
TIRF Microscope Image Sequences of Fluorescent IgE-FcεRI 
Receptor Complexes inside a FcεRI-Centric Synapse in RBL-2H3 
Cells

Rachel Drawbond1,2, Kathrin Spendier2,3,*

1UCCS Center of the Biofrontiers Institute, University of Colorado at Colorado Springs, Colorado 
Springs, CO 80918, USA

2Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 
80918, USA

3Department of Physics and Energy Science, University of Colorado at Colorado Springs, 
Colorado Springs, CO 80918, USA

Abstract

Total internal reflection fluorescence (TIRF) microscope image sequences are commonly used to 

study receptors in live cells. The dataset presented herein facilitates the study of the IgE-FcεRI 

receptor signaling complex (IgE-RC) in rat basophilic leukemia (RBL-2H3) cells coming into 

contact with a supported lipid bilayer with 25 mol% N-dinitrophenyl-aminocaproyl 

phosphatidylethanolamine, modeling an immunological synapse. TIRF microscopy was used to 

image IgE-RCs within this FcεRI-centric synapse by loading RBL-2H3 cells with fluorescent anti-

dinitrophenyl (anti-DNP) immunoglobulin E (IgE) in suspension for 24 h. Fluorescent anti-DNP 

IgE (IgE488) concentrations of this suspension increased from 10% to 100% and corresponding 

non-fluorescent anti-DNP IgE concentrations decreased from 90% to 0%. After the removal of 

unbound anti-DNP IgE, multiple image sequences were taken for each of these ten conditions. 

Prior to imaging, anti-DNP IgE-primed RBL-2H3 cells were either kept for a few minutes, for 

about 30 min, or for about one hour in Hanks buffer. The dataset contains 482 RBL-2H3 model 

synapse image stacks, dark images to correct for background intensity, and TIRF illumination 

profile images to correct for non-uniform TIRF illumination. After background subtraction, non-

uniform illumination correction, and conversion of pixel units from analog-to-digital units to photo 

electrons, the average pixel intensity was calculated. The average pixel intensity within FcεRI-

centric synapses for all three Hanks buffer conditions increased linearly at a rate of 0.42 ± 0.02 

photo electrons per pixel per % IgE488 in suspension. RBL-2H3 cell degranulation was tested by 

detecting β-hexosaminidase activity. Prolonged RBL-2H3 cell exposure to Hanks buffer inhibited 

exocytosis in RBL-2H3 cells.
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1. Summary

Understanding cellular transmembrane signaling is critical to almost all aspects of cell 

biology. Transmembrane signaling plays important roles in cancer and in immune responses, 

including allergic responses [1–5]. Our principal interest is immune signaling by mast cells. 

When an antigen, such as a pollen grain, binds multi-valently to immunoglobulin E (IgE)-

FcεRI receptor signaling complexes on the cell surface, it causes local aggregation of the 

receptors, leading to receptor transphosphorylation on their cytoplasmic tails [2,6]. That 

phosphorylation initiates a well-studied signaling cascade, which ultimately results in the 

secretion of histamine, serotonin, and other mediators of inflammation. Due to the ability of 

RBL-2H3 cells to release histamine in an IgE-dependent manner and the expression of high-

affinity FcεRI receptors, the RBL-2H3 cell line derived from basophils has been considered 

to model mast cells and has therefore been used extensively and successfully to study IgE-

dependent degranulation [7–10]. To investigate FcεRI receptor aggregation and the 

formation of the FcεRI-centric synapse, FcεRI receptors on RBL-2H3 cells are typically 

fully loaded with fluorescently-labeled anti-dinitrophenyl (anti-DNP) IgE and then deposited 

onto DNP-coated surfaces and observed using total internal reflection fluorescence (TIRF) 

microscopy [11–15]. TIRF microscopy is widely used to study the motion of cell surface 

receptors [11,16–25]. Incorporation of DNP-lipid into a bilayer for presentation to cellular 

receptors provides a mobile ligand. Results show that binding of anti-DNP IgE to mobile 

DNP results in the large-scale reorganization of receptor clusters to generate the mast cell 

model synapse or FcεRI-centric synapse shown in Figure 1a [11–13,15]. The ability to form 

a synapse is a well-known communication strategy between T cells and antigen-presenting 

cells such as B cells [26,27]. Mast cells have been shown to form a synapse with dendritic 

cells [28] and γδ T cells [29]. This suggests that mast cells and basophils may play larger 

roles in signaling between physically contacting cells.

FcεRI receptors on RBL-2H3 cells are typically fully loaded with fluorescent anti-DNP IgE 

(IgE488) when studying the FcεRI-centric synapse [11–15]. This dataset includes images of 

FcεRI-centric synapses when RBL-2H3 cells are not fully loaded with IgE488. In this 

dataset, RBL-2H3 cells labeled with varying concentrations of fluorescent and dark anti-

DNP IgE settled onto supported lipid bilayers (SLBs) with 25 mol% DNP-lipid. Figure 1b 

depicts a schematic of the experimental model system. IgE488 used to label RBL-2H3 cells 

in suspension 24 h prior to imaging increased from 10% to 100% between datasets, and 

corresponding non-fluorescent anti-DNP IgE (IgEdark) concentrations decreased from 90% 

to 0%. Prior to imaging, unbound anti-DNP IgE was removed, and primed RBL-2H3 cells 

were either kept for a few minutes, for about 30 min, or for about one hour in Hanks buffer. 

Synaptic patches that formed after 15 min in contact with ligand presenting SLBs were 

imaged using TIRF microscopy. The camera exposure was 5 ms per image, and the pixel 

size was 107 nm. Additionally, the camera gain was 0.006 photo electrons per analog-to-
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digital unit (ADU), and the readout noise was 0.529 photo electrons. The fluorescent 

labeling efficiency of IgE488 was 1.02 ± 0.09 mole fluorescent dye per mole protein. The 

dataset contains dark images to correct for background intensity and TIRF illumination 

profile images to correct for non-uniform TIRF illumination.

Using dark images and TIRF illumination profile images, image stack pixel intensity values 

were corrected, and pixel units converted from ADUs to photo electrons. The average pixel 

intensity within FcεRI-centric synapses for all three Hanks buffer conditions increased 

linearly at a rate of 0.42 ± 0.02 photo electrons per pixel per percent IgE488. Hanks buffer 

has been widely used over decades as an imaging buffer when RBL-2H3 cells are imaged 

with a light microscope. Time-dependent effects of the Hanks buffer on the degranulation of 

RBL-2H3 cells were investigated by measuring extracellular levels of β-hexosaminidase. 

DNP-bovine serum albumin (BSA) concentration-dependent degranulation of cells that were 

suspended in Hanks buffer for an hour prior to performing the degranulation assay decreased 

by 38%-65% compared to cells that were kept in cell media until the degranulation assay 

was performed. This decrease in degranulation may be an indication that RBL-2H3 cells 

become stressed when suspended in Hanks buffer for an extended time. Therefore, one 

further potential research project that could be based on this dataset includes statistical 

analysis of IgE-FcεRI receptor kinetics when RBL-2H3 cells become stressed. Additionally, 

the dataset can be used to investigate the concentration fluctuation of the IgE-FcεRI receptor 

signaling complex within the FcεRI-centric synapse to determining the receptor signaling 

complex size [30].

2. Data Description

The data are provided as OME-TIFF (.ome.tif) files, a life sciences file format. Information 

about the OME-TIFF (.ome.tif) file format as well as imaging software supporting this file 

format can be found in [31]. The images were captured with an electron multiplying charge-

coupled device (EMCCD) camera, Evolve 512 Delta (Photometrics, Tucson, USA) operated 

by Micro-Manager [32]. The dataset contains 482 RBL-2H3 model synapse image stacks, a 

dark field image stack (Dark.ome.tif), and a TIRF illumination image stack (TIRF.ome.tif) 

[33]. All images are 128 × 128 pixel. Each image stack contains 500 individual images with 

a camera exposure of 5 ms per image and a pixel size of 107 nm. The RBL-2H3 model 

synapse data is organized into three folders called Sample 1, Sample 2, and Sample 3. Cells 

of Sample 1, Sample 2, and Sample 3 were kept in Hanks buffer for a few minutes, about 30 

min, or about 1 h before cells were added to the supported lipid bilayer, respectively. Each of 

these folders contains subfolders for ten different fluorescent anti-DNP IgE (IgE488) 

concentrations. IgE488 was increased from 10% to 90% by increments of 10% for Sample 1 

and increased from 10% to 100% by increments of 10% for Sample 2 and Sample 3. Each 

subfolder contains between 15 and 26 image stacks, with the majority of subfolders 

containing 16 image stacks. Each image stack contains 500 image frames of a single 

RBL-2H3 cell model synapse. Figure 2 shows a flowchart of the data folder structure.

File naming convention for OME-TIFF (.ome.tif) image stacks found in a subfolder is as 

follows: IgE488_[%]per_Sample[#]_[cell #]_MMStack.ome.tif
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% refers to the percentage of IgE488 and 100% - [%] gives the corresponding percentage of IgEdark for a given image 
stack.

# is the sample number. [#] can be 1, 2, or 3.

cell is an integer number ranging from 1 to 26, identifying a particular cell for a given IgE488 percentage

# and sample number.

For example, IgE488_80per_Sample1_10_MMStack.ome.tif corresponds to the image stack 

for cell number 10 in Sample 1 labeled with 80% IgE488 and 20% IgEdark. Figure 3 depicts a 

gallery of all RBL-2H3 cell model synapses labeled with 80% IgE488 and 20% IgEdark 

contained in this dataset.

3. Methods

This section discusses the methods used to collect the data. First, the RBL-2H3 cell culture 

is described, and the steps taken to label cells with different percentages of IgE488 and 

IgEdark are outlined. The second section describes the preparation of SLBs, and the third 

section describes TIRF microscopy with corresponding imaging parameters. The third 

section describes how camera noise and camera gain were calculated and how the 

background intensity and TIRF illumination profile image stacks were collected. The last 

section outlines an IgE-dependent degranulation assay for RBL-2H3 cells.

3.1. Labeling of RBL-2H3 Cells at Varying Fluorescent and Dark Anti-DNP IgE 
Concentrations

The RBL-2H3 cell line was purchased from ATCC (ATTC®, Manassas, USA, CRL-2256). 

RBL-2H3 cells were maintained in minimal essential medium supplemented with 10% fetal 

bovine serum, 1% penicillin streptomycin, and 1% L-glutamine. Anti-DNP IgE was 

purchased from Sigma-Aldrich (~1mg/mL, clone SPE-7, Sigma-Aldrich, St Louis, USA, 

D8406). Non-fluorescent anti-DNP-IgE (IgEdark) was conjugated with 0.15 mM DyLight 

488 N-hydroxysuccinimide ester (Thermo Fisher Scientific, Waltham, USA, 46403) 

according to the manufacturer’s protocols to produce fluorescent anti-DNP-IgE (IgE488) and 

obtain a mole ratio of 1.02 ± 0.08 mole dye per mole protein. A spectrophotometer 

(NanoDrop™ 2000, Thermo Fisher Scientific, Waltham, USA) was used to measure the 

absorbance, which was then used to calculate the anti-DNP-IgE concentration and the mole 

fluorescent dye to mole protein ratio. A concentration of 6.59 ± 0.53 μM or 1.19 ± 0.10 μg/

μL was calculated for the IgE488 and 7.73 ± 0.26 μM or 1.39 ± 0.05 μg/μL for the IgEdark. 

These concentrations were then used to calculate the volume needed of each to produce a 

percentage of IgE488 in solution that increased from 10% to 100% by increments of 10% 

and IgEdark in solution that decreased from 90% to 0% by increments of 10%. To label, the 

calculated volumes of IgE488 and IgEdark were added to the RBL-2H3 cells suspended in 10 

mL of cell media the day prior to imaging and allowed to incubate overnight (see Table 1). 

Immediately before experimental data was taken, cells were removed from the suspension 

dish and resuspended in Hanks buffer. The buffer consists of Hank’s balanced salt solution 

without MgCl2 [34] supplemented with 10 mM 4-(2-hydroxyethyl)-1-
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piperazineethanesulfonic acid (HEPES) and 0.05% BSA. Cells of Sample 1 were kept in 

Hanks buffer for a few minutes before cells were added to the SLB. Cells from Sample 2 

were kept in Hanks buffer for about half an hour before cells were added to the SLB. Cells 

from Sample 3 were kept in Hanks buffer for about one hour before cells were added to the 

SLB.

3.2. Supported Lipid Bilayer

Spontaneous liposome fusion was used to produce the SLB [11]. Liposomes composed of 

1.3 mM 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti Polar Lipids, 

Inc., Alabama, USA) and 25 mol% N-dinitrophenyl-aminocaproyl 

phosphatidylethanolamine (DNP-Cap PE, Avanti Polar Lipids, Inc., Alabama, USA) were 

made as follows. The chloroform used to suspend the lipids was evaporated under air flow 

and placed in a vacuum chamber for 1 h to complete the drying process. The lipids were 

hydrated in 1 mL phosphate buffered saline (PBS, pH 7.4, Fisher BioReagents, Thermo 

Fisher Scientific, Waltham, USA, BP243820), transferred to a 1.5 mL epitube surrounded by 

ice and sonicated for 10 min with a probe sonicator. The SLB was prepared on coverslips 

that had been cleaned prior to the experiment with piranha solution, a mixture of sulfuric 

acid and hydrogen peroxide. A small amount of liposomes, 50 μL, were placed on a petri 

dish, and a coverslip was placed over the lipids, which were then allowed to incubate for 15 

min at 37 °C to form a laterally mobile bilayer. The coverslip was then transferred to an 

imaging chamber while submerged under distilled H2O. The imaging chamber was washed, 

multiple times, with 400–500 μL of Hanks buffer before the prepared cells were added. To 

assure that a central receptor patch was formed before imaging, the cells were allowed to 

incubate for 15 min on the SLB at 37 °C.

The fluidity of the SLB was tested using a fluorescence recovery after photobleaching 

(FRAP) method. To do this, liposomes composed of POPC, 25 mol% DNP-Cap-PE, and 

0.5% BODIPY-conjugated lipid (Thermo Fisher Scientific, Waltham, USA, D3803) were 

used to create a SLB. FRAP experiments on the SLB were performed on a confocal 

microscope (SP5, Leica,, Buffalo Grove, USA). The SLB was maintained at 37 °C using an 

objective heater (Bioptechs, Butler, USA). Using the Leica FRAP software, fluorescence 

recovery curves were fitted to a diffusion model yielding a diffusion coefficient of 1.1 ± 0.3 

μm2/sec and an immobile fraction of 9.9 ± 7.0%. BODIPY-labeled bilayer uniformity was 

checked using the widefield mode of the microscope. The bilayer appeared uniform and 

intact throughout the coverslip surface.

3.3. TIRF Microscopy

Objective-based TIRF microscopy of the cells was performed using an S-TIRF module 

(Spectral Applied Research, Richmond Hill, Canada) attached to a Leica DMI3000B 

inverted microscope. A 100× and 1.47 numerical aperture oil immersion objective (Leica, 

Buffalo Grove, USA) in conjunction with a 1.5× tube lens was used for imaging, resulting in 

an image pixel size of 107 nm. The samples were excited with a 488 nm laser (Coherent 

Inc., Santa Clara, USA). The penetration depth of the evanescent wave was set to 70 nm. A 

sample temperature of 37 °C was maintained throughout the imaging process with an 

objective heater (Bioptechs, Butler, USA). A 525/50 nm single-bandpass filter (Chroma, 
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Bellows Falls, USA) was used to collect fluorescence. The images were captured with an 

EMCCD camera, Evolve 512 Delta (Photometrics, Yucson, USA) operated by Micro-

Manager [32]. The EMCCD camera was set to a multiplier gain of 100. The 128 × 128 pixel 

region of interest (ROI) allowed for each cell to be imaged with an exposure time of 5 ms.

3.4. Calibration and Image Correction

For images contained in this dataset to be useful for further analysis, corrections need to be 

made to account for background contributions and non-uniform TIRF illumination. 

Additionally, the collected signal given in analog-digital-units (ADUs) must be converted to 

photon equivalents or photo electrons using camera gain (g). This signal must then further be 

corrected by accounting for noise contributions. Noise contributions for EMCCD cameras 

include Poisson noise, readout noise, dark current noise, and spurious noise. Noise 

contributions due to the dark current and spurious noise are at least one order of magnitude 

smaller than typical readout noise contributions and hence are typically ignored [14]. To 

calculate camera readout noise and gain, a stationary test sample containing the full range of 

intensities can be used. An appropriate calibration image, which samples all possible 

intensities, was obtained from out-of-focus fluorescent beads [36]. A time series of 500 

images of orange beads (Invitrogen, Thermo Fisher Scientific, Waltham, USA, 

FluoSpheres® Fluorescent Color Kit, F10720) mounted on a microscope cover glass was 

taken. Following calibration procedures outlined in references [36] and [13], the camera gain 

g for this dataset was 0.006 photo electrons per ADU. The readout noise Nread was 0.529 

photo electrons. To correct for background intensity, 500 images were taken at an exposure 

of 5 ms with the laser turned off. To correct for non-uniform TIRF illumination, a 1 mm 

thick, yellow autofluorescent plastic slide (Chroma, Bellows Falls, USA) was illuminated in 

TIRF mode, and an image stack containing 500 images was taken.

3.5. Degranulation Assay

Since the passage number can impact the degranulation process in RBL-2H3 cells, time-

dependent effects of Hanks buffer together with concentration-dependent effects of DNP-

BSA in solution on the degranulation of RBL-2H3 cells were investigated by measuring 

extracellular levels of β-hexosaminidase [37]. The degranulation assay was performed on 

RBL-2H3 cells that were kept in cell media or exposed to Hanks buffer for one hour prior to 

the start of the degranulation assay. To determine the strength of mast cell degranulation, the 

amount of β-hexosaminidase, a secreted mast cell enzyme was measured. β-

Hexosaminidase, which is generally present in the lysosome, is essential for glycoprotein 

metabolism in the maintenance of cell homeostasis. In mast cells, large amounts of β-

hexosaminidase are present in the granules [38]. In these experiments, 300 × 105 RBL-2H3 

cells per well were seeded in two cell culture-treated 24-well plates (ThermoFisher 

Scientific, Waltham, USA, 142475) and primed for 24 h with 0.5 μg/mL IgEdark in cell 

media. After 24 h, cells in plate one were washed twice with Hanks buffer and resuspended 

in a Hanks buffer for one hour. Cells in plate two were also washed twice with Hanks buffer 

but then resuspended in cell media for one hour. Then the degranulation assay was 

performed on both plates following the method of Smith et al. [37] with anti-DNP IgE-

primed RBL-2H3 cells exposed to 0, 0.001, 0.01, 0.1, or 1.0 μg/mL DNP-BSA (Sigma-

Aldrich, St Louis, USA). Supernatants were then collected and the percent of total β-
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hexosaminidase content released into the medium over the incubation time period were 

calculated. Figure 4 depicts the release expressed as a percentage of total cellular content for 

the different experimental conditions. Besides for spontaneous release (0 μg/mL DNP-BSA), 

the release for cells kept in Hanks buffer instead of cell media for one hour decreased 

between 38%–65%, depending on DNP-BSA concentrations. The percentage of total 

cellular hexosaminidase released for 0.1 μg/mL DNP-BSA for cells kept in cell media prior 

to the start of the degranulation assay is consistent with previous experiments [11,37].

4. User Notes

To perform statistical image analysis on this dataset, the following image processing steps 

should be performed. Image processing is necessary to correct image sequences of the 

RBL-2H3 cell model synapse for dark current (background intensity), uneven TIRF 

illumination, and camera noise, as well as to convert original pixel values in ADUs to photo 

electrons (e−). Image processing can be performed in MATLAB in conjunction with 

DIPimage, an image processing library [39] or with ImageJ, an image processing software 

freely available in the public domain [40]. First, subtract the dark image D (average of 500 

background intensity images) in units of ADU from each image I in units of ADU, and then 

multiply the image by the TIRF illumination profile T to perform a so-called flat-field 

correction [41]. To obtain T, compute the average of 500 TIRF illumination images, and then 

divide this average image by its maximum pixel intensity such that the maximum pixel value 

of image T is one. Then multiply the resulting image by camera gain g = 0.006 photo 

electrons/ADU and subtract the readout noise Nread = 0.529 photo electrons to obtain the 

final image S. Equation (1) outlines the calculation to obtain image S. Pixel values of S will 

be given in photo electrons.

S = I−D T g − Nread (1)

To facilitate the use of this dataset, image stacks to obtain D (Dark.ome.tif) and T 

(TIRF.ome.tif) are included in the data repository.

It is expected that the concentration of fluorescently labeled IgE-FcεRI receptor signaling 

complexes within synaptic patches increases linearly with an increasing percentage of 

IgE488. This expected linear trend was verified by comparing the average pixel intensities of 

imaged FcεRI-centric synapses for different % IgE488. The mean fluorescent intensity in 

units of photo electrons (e−) per pixel was calculated by first averaging pixel intensities over 

individual image stacks after applying Equation (1) and then averaging the intensities of 5–

10 square regions (10 × 10 pixels each) within individual FcεRI-centric synapses. Regions 

within the synaptic patches that contained holes (i.e., no IgE488) were not included. Figure 

5a shows that the mean pixel intensity inside synaptic patches increased at similar rates as a 

function of % IgE488 for each sample. After averaging pixel intensities for all samples, a line 

of best fit through the origin was fitted to the data. Figure 5b depicts this fit. The average 

pixel intensity within FcεRI-centric synapses for all three Hanks buffer conditions increased 

linearly at a rate of 0.42 ± 0.02 photo electrons per pixel per IgE488.
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Figure 1. 
(a) TIRF microscope image of RBL-2H3 cell FcεRI-centric synapse. Prior to imaging, the 

cell was loaded with 80% fluorescent anti-DNP IgE and 20% dark anti-DNP IgE. Scale bar 

represents 5 μm; (b) Schematic of RBL-2H3 cell coming into contact with a supported lipid 

bilayer with monovalent ligand (25 mol% DNP-lipid) in bilayer.
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Figure 2. 
Flowchart of the experiment data files folder and subfolder structure of the published 

Mendeley data [33]. Cells of Sample 1, Sample 2, and Sample 3 were kept in Hanks buffer 

for a few minutes, about 30 min, or about 1 h before cells were added to the supported lipid 

bilayer, respectively. Each subfolder contains between 15 and 26 image stacks of individual 

RBL-2H3 cell FcεRI-centric synapses saved as ome.tif files as indicated by the number 

within curved brackets. A dark field image stack (Dark.ome.tif) and a TIRF illumination 

image stack (TIRF.ome.tif) are also contained in the experimental data files. Each image 

stack contains a sequence of 500 images.
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Figure 3. 
Gallery of images of RBL-2H3 cell model synapses labeled with 80% IgE488 and 20% 

IgEdark in contact with supported lipid bilayers containing mobile ligand. The gallery shows 

16 images for each of the three samples. The scale bar in the first image panel represents 5 

μm and applies to all remaining panels.
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Figure 4. 
Prolonged RBL-2H3 cell exposure to Hanks buffer inhibits exocytosis in RBL-2H3 cells. 

Cells were either resuspended for one hour in cell media (black open circles) or in Hanks 

buffer (red open triangles) prior to the start of a DNP-BSA dose-dependent degranulation 

assay. Exocytosis or degranulation was measured as the percentage of total cellular 

hexosaminidase released.
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Figure 5. 
Mean intensity of fluorescently labeled IgE-FcεRI receptor signaling complexes within 

synaptic patches as a function of percent fluorescent anti-DNP IgE (IgE488) added to 

solution: (a) Mean intensity for each sample. Sample 1 (solid black circles), Sample 2 (solid 

blue squares), and Sample 3 (solid red triangles) were kept in Hanks buffer for a few 

minutes, about 30 min, or about 1 h before cells were added to the supported lipid bilayer, 

respectively. Error bars represent the standard deviations; (b) Mean intensity of all three 

samples averaged together with error bars representing the standard deviations. Solid line 

represents a weighted linear fit y = a x. The slope a of this fit was 0.42 ± 0.01 photo 

electrons (e−) per pixel per percent (%) IgE488 in solution.
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Table 1.

Volumes of IgE488 and IgEdark added to RBL-2H3 cell suspension 24 h prior to imaging and corresponding 

concentrations for different % IgE488 and % IgEdark.

% IgE488 (%) % IgEdark (%)
Volume of IgE488

Added to Cell

Suspension (μL) 
1

Volume of IgEdark
Added to Cell

Suspension (μL) 
1

Concentration of
IgE488 in Cell

Suspension (μg/mL) 
2

Concentration of
IgEdark in Cell

Suspension (μg/mL) 
2

10 90 0.5 ± 0.1 3.8 ± 0.1 0.06 ± 0.1 0.53 ± 0.3

20 80 1.0 ± 0.1 3.4 ± 0.1 0.12 ± 0.2 0.47 ± 0.2

30 70 1.5 ± 0.1 3.0 ± 0.1 0.18 ± 0.2 0.41 ± 0.2

40 60 2.0 ± 0.1 2.6 ± 0.1 0.24 ± 0.2 0.36 ± 0.2

50 50 2.5 ± 0.1 2.1 ± 0.1 0.30 ± 0.3 0.30 ± 0.2

60 40 3.0 ± 0.1 1.7 ± 0.1 0.36 ± 0.3 0.24 ± 0.2

70 30 3.5 ± 0.1 1.3 ± 0.1 0.42 ± 0.4 0.18 ± 0.2

80 20 4.0 ± 0.1 0.9 ± 0.1 0.48 ± 0.4 0.12 ± 0.1

90 10 4.5 ± 0.1 0.4 ± 0.1 0.54 ± 0.5 0.06 ± 0.1

100 0 5.0 ± 0.1 0.0 0.60 ± 0.5 0.00

1
Pipetting errors using a micropipette.

2
Errors obtained from basic propagation of errors rules [35], i.e., x and y have errors δx and δy, then the error in z = x × y is 

δz
z = δx

x
2

+ δy
y

2
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