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Abstract

Medical images commonly exhibit multiple abnormalities. Predicting them requires multi-

class classifiers whose training and desired reliable performance can be affected by a com-

bination of factors, such as, dataset size, data source, distribution, and the loss function

used to train deep neural networks. Currently, the cross-entropy loss remains the de-facto

loss function for training deep learning classifiers. This loss function, however, asserts equal

learning from all classes, leading to a bias toward the majority class. Although the choice of

the loss function impacts model performance, to the best of our knowledge, we observed

that no literature exists that performs a comprehensive analysis and selection of an appro-

priate loss function toward the classification task under study. In this work, we benchmark

various state-of-the-art loss functions, critically analyze model performance, and propose

improved loss functions for a multi-class classification task. We select a pediatric chest X-

ray (CXR) dataset that includes images with no abnormality (normal), and those exhibiting

manifestations consistent with bacterial and viral pneumonia. We construct prediction-level

and model-level ensembles to improve classification performance. Our results show that

compared to the individual models and the state-of-the-art literature, the weighted averaging

of the predictions for top-3 and top-5 model-level ensembles delivered significantly superior

classification performance (p < 0.05) in terms of MCC (0.9068, 95% confidence interval

(0.8839, 0.9297)) metric. Finally, we performed localization studies to interpret model

behavior and confirm that the individual models and ensembles learned task-specific fea-

tures and highlighted disease-specific regions of interest. The code is available at https://

github.com/sivaramakrishnan-rajaraman/multiloss_ensemble_models.

Introduction

Deep learning (DL) has demonstrated superior performance in natural and medical computer

vision tasks. Computer-aided diagnostic tools developed with DL models have been widely

used in analyzing medical images including Chest-X-rays (CXRs) and computerized tomogra-

phy (CT). CXRs have been studied extensively where the models are used to predict manifesta-

tions of cardiopulmonary diseases such as pneumonia opacities, pneumothorax,

cardiomegaly, Tuberculosis (TB), lung nodules, and, more recently, COVID-19 [1, 2]. Such

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0261307 December 30, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rajaraman S, Zamzmi G, Antani SK

(2021) Novel loss functions for ensemble-based

medical image classification. PLoS ONE 16(12):

e0261307. https://doi.org/10.1371/journal.

pone.0261307

Editor: Thippa Reddy Gadekallu, Vellore Institute of

Technology: VIT University, INDIA

Received: October 13, 2021

Accepted: November 29, 2021

Published: December 30, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0261307

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Information on the

datasets used in this study can be found within the

article in the Materials and methods section, under

the heading Datasets. The data are third-party data

https://orcid.org/0000-0003-0871-8634
https://orcid.org/0000-0002-0040-1387
https://github.com/sivaramakrishnan-rajaraman/multiloss_ensemble_models
https://github.com/sivaramakrishnan-rajaraman/multiloss_ensemble_models
https://doi.org/10.1371/journal.pone.0261307
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261307&domain=pdf&date_stamp=2021-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261307&domain=pdf&date_stamp=2021-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261307&domain=pdf&date_stamp=2021-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261307&domain=pdf&date_stamp=2021-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261307&domain=pdf&date_stamp=2021-12-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261307&domain=pdf&date_stamp=2021-12-30
https://doi.org/10.1371/journal.pone.0261307
https://doi.org/10.1371/journal.pone.0261307
https://doi.org/10.1371/journal.pone.0261307
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


tools are extremely helpful, particularly in resource-constrained regions where there exists a

scarcity of expert radiologists.

The DL model parameters are iteratively modified to minimize the training error using sev-

eral optimization methods (e.g., stochastic gradient descent). This error is computed using a

loss function, also called a cost function, that maps model predictions to their associated costs.

Cross-entropy loss is the most commonly used loss function in medical image classification

tasks, including CXRs [3–7]. This loss function outputs a class probability value between 0 and

1, where high values indicate high disagreement of the predicted class with the ground truth

label. In class-imbalanced medical image classification tasks, training a model to minimize the

cross-entropy loss might lead to biased learning since (i) the loss asserts equal weights to all the

classes, and (ii) the model would predict the majority of test samples as belonging to the domi-

nant normal class. To mitigate these issues, the authors of [8] proposed a loss function, called

focal loss, for object detection tasks. Here, the standard cross-entropy loss function is modified

to down-weight the majority background class so the model would focus on learning the

minority object samples. Following this study, the focal loss function has been used in several

medical image classification studies. For example, the authors of [9] trained DL models to

minimize the focal loss and improve pulmonary nodule detection and classification perfor-

mance using CT scans. They observed that the model trained with the focal loss resulted in

superior performance with 97.2% accuracy and 96.0% sensitivity. Another study [10] used the

focal loss to train the models toward classifying CXRs into normal, bacterial pneumonia, viral

pneumonia, or COVID-19 categories. It was observed that the models trained with the focal

loss outperformed other models by demonstrating superior values for precision (78.33%),

recall (86.09%), and F-score (81.68%). Aside from these studies, the literature does not have a

comprehensive study that investigates the effects of loss functions on medical image classifica-

tion, particularly CXRs.

DL models learn a mapping function through error backpropagation and update model

weights to minimize error. They can vary in their architecture, hyper-parameters, and training

strategy, thereby resulting in varying degrees of bias and variance errors. Ensemble learning, a

paradigm of machine learning, helps to (i) reduce prediction variance and achieve improved

performance over any individual constituent model, and (ii) increase robustness by reducing

the range (spread) of the predictions. There are several ensemble methods reported in the liter-

ature including majority voting, simple averaging, weighted averaging, and stacking, among

others [11]. Ensemble models have been widely used in medical image classification tasks

including CXRs [2, 7, 12–16]. However, these studies trained ensemble models to minimize

the de-facto cross-entropy loss in their respective classification tasks. To the best of our knowl-

edge, we observed that no studies reported evaluations on the performance of ensemble DL

models trained with other loss functions toward improving classification performance.

In this study, we aim to demonstrate the benefits of (i) training DL classification models

using existing and proposed loss functions and (ii) constructing model ensembles to improve

performance in a multi-class classification task that classifies pediatric CXRs as showing nor-

mal lungs, bacterial pneumonia, or viral pneumonia manifestations. This systematic study is

performed as follows. First, we train an EfficientNet-B0-based U-Net model on a collection of

CXRs and their associated lung masks [17] to segment lungs in the pediatric pneumonia CXR

collection [6]. Lung segmentation helps to exclude irrelevant image regions and learn lung

region-specific features. We select the EfficientNet-B0-based model because it delivered state-

of-the-art (SOTA) performance in ImageNet classification tasks, with reduced computational

complexity [18]. Next, the encoder from the trained EfficientNet-B0-based U-Net model is

truncated and appended with classification layers. This is done to transfer CXR modality-spe-

cific knowledge for improving performance in the task of classifying CXRs in the pediatric
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pneumonia CXR dataset into normal, bacterial pneumonia, or viral pneumonia categories.

Finally, the top-K (K = 3, 5) performing models are used to construct prediction-level and

model-level ensembles. The performance of the individual models, prediction-level, and

model-level ensembles are further analyzed for statistical significance. We also performed

localization studies to ensure that the individual models and their ensembles learned task-spe-

cific features and highlighted the disease-manifested regions of interest (ROIs) in the CXRs.

Materials and methods

Datasets

This retrospective study uses the following two datasets:

i. Montgomery TB CXRs [19]: This is a publicly available collection of 58 CXRs showing TB-

related manifestations and radiologist readings and 80 CXRs showing lungs with no find-

ings. The images and their associated lung masks are deidentified and exempted from the

National Institutes of Health (NIH) IRB review (OHSRP#5357). We use this as an indepen-

dent test set to evaluate the segmentation model proposed in this study.

ii. Pediatric pneumonia [6]: A set of 4273 CXRs showing lungs infected with bacterial and

viral pneumonia and 1583 CXRs showing normal lungs are collected from children of 1 to

5 years of age at the Guangzhou Medical Center in China. The author-defined [6] training

set contains 1349, 2538, and 1345 CXRs and the test set contains 234, 242, and 148 CXRs

showing normal lungs, bacterial pneumonia, and viral pneumonia manifestations, respec-

tively. The CXRs are acquired as a part of routine clinical care, curated by expert radiolo-

gists, and made publicly available with IRB approvals. We use this dataset toward

classifying CXRs as showing normal lungs, bacterial pneumonia, or viral pneumonia

manifestations.

Lung segmentation and cropping

As CXR images contain irrelevant regions that do not help in learning classification task-spe-

cific features, we segmented the ROI, i.e., the lungs from the CXRs, and used the lung-seg-

mented images for training the classification models. Our review of the literature reveals that

U-Net [20] is widely used for segmenting ROIs in natural and medical images. Further, the

study of the literature shows that EfficientNet [18] models have achieved superior performance

in natural and medical computer vision tasks, as compared to other models, in terms of accu-

racy, efficiency, and computational complexity. Hence, we used an EfficientNet-B0-based

U-Net model [21] to perform pixel-wise segmentation. The EfficientNet-B0-based U-Net

model is trained using the CXR collection and their associated lung masks discussed in [17] to

minimize the following loss functions: (i) Binary cross-entropy (BCE), (ii) Weighted BCE-Dice

[2], (iii) Focal [8], (iv) Tversky [22], and (v) Focal Tversky [23]. We used 10% of the training

data for validation with a fixed seed. Each mini-batch of the training data is augmented using

random affine transformations such as pixel shifting [-2 +2], horizontal flipping, and rotations

[-5 +5] to introduce variability into the training process. The model is trained using an Adam

optimizer with an initial learning rate of 1e-3. The learning rate is reduced whenever the vali-

dation loss ceased to improve. The model demonstrating the least validation loss is used to pre-

dict lung masks of a reduced 512×512 pixel resolution for the CXRs in the Montgomery TB

CXR collection. The images are resized using bicubic interpolation from the OpenCV software

library. The performance of the segmentation models is evaluated using the following metrics:

(i) Segmentation accuracy; (ii) Dice coefficient, and (iii) Intersection over union (IoU). We
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selected the top-3 segmentation models from those that are trained using the aforementioned

loss functions based on segmentation accuracy, Dice coefficient, and IoU metrics. The selected

models are used to predict the lung masks for the CXRs in the Montgomery CXR collection.

These masks are then bitwise-ANDed to produce the final lung mask. The bitwise-AND opera-

tion compares each pixel of the predicted masks by the top-3 performing models. If only all

the pixels are 1, i.e., belonging to the lung ROI, the corresponding bit in the final mask is set to

1, otherwise, it is set to 0. The final lung mask is then overlaid on the original CXR image to

delineate the lung boundaries and the bounding box containing the lung pixels is cropped.

The resulting lung-cropped image is resized to 512×512 pixel resolution. Then, the cropped

CXRs are contrast-enhanced by saturating the top and bottom 1% of all the image pixels fol-

lowed by normalizing the pixels to the range [0 1]. Fig 1 shows the diagram of the segmenta-

tion module proposed in this study.

Classification module

The encoder from the trained EfficientNet-B0-based U-Net model is truncated at the ‘block5-

c_add’ layer (TensorFlow Keras naming convention) with feature map dimensions of [16, 16,

512]. This approach is followed to transfer CXR modality-specific knowledge to improve per-

formance in the current CXR classification task. The truncated model is appended with the fol-

lowing layers: (i) a zero-padding (ZP) layer, (ii) a convolutional layer with 512 filters, each of

size 3×3, (iii) a global averaging pooling (GAP) layer; and (iv) a final dense layer with three

neurons and Softmax activation, to classify the pediatric CXRs as showing normal lungs, bacte-

rial pneumonia, or viral pneumonia manifestations.

We used the train and test splits published in [6] to compare our model performance with

the SOTA literature [6, 24]. We allocated 10% of the training data for validation with a fixed

seed. The model is trained using a stochastic gradient descent optimizer with an initial learn-

ing rate of 1e-3 and momentum of 0.9, to minimize the loss functions discussed in this study.

The best-performing model is selected based on the least loss obtained with the validation

data. These models are evaluated with the test set, and the performance is recorded in terms of

Fig 1. Segmentation module. The U-Net constructed with an EfficientNet-B0-based encoder and symmetrical decoder is trained to minimize the following losses: (i)

BCE; (ii) Weighted BCE-Dice, (iii) Focal, (iv) Tversky, and (v) Focal Tversky. The trained models predict lung masks in the Montgomery TB CXR collection. The

predictions of the top-3 performing models are bitwise-ANDed to produce the final lung mask.

https://doi.org/10.1371/journal.pone.0261307.g001

PLOS ONE Deep model ensembles with novel loss functions

PLOS ONE | https://doi.org/10.1371/journal.pone.0261307 December 30, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0261307.g001
https://doi.org/10.1371/journal.pone.0261307


the following metrics: (a) accuracy; (b) AUROC; (c) area under the precision-recall curve

(AUPRC); (d) precision; (e) recall; (f) F-score; and (g) MCC.

The top-K (K = 3, 5) models that deliver superior performance with the test set are used to

construct the ensembles. We constructed prediction-level and model-level ensembles. At the

prediction level, the models’ predictions are combined using various ensemble strategies such

as majority voting, simple averaging, weighted averaging, and stacking. In a majority voting

ensemble, the most voted predictions are considered final for classifying CXRs to their respec-

tive classes. In a simple averaging ensemble, the individual model predictions are averaged to

generate the final prediction. For the weighted averaging ensemble, we propose to optimize

the weights that minimize the total logarithmic loss so that the predicted labels converge to the

target labels. We iteratively minimized the logarithmic loss using the Sequential Least-Squares

Programming (SLSQP) algorithm [25]. In a stacking ensemble, the predictions are fed into a

meta-learner that consists of a single hidden layer with 9 and 15 neurons respectively, for the

top-3 and top-5 performing models. The weights of the top-K models are frozen and only the

meta-learner is trained to optimally combine the models’ predictions. A dense layer with three

neurons and Softmax activation is appended to output prediction probabilities. Fig 2 shows

the classification and ensemble frameworks proposed in this study.

For the model level ensemble, the top-K models are instantiated with their trained weights

and truncated at their deepest convolutional layer. The features from these layers are

concatenated and appended with a 1×1 convolutional layer, to reduce feature dimensions.

This is followed by appending a GAP layer and a dense layer with three neurons and Softmax

activation to classify the CXRs as showing normal lungs, bacterial pneumonia, or viral pneu-

monia manifestations. The performance of the individual models, prediction-level ensem-

bles, and model-level ensembles are further compared for statistical significance. All the

models are trained and evaluated using Tensorflow Keras 2.4 on a Windows system with an

Intel Xeon 3.80 GHz CPU, NVIDIA GeForce GTX 1050 Ti GPU, and CUDA dependencies

for GPU acceleration. Statistical significance analysis is performed using R software version

4.1.1.

Classification losses

We experimented with the following loss functions to provide a comprehensive evaluation of

their impact on the multi-class classification task under study: (i) Categorical cross-entropy

(CCE) loss; (ii) Categorical focal loss [8]; (iii) Kullback-Leibler (KL) divergence loss [26]; (iv)

Categorical Hinge loss [27]; (v) Label-smoothed CCE loss [28]; (vi) Label-smoothed categori-

cal focal loss [28], and (vii) Calibrated CCE loss [29]. We also propose several loss functions, as

follows, that mitigate the issues with the existing loss functions when applied to the multi-class

classification task under study: (i) CCE loss with entropy-based regularization; (ii) Calibrated

negative entropy loss, (iii) Calibrated KL divergence loss; (iv) Calibrated categorical focal loss,

and (v) Calibrated categorical Hinge loss. The details of the proposed loss functions are dis-

cussed below.

(i) CCE with entropy-based regularization. DL models demonstrate low entropy values

for the output distributions when they are confident about their predictions [29]. However,

under class-imbalanced training conditions, the models might be overconfident about the

majority class and classify most of the samples as belonging to this dominant class. This may

lead to model overfitting and adversely impact generalization performance. Under these cir-

cumstances, a penalty could be introduced in the form of a regularization term that penalizes

peaked distributions, thereby reducing overfitting and improving generalization. A model pro-

duces a conditional distribution pO(y|x) through the Softmax function, over a set of classes y
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given an input x. The entropy of this conditional distribution is given by,

HðpOðyjxÞÞ ¼ �
X

k

pOðykjxÞlog ðpOðykjxÞÞ ð1Þ

Here, H denotes the entropy term. A regularization term is proposed where the negative

entropy is added to the negative log-likelihood to penalize over-confident output distributions.

Fig 2. Classification module. The EfficientNet-B0-based encoder is truncated at the block-5c-add layer and appended with the classification layers to output multi-class

prediction probabilities. GAP denotes the global average pooling layer and DCL denotes the deepest convolutional layer in the trained models. The classification model is

trained to minimize the various loss functions discussed in this study. The top-K (K = 3, 5) performing models are used to construct prediction-level and model-level

ensembles.

https://doi.org/10.1371/journal.pone.0261307.g002
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It is given by,

entropy � regðOÞ ¼ �
X

log pOðyjxÞ � bHðpOðyjxÞÞ ð2Þ

Here, β controls the intensity of the penalty. Through empirical evaluations, we set the value of

β = 2. We used this regularization term in the final dense layer as an activity regularizer and

trained the model to minimize the CCE loss.

(ii) Calibrated negative entropy loss. We propose an entropy-based loss function where

the negative entropy is added as an auxiliary term to the negative log-likelihood term as shown

in Eqs [1] and [2] to penalize over-confident output distributions. A model is said to demon-

strate poor calibration if it is overconfident or underconfident about its predictions and would

not reflect the true occurrence likelihood of the class events. Motivated by [29], we propose to

add a regularization term that computes the difference between the accuracy and the predicted

probabilities to the entropy-based loss function. This regularization term helps to penalize the

model when the entropy-based loss function reduces without a corresponding change in the

accuracy. The regularization term forces the accuracy to match the average predicted probabil-

ities, thereby (i) acting as a smoothing parameter that smoothens overconfident or underconfi-

dent predictions and (ii) pushing the model to converge to the ideal condition when the

accuracy would reflect the true occurrence likelihood. The calibrated negative entropy loss is

given by,

Calibrated negative entropy loss ¼ �
X

log pOðyjxÞ � bHðpOðyjxÞÞ þ l:difference ð3Þ

Here, β controls the penalty intensity. The auxiliary term difference is calculated for each mini-

batch, as given by,

difference ¼ j1=K
XK

k¼1

ck � 1=K
XK

k¼1

pðy0kÞj ð4Þ

Here, y0k denotes the predicted label. The value of ck is 1 if y0k ¼ yk; otherwise, ck is 0. This auxil-

iary term forces the average value of the predicted probabilities to match the accuracy over all

training examples. This pushes the model closer to the ideal situation, where the model accu-

racy would reflect the true occurrence likelihood of the samples. The auxiliary term serves as a

smoothing parameter for predictions with extremely low or high prediction confidences. We

tested with different weights for β = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 2] and λ = [0.5, 1, 2, 5,

10, 15, 20]. After empirical evaluations, we set the value of β = 0.001 and λ = 10.

(iii) Calibrated KL divergence loss. The KL divergence, also called relative entropy, mea-

sures the difference between the observed and actual probability distributions. The KL diver-

gence between two distributions A(x) and B(x) is given by,

KL divergence AjjBð Þ ¼
X

x2X
AðxÞ log

AðxÞ
BðxÞ

� �

ð5Þ

We propose to benefit from the regularization term mentioned in Eq [4] to smoothen model

predictions when trained to minimize the KL divergence loss. We propose the calibrated KL

divergence loss where the regularization term in Eq [4] is added to the KL divergence loss.

This is done to penalize the model when the KL divergence loss reduces without a correspond-

ing change in the accuracy. The calibrated KL divergence loss is given by,

Calibrated KL divergence loss ¼ KL DivergenceðAjjBÞ þ l:difference ð6Þ

The auxiliary term difference is calculated for each mini-batch and is given by Eq [4]. We tested
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with different weights for λ = [0.5, 1, 2, 5, 10, 15, 20]. After empirical evaluations, the value of λ
is set to 1.

(iv) Calibrated categorical focal loss. The principal limitation of CCE loss is that the loss

asserts equal learning from all the classes. This adversely impacts training and classification

performance during class-imbalanced training. This holds for medical images, particularly

CXRs, where a class imbalance exists between the majority normal class and other minority

disease classes. In this regard, the authors of [8] proposed the focal loss for object detection

tasks, in which the standard cross-entropy loss function is modified to down weight the major-

ity class so that the model would focus on learning the minority classes. In a multi-class classi-

fication setting, the categorical focal loss is given by,

Categorical Focal loss ðLðk; pÞÞ ¼ � ð1 � p0kÞ
glog ðp0kÞ ð7Þ

Here, K = 3, denotes the number of classes, k = {0, 1, K−1} denotes the class labels for bacterial

pneumonia, normal, and viral pneumonia classes respectively, and p ¼ ðp0
0
; p0

1
; p0

2
Þ 2 ½0; 1�

3
is

a vector representing an estimated probability distribution over the three classes. The value γ
denotes the rate at which the easy samples are down-weighted. The categorical focal loss con-

verges to CCE loss at γ = 0. We propose the calibrated categorical focal loss, where the differ-

ence between the accuracy and predicted probabilities is added as a regularization term to

penalize the model for overconfident and underconfident predictions when trained to mini-

mize the categorical focal loss. The calibrated categorical focal loss is given by,

Calibrated categorical focal loss ¼ � ð1 � p0yÞ
glog ðp0yÞ þ l:difference ð8Þ

The auxiliary term difference is calculated for each mini-batch and is given by Eq [4]. We tested

with different weights for γ = [0.5, 1, 2, 5] and λ = [0.5, 1, 2, 5, 10, 15, 20]. After empirical eval-

uations, the value of γ and λ is set to 1.

(v) Calibrated categorical Hinge loss. The Hinge loss is widely used in binary classifica-

tion problems to produce “maximum-margin” classification [27], particularly with SVM clas-

sifiers. This loss could be used in a multi-class classification setting and is given by,

Categorical Hinge loss ¼ Maxðnegative � positiveþ 1; 0Þ ð9Þ

negative ¼ Maxðð1 � ytrueÞ � ypredÞ ð10Þ

positive ¼ Sumðytrue � ypredÞ ð11Þ

Here, ytrue and ypred denote the ground truth one-hot encoded labels and predictions, respec-

tively. We propose the calibrated categorical Hinge loss, where the difference between the

accuracy and predicted probabilities is added as an auxiliary term to the categorical Hinge loss.

This auxiliary term penalizes the model when the categorical Hinge loss reduces without a cor-

responding change in the accuracy. The calibrated categorical Hinge loss is given by,

Calibrated categorical Hinge loss ¼ Maxðnegative � positiveþ 1; 0Þ þ l:difference ð12Þ

The negative and positive terms are given by Eqs [10] and [11]. The auxiliary term difference is

calculated for each mini-batch and is given by Eq [4]. We tested with different weights for λ =

[0.5, 1, 2, 5, 10, 15, 20]. After empirical evaluations, the value of λ is set to 10.
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Results

CXR lung segmentation

Recall that an EfficientNet-B0-based U-Net model is trained to minimize BCE, weighted BCE-

Dice, focal, Tversky, and focal Tversky loss functions and predict lung masks for the CXRs in

the Montgomery TB CXR collection. The lung masks predicted by the top-3 performing models

are bitwise-ANDed to produce the final lung mask. The performance of the individual models

and the bitwise ANDed model ensemble is evaluated using segmentation accuracy, IoU, and

Dice coefficient as shown in Table 1. We observed that the segmentation model demonstrated

higher values for the Dice coefficient compared to the IoU metrics due to the way the two func-

tions are defined. The Dice coefficient value is given by twice the area of the intersection of two

masks, divided by the sum of the areas of the masks. It is observed from Table 1 that, consider-

ing individual models, the segmentation model trained to minimize the focal Tversky loss dem-

onstrated superior performance in terms of IoU, Dice coefficient, and accuracy metrics,

followed by those trained with Tversky and weighted BCE-Dice losses. These top-3 performing

models are used to construct the ensemble. Here, the lung masks predicted by the top-3 per-

forming models are bitwise-ANDed to produce the final lung mask. We observed that the IoU,

Dice coefficient, and accuracy, achieved using the bitwise-ANDed model ensemble are superior

compared to any individual constituent model. However, we observed no statistically significant

difference in performance (p> 0.05) between the individual models and the ensemble.

We used the top-3 performing models and the bitwise-ANDed ensemble approach to pre-

dict lung masks for the CXRs in the pediatric pneumonia CXR collection. As the ground truth

lung masks for these CXRs are not made available by the authors of [6], the segmentation per-

formance could not be validated. The predicted lung masks are overlaid on the original CXRs

to delineate the lung boundaries and are cropped. The cropped images are resized to 512×512

pixel resolution and used for further analysis (i.e., disease classification).

CXR disease classification

Recall that the encoder from the trained EfficientNet-B0-based U-Net model is truncated and

appended with classification layers. This approach is followed to perform a CXR modality-spe-

cific knowledge transfer [2, 15, 16, 30] to improve performance in a relevant task of classifying

the CXRs in the pediatric pneumonia CXR collection into normal, bacterial pneumonia, or

viral pneumonia categories. The classification models are trained to minimize the existing and

proposed loss functions in this study. Table 2 summarizes the classification performance

achieved by these models. We measured the 95% CI as the exact Clopper–Pearson interval for

Table 1. Segmentation performance achieved by the individual models and the bitwise-ANDed ensemble of the

top-3 performing models.

Loss/Method Metrics

IoU Dice Accuracy

BCE 0.8186±0.0384 0.9571±0.0361 0.9720±0.0096

Weighted BCE-Dice 0.8465±0.0401 0.9601±0.0396 0.9732±0.0104

Focal 0.2601±0.0621 0.9189±0.0527 0.7788±0.0485

Tversky 0.9360±0.0368 0.9624±0.0225 0.9912±0.0102

Focal Tversky 0.9510±0.0415 0.9637±0.0271 0.9925±0.0130

Ensemble 0.9518±0.0462 0.9652±0.0309 0.9927±0.0117

The bold numerical values denote the best performance in respective columns.

https://doi.org/10.1371/journal.pone.0261307.t001
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the MCC metric to test for statistical significance. It is observed that the classification models

demonstrated higher values for F-score compared to the MCC metric. F-score provides a bal-

anced measure of precision and recall but could provide a biased estimate since it does not

consider TN values. MCC considers TPs, TNs, FPs, and FNs in its computation. The score of

MCC lies in the range [-1 +1] where +1 demonstrates a perfect model while -1 demonstrates

poor performance. The authors of [31] discuss the benefits of using MCC metric over F-score

and accuracy in evaluating classification models. It is observed from Table 2 that the model

trained to minimize the calibrated CCE loss demonstrated superior values for accuracy

(0.9343), AUROC (0.9928), AUPRC (0.9869), precision (0.9345), recall (0.9343), F-score

(0.9338), and MCC (0.8996) metrics. The 95% CI for the MCC metric demonstrated a tighter

error margin and hence higher precision as compared to other models. The performance

achieved with the calibrated CCE loss is significantly superior (p< 0.05) as compared to those

achieved by the models that are trained to minimize the categorical focal and calibrated cate-

gorical focal loss functions. Fig 3 shows the confusion matrix, AUROC, and AUPRC curves

obtained with the calibrated CCE loss-trained model. This performance is followed by the

models that are trained to minimize the CCE with entropy-based regularization, calibrated

negative entropy, label-smoothed categorical focal, and calibrated categorical Hinge loss

functions.

Table 2. Classification performance achieved by the classification models that are trained using the loss functions discussed in this study.

Loss Metrics

Accuracy AUROC AUPRC Precision Recall F-Score MCC

CCE 0.9279 0.9921 0.9857 0.9292 0.9279 0.9282 0.8899

(0.8653, 0.9145)

CCE with entropy-based regularization (β = 2.0) 0.9311 0.9913 0.9844 0.9337 0.9311 0.9319 0.8953

(0.8712, 0.9194)

KL divergence 0.9231 0.99 0.9825 0.9261 0.9231 0.924 0.8831

(0.8578, 0.9084)

Categorical focal (γ = 1) 0.9054 0.984 0.9753 0.9079 0.9054 0.9054 0.8562

(0.8286, 0.8838)

Categorical Hinge 0.9247 0.9892 0.9803 0.928 0.9247 0.9255 0.8858

(0.8608, 0.9108)

Smoothed-CCE (σ = 0.2) 0.9231 0.9899 0.9821 0.9252 0.9231 0.9237 0.8829

(0.8576, 0.9082)

Smoothed-focal (σ = 0.2) 0.9279 0.9847 0.9744 0.9317 0.9279 0.9287 0.8909

(0.8664, 0.9154)

Calibrated-CCE (λ = 10) 0.9343 0.9928 0.9869 0.9345 0.9343 0.9338 0.8996

(0.876, 0.9132)

Calibrated-KL divergence (λ = 1) 0.9215 0.9895 0.9817 0.9239 0.9215 0.9217 0.8807

(0.8552, 0.9062)

Calibrated focal (γ = λ = 1) 0.9167 0.986 0.9777 0.9187 0.9167 0.9164 0.8734

(0.8473, 0.8995)

Calibrated Hinge (λ = 10) 0.9279 0.9894 0.9803 0.9292 0.9279 0.9275 0.8903

(0.8657, 0.9149)

Calibrated negative entropy(β = 1e-3; λ = 10) 0.9311 0.9917 0.9851 0.9316 0.9311 0.9308 0.8947

(0.8706, 0.9188)

The top-K (K = 3, 5) models are selected based on the MCC metric. The values in parentheses denote the 95% CI measured as the exact Clopper–Pearson interval for the

MCC metric. Bold numerical values denote superior performance in respective columns.

https://doi.org/10.1371/journal.pone.0261307.t002
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The top-3 (i.e., models that are trained to minimize the calibrated CCE, CCE with entropy-

based regularization, and calibrated negative entropy losses) and top-5 (i.e., models that are

trained to minimize the calibrated CCE, CCE with entropy-based regularization, calibrated

negative entropy, label-smoothed categorical focal, and calibrated categorical Hinge losses) are

used to construct prediction-level and model-level ensembles. Recall that for the prediction-

level ensemble, the models’ predictions are combined using majority voting, simple averaging,

weighted averaging, and stacking-based ensemble methods. Table 3 summarizes the classifica-

tion performance achieved by the prediction-level ensembles.

It is observed from Table 3 that the prediction-level ensembles constructed using the top-3

and top-5 performing models demonstrated higher values for F-score as compared to the

MCC metrics for the reasons discussed before. The weighted averaging ensemble of the top-5

performing models using the optimal weights [0.40560531, 0.192276399, 0.00356809023,

0.3985502, 1.10927275e-16] calculated using the SLSQP method achieved superior perfor-

mance compared to other ensembles. The 95% CI obtained using the MCC metric demon-

strated a tighter error margin and hence higher precision compared to other ensemble

methods. However, we observed no statistically significant difference (p> 0.05) in perfor-

mance across the ensemble methods. Fig 4 shows the confusion matrix, AUROC, and AUPRC

curves achieved using the top-5 weighted averaging ensemble.

Recall that the model-level ensembles are constructed using the top-K (K = 3, 5) models by

instantiating them with their trained weights and truncating them at their deepest

Fig 3. Confusion matrix, AUROC, and AUPRC curves obtained using the model that is trained to minimize the calibrated CCE loss function.

https://doi.org/10.1371/journal.pone.0261307.g003
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convolutional layers. The feature maps from these layers are concatenated and appended with

a 1×1 convolutional layer for feature dimensionality reduction. In our study, the feature maps

of the deepest convolutional layers for the models have [16, 16, 512] dimensions. Hence, after

concatenation, the feature maps for the top-3 models are of [16, 16, 1536] dimensions, and

that for the top-5 models are of [16, 16, 2560] dimensions. We used 1×1 convolutions to

reduce these dimensions to [16, 16, 512]. The 1×1 convolutional layer is appended with a GAP

and dense layer with three neurons to classify the CXRs into normal, bacterial pneumonia, or

viral pneumonia categories. Table 4 shows the classification performance achieved in this

regard. We observed no statistically significant difference (p> 0.05) in performance between

the top-3 and top-5 model-level ensembles. We further performed a weighted averaging of the

predictions of the top-3 and top-5 model-level ensembles. We calculated the optimal weights

[0.3764, 0.6236] using the SLSQP method to improve performance. Fig 5 shows the confusion

matrix, AUROC, and AUPRC curves obtained by the weighted averaging ensemble using the

predictions of the top-3 and top-5 model-level ensembles. We observed that this ensemble

approach demonstrated superior performance for all metrics compared to the individual mod-

els and all ensemble methods discussed in this study.

Table 5 shows a comparison of the performance achieved with (i) the weighted averaging

ensemble of top-3 and top-5 model-level predictions and (ii) SOTA literature.

The authors of [6] that released the pediatric pneumonia CXR dataset performed binary

classification to classify the CXRs as showing normal lungs or other abnormal manifestations.

To the best of our knowledge, only the authors of [24] performed a multi-class classification

using the train and test splits released by the authors of [6]. We observed that the MCC metric

achieved by the weighted averaging ensemble of top-3 and top-5 model-level predictions is sig-

nificantly superior (p< 0.05) compared to the MCC metric reported in the literature [24].

Disease ROI localization. We used Grad-CAM tools [32] for localizing the disease-mani-

fested ROIs to ensure that the models learned meaningful features. Fig 6 shows instances of

Table 3. Performance metrics achieved by the prediction-level ensembles using the top-K (K = 3, 5) models.

Models Method Metrics

Accuracy AUROC AUPRC Precision Recall F-Score MCC

Top-3 Max voting 0.9295 0.9471 0.9412 0.9305 0.9295 0.9297 0.8923

(0.8679, 0.9167)

Simple averaging 0.9279 0.9924 0.9863 0.9287 0.9279 0.9281 0.8898

(0.8652, 0.9144)

Weighted averaging 0.9343 0.9925 0.9865 0.9345 0.9343 0.9338 0.8996

(0.876, 0.9232)

Stacking 0.9263 0.99 0.9831 0.9284 0.9263 0.9269 0.8877

(0.8629, 0.9125)

Top-5 Max voting 0.9327 0.9495 0.9439 0.9334 0.9327 0.9327 0.8972

(0.8733, 0.9211)

Simple averaging 0.9295 0.9923 0.9863 0.9311 0.9295 0.9298 0.8926

(0.8683, 0.9169)

Weighted averaging 0.9359 0.9925 0.9865 0.9375 0.9359 0.9363 0.9024

(0.8791, 0.9157)

Stacking 0.9279 0.9873 0.9801 0.9303 0.9279 0.9286 0.8903

(0.8657, 0.9149)

The values in parentheses denote the 95% CI measured as the exact Clopper–Pearson interval for the MCC metric. Bold numerical values denote superior performance

in respective columns.

https://doi.org/10.1371/journal.pone.0261307.t003
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pediatric CXRs showing expert ground truth annotations for bacterial and viral pneumonia

manifestations and Grad-CAM localizations of the top-5 performing models and the top-5

model-level ensemble. It is observed from Fig 6 that the classification models trained using the

existing and proposed loss functions and the top-5 model-level ensemble highlighted the ROIs

showing disease manifestations. The highest activations, observed as the hottest region in the

heatmap, contribute the majority toward the models’ decision toward classifying the CXRs

into their respective categories.

Fig 4. Confusion matrix, AUROC, and AUPRC curves obtained by the weighted averaging ensemble of the top-5 performing models.

https://doi.org/10.1371/journal.pone.0261307.g004

Table 4. Classification performance achieved by model-level ensembles.

Method Metrics

Accuracy AUROC AUPRC Precision Recall F-Score MCC

Top-3 0.9327 0.9933 0.9881 0.9334 0.9327 0.933 0.897

(0.8731, 0.9209)

Top-5 0.9359 0.9928 0.9872 0.9365 0.9359 0.936 0.9019

(0.8785, 0.9253)

Weighted averaging 0.9391 0.9933 0.9881 0.9396 0.9391 0.9392 0.9068

(0.8839, 0.9297)

The values in parentheses denote the 95% CI measured as the exact Clopper–Pearson interval for the MCC metric.

https://doi.org/10.1371/journal.pone.0261307.t004
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Discussion and conclusions

While several studies [33, 34] report using the pediatric pneumonia CXR dataset [6] in a

binary classification setting, only the authors of [24] trained models for a multi-class classifica-

tion task. Further, studies in [33, 34] used ImageNet-pretrained models to transfer knowledge

to a target CXR classification task as opposed to a CXR modality-specific pretrained model.

Such transfer of knowledge may not be relevant since the characteristics of natural images are

Fig 5. Confusion matrix, AUROC, and AUPRC curves obtained through the weighted averaging ensemble of the predictions of top-3 and top-5 model level

ensembles.

https://doi.org/10.1371/journal.pone.0261307.g005

Table 5. Comparison of the proposed approach with the SOTA literature.

Study Metrics

Acc. AUROC AUPRC Prec. Rec. F MCC

Kermany et al. [6] NA NA NA NA NA NA NA

Rajaraman et al. [24] 0.918 0.939 NA 0.92 0.9 0.91 0.87

(0.8436, 0.8964)

Proposed 0.9391 0.9933 0.9881 0.9396 0.9391 0.9392 0.9068

(0.8839, 0.9297)

The values in parentheses denote the 95% CI measured as the exact Clopper–Pearson interval for the MCC metric.

https://doi.org/10.1371/journal.pone.0261307.t005
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distinct from medical images. In this work, we propose to resolve the aforementioned issues

by transferring knowledge from a CXR modality-specific pretrained model to improve perfor-

mance in a relevant CXR classification task. We trained the models using existing loss func-

tions and also proposed several loss functions. Our experimental results showed that the

model trained to minimize the calibrated CCE loss demonstrated superior values for all met-

rics. This performance is followed by those that are trained to minimize the proposed losses

such as CCE with entropy-based regularization, calibrated negative entropy, label-smoothed

categorical focal, and calibrated categorical Hinge loss.

We evaluated the performance of both prediction-level and model-level ensembles. We

observed from the experiments that the model-level ensembles demonstrated markedly

improved performance than the prediction-level ensembles. We further improved perfor-

mance by (i) deriving optimal weights using the SLSQP method, and (ii) using the derived

weights to perform weighted averaging of the predictions of top-3 and top-5 model-level

ensembles. We observed that the weighted averaging ensemble demonstrated superior perfor-

mance for all metrics compared to other individual models, their ensemble, and the SOTA lit-

erature. Finally, we used Grad-CAM-based visualization tools to interpret the learned weights

in the individual models and model-level ensembles. We observed that these models precisely

localized the ROIs showing disease manifestations, confirming the expert’s knowledge of the

problem.

Our study combined the benefits of (i) performing CXR modality-specific knowledge trans-

fer, (ii) proposing loss functions that delivered superior classification performance in a multi-

class classification setting, (iii) constructing prediction-level and model-level ensembles to

achieve SOTA performance as shown in Table 5. However, there are a few limitations to this

study. For example, novel loss functions could be proposed for classification tasks to train

models and their ensembles. Other ensemble methods such as blending and snapshot ensem-

bles could also be attempted to improve performance. It is becoming increasingly viable to

deploy ensemble models in real-time for image and video analysis with the advent of low-cost

Fig 6. Grad-CAM-based localization of the disease ROIs. (a) and (h) denote instances of CXR with expert annotations showing bacterial and viral pneumonia

manifestations, respectively. The sub-parts (b), (c), (d), (e), (f), and (g) show Grad-CAM-based ROI localization achieved using the models trained with calibrated CCE,

CCE with entropy-based regularization, calibrated negative entropy, label-smoothed categorical focal, calibrated categorical Hinge loss functions, and the top-5 model-

level ensemble, respectively, highlighting regions of bacterial pneumonia manifestations. The sub-parts (i), (j), (k), (l), (m), and (n) show the localization achieved using the

models in the same order as above, highlighting viral pneumonia manifestations.

https://doi.org/10.1371/journal.pone.0261307.g006
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computation, storage solutions, and cloud technology [35]. The methods proposed in this

study could be extended to the classification and detection of cardiopulmonary abnormalities

[36] including COVID-19, TB, cardiomegaly, and lung nodules, among others.
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