–9). Further, mucosal fluids contain natural defense proteins, such as
mucins, that are heavily glycosylated, acting as a decoy for HA binding, which neutral-

FIG 1 Influenza virus neuraminidase structure and phylogeny. (A) Top-down view of the NA tetramer, with one of the monomers indicated in gray. (B) Side
view of the molecule. The structure of the variable stalk domain has so far not been solved and is indicated by the 4 bars. Panels A and B are based on the
structure of the N2 NA of A/Tanzania/205/2010 (PDB number 4GZO [102]), visualized in PyMOL (Schrödinger, Inc.). (C) Tree of known influenza virus NAs and
NA-like proteins (N10 and N11). Influenza NAs cluster into group 1 (N1, N4, N5, N8) and group 2 NAs (N2, N3, N6, N7, N9). Influenza B NAs as well as the NA-like
proteins (from sequences found in bats) form their own clusters. The tree was generated using Clustal Omega and was visualized in FigTree. The scale bar
represents a 7% amino acid difference. NA sequences from the following strains were used: A/California/04/2009 (N1-Cal09), A/New Caledonia/20/1999
(N1-NC99), A/Puerto Rico/8/1934 (N1-PR8), A/Vietnam/1203/2004 (N1-H5N1), A/Michigan/45/2015 (N1-Mi15), A/Brevig Mission/1/1918 (N1-1918), A/Hong
Kong/1/1968 (N2-HK68), A/Hong Kong/4801/2014 (N2-HK14), A/Singapore/1/1957 (N2-Sing57), A/chicken/Hong Kong/G9/1997 (N2-H9N2), A/Philippines/2/1982
(N2-Phil82), A/Beijing/353/1989 (N2-BJ89), A/Perth/16/2009 (N2-Perth09), A/swine/Missouri/4296424/2006 (N3), A/mallard/Sweden/24/2002 (N4), A/mallard/
Sweden/86/2003 (N5), A/Caspian seal/Russia/T1/2012 (N6), A/harbor seal/Germany/1/2014 (N7), A/Jiangxi-Donghu/346/2013 (N8), A/Hong Kong/125/2017 (N9),
A/yellow-shouldered bat/Guatemala/060/2010 (N10), A/bat/Peru/33/2010 (N11), B/Lee/1940 (Lee40), B/Florida/04/2006 (Flor06), B/Malaysia/2506/2004 (Mal04).
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izes the influenza virus (10). NA, however, has been shown to release virus particles and
allow them to efficiently reach their host cells (7, 8, 11). Once a virus has successfully
entered and replicated in the host cell, virus particles containing both HA and NA bud
from the cell membrane. As the host cell surface contains sialic acid, HA of nascent virus
particles adheres to the same host cell, preventing the release of the new particle.
However, NA counteracts this by removing terminal sialic acids from the host cell, thus
allowing the release of the nascent viral particles (12). Finally, viral particles adhere to
each other by interactions between HA and sialic acid on glycans on HA or via other
glycoproteins in mucus that act as adapters. NA counteracts this aggregation and
might consequently enhance the spread and perhaps transmissibility of the newly
produced virus through this activity by increasing the opportunity for virus particles to
be transmitted in very small aerosol droplets (6). In addition, NA might play a role in
viral entry as well (13, 14). NA activity is therefore very important for virus fitness and
has been the target of licensed small-molecule drugs, like oseltamivir (15). The fact that
inhibition of NA activity has a prophylactic and therapeutic effect validates NA as a
target. However, NA has largely been ignored for vaccine development. A better
understanding of NA-based immunity and its mechanisms of action might greatly
contribute to the design of better, longer-lasting, and more broadly protective vaccines.
In this position paper, the NAction! group, an NA focus group that was recently formed
at a meeting of the Centers of Excellence for Influenza Research and Surveillance (CEIRS;
funded by the National Institute of Allergy and Infectious Diseases) in Bethesda, MD,
tries to identify the gaps in knowledge about NA immunity and its protective effects
and lays out a path forward to address them.

WHAT DO WE KNOW ABOUT NEURAMINIDASE-BASED IMMUNITY?

As outlined above, NA plays an important role in the virus life cycle, and targeting
this protein by antibodies inhibits virus replication. NA antibodies are usually not
capable of inhibiting virus entry into host cells but act at later stages of the life cycle
when the virus buds from infected cells. As a result, plaque size and number are not
reduced when NA-specific antibodies are included during infection in an in vitro plaque
reduction neutralization assay. However, plaque size (diameter) is impacted when
these antibodies are included in the agar overlay of the assay (16–19). Antibodies that
inhibit NA activity at low concentrations are so effective in preventing virus spread that
plaques are often not visible. Technically speaking, this means that most anti-NA
antibodies are not capable of completely neutralizing the virus in vitro. However, it is
well known that many anti-NA antibodies can inhibit the enzymatic activity of NA in in
vitro NA inhibition (NI) assays (20), and this activity usually correlates well with a
reduction of plaque size, as discussed above (17). We also know that the induction of
a strong antibody response against NA in animal models can prevent clinically overt
disease, while often not leading to sterilizing immunity (21–26). From human challenge
studies performed in the 1970s, we know that anti-NA antibody titers correlate in-
versely with virus shedding and disease symptoms (27, 28). This means that virus
replication is controlled and that no clinical disease is observed, but low-level virus
replication is typically present. More recent clinical trials showed that NI titers are a
correlate of protection against influenza virus-induced disease that is independent of
HA-based immunity (29). This was further confirmed in direct human challenge studies
(30). It is possible that N2-based immunity (induced by previous H2N2 infections) might
have played a role in protecting subjects from pandemic H3N2 infections in 1968 (28,
31, 32). N2-based cross-reactivity has even been implied to be a factor in the extinction
of H2N2 in 1968 after the emergence of H3N2 (33). We also know that NA undergoes
evolution and can antigenically drift (34), but we have very limited knowledge about
antigenic sites/epitopes that might be targeted by the immune system (16, 18, 35–41).
Vaccines which contain HA and NA in close association may not induce anti-NA (42)
responses that are as strong as those induced by NA given on its own (23, 24, 43,
44). Finally, we know that current inactivated influenza virus vaccines contain NA of
variable quality and (nonstandardized) quantity, potentially with lot-to-lot variabil-
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ity, and these vaccines do not reliably induce robust anti-NA immunity (23, 34,
45–48). Nevertheless, some increases in NI antibody responses, although at low
seroconversion rates and with a low fold induction, have been reported for most
inactivated virus vaccines and for live attenuated influenza virus vaccines (LAIV),
and the response rate and antibody titers are increased by vaccinating with
high-dose formulations (48–50). This information, together with the finding that HA
inhibition (HI) and NI titers correlate with protection against influenza virus infec-
tion independently (29, 51), shows not only that NA-based immunity is important
but also that it is feasible to develop vaccines that produce consistently protective
NA-specific antibodies. To conclude, we have evidence that NA-based immunity can
be important and protective. However, there are many knowledge gaps that need
to be addressed in order to move forward toward a rationally designed vaccine that
induces robust and protective anti-NA immunity.

WHAT DO WE NEED TO KNOW?

In order to close the current knowledge gaps, assess the role that NA-based
immunity might play in protection from influenza virus infection, and design vaccines
that induce robust anti-NA responses, the following actions should be taken.

NA-based protection. As mentioned above, studies by Couch et al. (27, 51), Murphy
et al. (28), Monto et al. (29), and Memoli et al. (30) have shown that anti-NA antibody
titers correlate with protection from disease in humans. These studies need to be
expanded, the results need to be confirmed across H1N1, H3N2, and influenza B viruses
for different age groups (which have different preexposure histories, etc.) and study
designs, and the titers that correlate with protection need to be defined. Considering
that NA antibodies control the spread of virus to and from epithelial cells, it will be
important to understand the contribution of NA-specific immunity at mucosal surfaces.
Also, the antigenic drift of NA should be studied in this context.

Imprinting. The phenomenon of immunologic imprinting and how it shapes im-
mune responses to influenza virus HAs later in life is currently a major research focus.
Imprinting should also be studied for NA, ideally by following subjects longitudinally
from birth to determine how their immunity to NA is shaped by initial and sequential
exposures to influenza virus and vaccines.

Target epitopes. Our understanding of which epitopes are targeted by human
antibodies is limited at best. Human monoclonal antibodies induced by both vaccina-
tion and infection should be isolated and characterized. Antigenic sites need to be
defined, and antibody footprints should be confirmed by structural biology methods.

NA quality and quantity in vaccines. Inactivated vaccines contain NAs of varied
quality and quantity (23, 52). Very little is known about the stability of NA during the
production process and over the shelf life of vaccines. NA activity is representative of
the native structure and is an excellent measure of the ability of NA to induce NI
antibodies as long as NA inhibitors (e.g., EDTA) are not present in the vaccine formu-
lation (53). While a preliminary study suggests that NA activity might be maintained
over vaccine shelf-lives for seasonal vaccines, the levels of stability of NAs from different
strains vary (53). The NA quantity in currently licensed vaccines is insufficiently quan-
tified and not standardized in the United States. However, new vaccine platforms are
considering the NA content of pandemic vaccines, and NA immunogenicity is being
measured in clinical trials more often (54, 55). Our understanding of NA immunoge-
nicity would be greatly advanced if the NA contents of seasonal and pandemic vaccines
were a required measure for batches used in clinical trials, and this should certainly be
done in the future. It is important to make assays and reagents for these quantifications
widely available (within and beyond the CEIRS network).

Better vaccine formulations and strategies. We already know that current inac-
tivated vaccines induce varied anti-NA responses (approximately 30% seroconversion)
(23, 34, 45–48). New vaccine formulations and strategies that induce a more robust
anti-NA immune response should be developed and tested in clinical trials. This could
include spiking the regular inactivated vaccines with purified NA or giving purified NA
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in addition to current vaccines (3, 56). A clinical trial with NA purified from H3N2 virions
demonstrated that NA is safe and immunogenic, with a dose of 7.7 �g inducing a 3-fold
or greater increase in NI antibody titers in 70% of vaccine recipients (44). Modern
methods for producing sufficient amounts of good manufacturing practice (GMP)-
grade recombinant NA have been developed (57). So far, one clinical trial evaluating
trivalent inactivated vaccines (TIV) spiked with recombinant N2 followed by an H3N2
challenge has been performed. The results were reported in a conference abstract and
describe a positive outcome of this study, but the results have not been published in
a peer-reviewed journal (58). Additional clinical trials that evaluate NA-only vaccines or
NA-spiked inactivated vaccines are urgently needed to find formulations that induce
optimal anti-NA immunity. Importantly, no GMP-produced purified NA antigen is
currently available, and it will be needed for clinical trials.

Is correctly folded, functional NA required to induce protective immune re-
sponses? Whether functional NA is required to induce protective immune responses is

connected to the previous point. Sultana et al. have observed that there is a correlation
between the enzymatic activity (as a proxy of correct folding) of NA in vaccines and its
ability to induce NI antibody responses (53). Several anti-NA monoclonal antibodies
(MAbs) that have been isolated and were found to be protective in animal models have
been shown to bind to conformational epitopes as well (16). However, this is not
completely clear, and it might be possible to induce protective anti-NA responses with
denatured NA. In turn, we assume that the antibody response is best measured using
structurally intact NA, but other reagents, even peptides, might be useful to measure
protective antibody responses in some cases. This is a very important point, and further
research is needed to clarify this question.

Breadth of the anti-NA response. A considerable breadth of both monoclonal

and polyclonal antibody responses against NAs has been reported. Typically, cross-
reactivity to some extent is observed within a subtype (e.g., within N1) (18, 22, 23,
31, 59) but not across subtypes (e.g., N1 to N2) (23). The exception is an epitope
reported to induce reactivity across all NA subtypes, including cross-reactivity
between influenza A and B NAs, albeit with low inhibiting and protective effects (60,
61). Thus, data about the breadth of the NA response is limited and has mostly been
generated from animal models. Human data, ideally based on monoclonal antibod-
ies, needs to be generated in order to conclusively understand NA’s potential as a
broadly protective antigen.

Antigenic drift. Antigenic drift occurs in NA but has largely been ignored. Prelim-

inary studies describe the drift rates as discordant and somewhat lower than the drift
rates of HA (34, 62, 63). While some of these data have been generated using H6NX
reagents (the X stands for the NA subtype) for NI assays, older data are based on
wild-type virus reagents and are less reliable. To better understand the antigenic drift
of N1, N2, and influenza B NAs, it is necessary to extend antigenic cartography (for
which NA-specific antisera against matched and mismatched strains are needed),
characterize epitopes using human sera and MAbs, and include NA sequencing into
routine surveillance.

Is N2 more immunogenic than N1? Several studies have shown more robust

immunity to N2 than to N1 in humans (23, 53, 64, 65). It is unclear whether this is an
artifact of the assays used or whether this is caused by an inherent difference in terms
of protein stability or immunogenicity.

Mucosal immunity. Our knowledge about serum antibody responses to NA is

limited, and even less is known about mucosal antibody responses to NA. It is unclear
to what level mucosal antibodies against N1, N2, and influenza B NAs are induced by
infection, inactivated vaccines, and LAIV and how long-lived these responses are. Given
the role of NA in trafficking virus to and from the site of infection in the respiratory tract,
these are very relevant for protection in humans, and therefore NA-specific immunity
at the mucosal surface is a critical gap in our knowledge.
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Mechanisms of action of anti-NA antibodies. Many antibodies that target NA can
inhibit its enzymatic function. This might inhibit viral egress from infected cells. The role
of anti-NA immunity in inhibiting the release of incoming virions trapped by mucins on
mucosal surfaces is less clear. Also, the role of anti-NA immunity in virus aggregation is
unclear. The last two points are important, since NA-based immunity, if robust enough,
might have a significant impact on the transmission of the virus, which might increase
the effectiveness of the influenza virus vaccine even in areas with low vaccine coverage.
Finally, it has been reported that some of the currently circulating H3N2 viruses use
their NA instead of their HA for attachment to cells (66–68). In this case, anti-NA
antibodies might also have HI activity.

Contribution to receptor specificity. NA binds to sialic acid in order to cleave it.
This modulates the receptor binding specificity of viral particles, but our knowledge
about this activity and about the receptor specificities of different NAs is limited. It is
also unclear how this might be modulated by anti-NA immunity.

Effector functions of anti-NA antibodies. Antibody effector functions, like antibody-
dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phago-
cytosis (ADCP), have been found to be important mechanisms of action of broadly
protective anti-HA antibodies (69–72). Very little is known about the effector function
of anti-NA antibodies, and this needs to be explored. Interestingly, binding of HA to
sialic acid on effector cells enhances the ADCC activity of anti-HA MAbs (73, 74). It can
be hypothesized that the enzymatic activity of NA, which cleaves sialic acid, counteracts
this mechanism. Inhibition of the NA enzymatic activity through antibodies might
therefore mediate effector functions on its own and enhance effector functions of
anti-HA antibodies by blocking the NA activity (75–77). Studies to address these
questions are urgently needed.

T-cell epitopes. Early studies demonstrated that NA contains a number of CD4�

and CD8� T-cell epitopes in mice (78, 79). NA is also the target of human CD4� and
CD8� T cells, with epitopes listed in the Immune Epitope Database (IEDB; http://www
.iedb.org/). We therefore expect a robust T-cell-dependent antibody response when NA
is used as a stand-alone vaccine, with potential to induce cytotoxic CD8� T cells when
delivered with appropriate adjuvants, as live attenuated vaccine or by a viral vector.
Studies to evaluate NA-specific T-cell responses are needed to design optimal NA-based
vaccines.

NA glycosylation. NA is a glycoprotein with several N-linked glycosylation sites.
Some of them are conserved, and others change over time. The role of glycosylation in
enzymatic activity, immune evasion, and antigenic drift deserves further study.

Modulation of immune mediators. We know that NA can activate transforming
growth factor � (TGF-�) during infections (80, 81). The underlying mechanism and the
consequences for the host are not well understood. At low virus doses, NA enhances
the ability of dendritic cells to initiate a T-cell response, but at high virus doses, NA
contributes to the induction of Th2-type cytokines that may be associated with adverse
events (82–85). Whether an NA-based vaccine will activate TGF-� and influence the
quality of the immune response needs to be examined. In addition, studies counter-
acting these mechanisms during infection with NA-targeting antibodies should be
conducted to determine the overall benefit of NA immunity to the host. The functional
consequences of NA activity on initiation of the immune response and of NA-specific
antibodies on effector functions during virus challenge certainly need to be evaluated.

WHICH ASSAYS EXIST, AND WHAT ARE THEIR LIMITATIONS?

Several assays to analyze the NA contents of vaccines, the NA integrity of vaccine
preparations, and anti-NA antibody responses have been designed and are currently in
use. For immune assays, it should be noted (as discussed above) that we lack a good
understanding of which readouts correlate with protection.

Assays to determine the NA contents of vaccines. The simplest, although only
semiquantitative, way of measuring the NA contents of influenza virus vaccines is by
reducing SDS-PAGE followed by Western blotting using a protein standard and strain/
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subtype-specific polyclonal or monoclonal antibody (23). While this method does not
allow for the assessment of the structural integrity of NA (besides its very obvious
proteolytic degradation), it can be an easy way to get a good estimate of how much NA
is present in the vaccine, and it can be used to compare different vaccine preparations,
formulations, and lots. A better method is the use of quantitative enzyme-linked
immunosorbent assays (ELISAs) to directly measure NA concentrations. Depending on
the capture and/or detection antibody chosen, these assays can be used to actually
measure correctly folded NA (86). A chip-based VaxArray (87) assay using the same
principle is under development (personal communication, Kathy Rowlen, InDevR). In
addition, high-performance liquid chromatography (HPLC)- and mass spectrometry-
based methods have been developed, but they are more burdensome and do not
necessarily indicate protein integrity (52, 88). Finally, NA activity assays might be of
value as well in analyzing the quality of NAs present in vaccines, since only tetrameric
NA has strong sialidase activity (53). However, these assays are useful only with
monovalent vaccines, because they cannot specifically measure the activity of each
strain/subtype in a multivalent vaccine.

Assays to characterize the anti-NA immune response. ELISAs are a relatively easy
way to measure immune responses to NA. They can be performed with serum or other
bodily fluids (e.g., nasal washes); with different secondary antibodies, the immune
response can be dissected into different IgG subtypes and IgA, sIgA, and IgM responses.
The assay can be performed in a quantitative way by measuring endpoint titers or by
performing an area under the curve analysis. To evaluate NA responses, the use of
recombinant, tetrameric, glycosylated, and enzymatically active NA as the substrate is
likely the best choice. While ELISAs yield binding data, they do not inform about the
functionality of the measured antibody response. However, the ELISA titers usually
correlate well with NI titers measured in functional assays (64). Several assays to
measure the enzymatic activity of NA exist. Many of these assays are based on cleavage
of a small molecule that subsequently leads to the development of a signal (89)
(http://apps.who.int/iris/bitstream/10665/44518/1/9789241548090_eng.pdf). However,
unlike terminal sialic acid, which is attached to glycans on bulky proteins, these small
molecules have easy access to the active site of the NA. To show NI activity in a
small-molecule-based assay, an antibody needs to bind very close to the active site
and/or inhibit the active site allosterically. However, anti-NA MAbs can also block NA
activity by steric hindrance of the natural substrate-NA interaction, since the substrate,
terminal sialic acid, is usually attached to a large bulky glycoprotein or glycolipid.
Therefore, the enzyme-linked lectin assay (ELLA) that uses fetuin, a highly sialylated
glycoprotein, as the substrate was developed to measure NI antibody titers in a more
realistic way (20, 90). This assay is relatively simple and can be performed in almost any
laboratory that has access to a plate reader. The key reagent for the ELLA is the target
NA to which NI activities of sera or MAbs should be measured. The NA can be used in
the form of a virus or as purified NA. If wild-type virus is used, the fact that antibodies
that bind to the HA head domain exhibit strong NI activity due to steric hindrance
needs to be taken into account as well (19, 91). While it is sometimes useful to know
the potential of serum to inhibit NA activity regardless of whether it is mediated by
binding to NA or other targets (92), it is usually of interest to measure NA-specific
inhibition. To accomplish this, H6NX and/or H7NX reassortant viruses are commonly
used to reduce the impact of anti-HA antibodies on the assays (20, 63, 91). However, it
needs to be noted that antistalk antibodies that broadly bind to HAs (including H6)
might interfere with the assay in some cases too (64). Virus-like particles (VLPs) with
mismatched HAs might be used for NI assays as well (93). Another possibility is to
perform the NI assay with recombinant NA, which eliminates issues with non-NA-
specific inhibition (94, 95). However, soluble NA might have enzyme kinetics different
from that of membrane-bound NAs, and it seems that HA on virions also plays an
important part in bringing NA and the substrate in the assay into close proximity (96).
Pseudotyped viruses and detergent-disrupted viruses have also been used as antigens
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to measure NA inhibition antibody titers (50, 97). The ELLA with H6NX viruses (or viruses
with other exotic HAs, e.g., H7NX) is, however, recommended as the gold standard
assay for measuring NI activity. Finally, NA-based assays to measure effector functions
of antibodies might be useful in the future (16, 75). These assays could be designed by
following protocols of current assays for measuring effector functions (e.g., the ADCC
and ADCP reporter assays that are in wide use) with target cells that have been
transfected to express NA only (instead of infected cells).

WHAT KIND OF REAGENTS HAVE BEEN CREATED, AND FROM WHERE CAN THEY
BE SOURCED?

Reagents for the assays listed above are still relatively scarce compared to reagents
for HA-based assays. Here, we list the available reagents as well as their advantages and
disadvantages. Main characteristics and sources can be found in Table 1. As mentioned
above, it has become good practice to use H6NX viruses (or other viruses that express
mismatched HA subtypes) for NI assays to reduce the influence of non-NA antibodies
on the assay. These viruses are typically generated by reverse genetics using an avian
H6 HA in combination with the target NA. Relatively large panels of H6N1 and H6N2
viruses for ELLAs have been developed and can be requested from members of this
group (reagents that target other subtypes of NA, like H6N9, exist as well). While
analysis of influenza B viruses was restricted to wild-type viruses until recently, H6NB
viruses have now also been rescued (64). While an H6 HA is commonly used for these
reassortants, other exotic HA subtypes can be used as well (e.g., H7NX) but may result
in the need to treat the serum samples to remove HA-specific inhibitors (63). However,
two caveats with these viruses need to be kept in mind. First, stalk-reactive antibodies
might interfere with the assay and induce a low level of NI background (19, 64). Second,
when wild-type viruses and H6NX viruses with the same NAs were tested in vitro with
MAbs, the NI activities differed slightly between the viruses (64). This might be caused

TABLE 1 Useful reagents for evaluation of NA contents of vaccines and NA-directed immunity

Reagent(s) Assay(s)a Comment Availabilityb Reference

H6NX viruses NI Viruses containing avian
components (e.g., H6)
might need specific
permits for shipping
and use

Available upon request from Hongquan Wan (FDA),
Richard Webby (St. Jude Children’s Research
Hospital), and Florian Krammer (Icahn School of
Medicine at Mount Sinai)

20, 64, 90,
91

Fetuin NI Widely commercially available
Horseradish

peroxidase-
labeled
peanut
agglutinin

NI Widely commercially available

Recombinant
NA

ELISA, NI, and WB
(as the standard)
for NA-specific
serum generation
and NA binding
studies

Only functional, glycosylated,
tetrameric NA expressed
in mammalian cells or
insect cells should be used

Available from BEI Resources (https://www.beiresources.org/),
International Reagent Resource
(https://www.internationalreagentresource.org/), and
commercial sources, and limited amounts are available
upon request from Florian Krammer (Icahn School
of Medicine at Mount Sinai); these reagents are difficult
and costly to produce and are
therefore available only in small quantities

23, 94,
98–100

Anti-NA MAbs Capture ELISA for NA
quantification,
competition assays,
and assay positive
controls

Useful for different purposes,
depending on the nature
of the epitope recognized
(linear versus conformation
dependent)

Some MAbs are available upon request from Hongquan
Wan (FDA), Florian Krammer (Icahn School of Medicine
at Mount Sinai), and others; in general,
there is a paucity of anti-NA MAbs, and additional ones
against different strains and subtypes are needed

16, 18,
23, 35,
86

Anti-NA
polyclonal
sera

Positive controls, WB,
and antigenic
cartography

NA specific versus virus
specific

Not widely available; there is a need to generate these
reagents; very limited amounts for some strains are
available from Ron Fouchier (Erasmus Medical Center)

63

aWB, Western blotting.
bThese reagents might be requested, but availability is not guaranteed and might depend on legal restrictions, available resources, and funding to produce batches
and other factors.
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by different HA/NA ratios between wild-type and H6NX viruses or by differences in the
affinities of the HAs toward the substrate (see above), and it is unclear whether this also
occurs with polyclonal sera. Nevertheless, H6NX reassortant viruses are currently seen
as the best reagent to measure NI activity (except when testing sera from animals that
have been vaccinated with NA-only vaccines). Recombinant NA can be a very useful
reagent for ELISAs and other assays, as well as for vaccination studies, to create
NA-specific antisera. Recombinant NA should ideally be expressed as a tetramer with
fully functional enzymatic activity to preserve as much of the antigenic structure as
possible (23, 94, 98, 99). Typically, only the head domain of the NA is expressed as a
fusion protein with a tetramerization domain in insect cells or mammalian cells (100).
A production process for full-length NA from insect cells has also been developed but
involves considerable downstream processing (57). NA expressed in bacterial systems
is unlikely to be correctly folded and representative of virus-derived NA. Of note, even
when expressed under the best conditions, some NAs are unstable in the form of their
recombinant proteins. A selection of recombinant NA proteins is available commercially
or from the International Reagent Resource (IRR) or BEI Resources. Larger panels might
be requested from this group, and considerable efforts are made to make more NAs
available, but expression and purification of NA are costly and need support. In
addition, a larger number of MAbs and NA-specific polyclonal sera are needed as
reagents for use in antigenic cartography, potency ELISAs, Western blot assays, com-
petition assays, and positive controls in NI and serum ELISAs.

CONCLUSIONS

NA is a fascinating protein that plays multiple essential roles in the influenza virus
life cycle. In addition, there is evidence that NA is an important and protective antigen.
In order to confirm that role and to harness NA-based immunity optimally to enhance
the breadth of influenza virus vaccines and increase vaccine efficacy, studies that
answer the questions stated above are urgently needed. In addition, clinical trials and
observational studies that evaluate NA-based and/or NA-enhanced vaccines in humans
are needed. These are major efforts, but we feel that they are necessary to reveal the
full potential of influenza virus vaccines, both for currently licensed seasonal vaccines
and for future broadly protective or universal influenza virus vaccines (101). To facilitate
these efforts, the NAction! focus group was formed within the CEIRS network by experts
in NA-based immunity and includes major stakeholders outside the CEIRS network. We
invite other researchers with a strong interest in NA-based immunity to contribute to
these efforts and/or join the group by contacting the CEIRS program officer, Marciela
DeGrace (marciela.degrace@nih.gov), at NIAID.
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