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A B S T R A C T   

Image motion deblurring is a crucial technology in computer vision that has gained significant 
attention attracted by its outstanding ability for accurate acquisition of motion image informa
tion, processing and intelligent decision making, etc. Motion blur has recently been considered as 
one of the major challenges for applications of computer vision in precision agriculture. Motion 
blurred images seriously affect the accuracy of information acquisition in precision agriculture 
scene image such as testing, tracking, and behavior analysis of animals, recognition of plant 
phenotype, critical characteristics of pests and diseases, etc. On the other hand, the fast motion 
and irregular deformation of agriculture livings, and motion of image capture device all introduce 
great challenges for image motion deblurring. Hence, the demand of more efficient image motion 
deblurring method is rapidly increasing and developing in the applications with dynamic scene. 
Up till now, some studies have been carried out to address this challenge, e.g., spatial motion blur, 
multi-scale blur and other types of blur. This paper starts with categorization of causes of image 
blur in precision agriculture. Then, it gives detail introduction of general-purpose motion 
deblurring methods and their the strengthen and weakness. Furthermore, these methods are 
compared for the specific applications in precision agriculture e.g., detection and tracking of 
livestock animal, harvest sorting and grading, and plant disease detection and phenotyping 
identification etc. Finally, future research directions are discussed to push forward the research 
and application of advancing in precision agriculture image motion deblurring field.   

1. Introduction 

Computer vision, image processing and deep learning technology have grown rapidly and applied widely in agriculture, due to low 
cost of equipment, high computation power of computer and ability of non-destructive assessment [1,2]. While in practice agricultural 
producing, the scene of image shooting is roughly complex, e.g., fast movement of animal, device shaking, nature environment in
fluence and other relative motion. These extrinsic factors always cause motion blurred image and roughly affect applications of 
agriculture images [3]. Significantly, agricultural living things are not like inanimate objects, as animal motion or shape 
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transformation further adding the image blurry degree. For instance, fish swimming and deformation of fish body blurs add complexity 
to fish tracking and trajectory analysis [4]. Pig movement and deformation blurs make the precision biomass estimation more difficult 
[5]. Current techniques mostly adopts increasing the shutter speed of camera to get clear pictures, which still cannot solve the effects of 
motion blur completely in practice agriculture production. Hence, it is still a significant demand to explore the image motion 
deblurring techniques for images deblurring of complex and dynamic agriculture scene in precision agriculture. 

Image motion deblurring has grown extensively as critical and imperative technology for motion blurred image reconstruction [6]. 
It is possible mathematically to reconstruct the underlying image from non-ideal image, that blurred by extrinsic moving factors. so 
that information present but hidden in the data is revealed with less motion blur. While, image deblurring is an ill-posed problem in 
image processing, since too many parameters are unknown for a deblurring algorithm [7]. Moreover, the real dynamic agriculture 
scene and targets characteristics result in image and video always suffering from spatially varying blurs from various sources [8]. The 
motion of livestock animals, body deformation and rotation of plant leaves bring out occlusion, overlap, multi-scales, and blur edge 
expand, which result further loss of blur semantic information and local feature loss. Thus, it is difficult to parameterize the pixel-wise 
varying blur kernel in agriculture dynamic scene with simple homography and estimation of blur kernel or blur edge. The agriculture 
scene image motion deblurring has been a more challenging task for image deblurring. Fig. 1 gives an over-understanding for computer 
vision and image motion deblurring techniques application in agriculture, from technology, application, reasons for motion blur, 
difficulties and method. 

Over the years, numerous techniques of image deblurring have been proposed to tackle non-blind or blind deblurring problems, 
that classic and well-known classification schemes are employed [9]. The motion blur kernel, also known as one kind of point spread 
function (PSF) is core discussed content [10]. For non-blind deconvolution, the blur kernel is assumed to be known and used to es
timate the sharp image. By contrast, the blind deblurring problem is more ill-posed, that means the blur kernel is unknown. Therefore, 
the task of blind deblurring becomes the estimation of the sharp image and the blur kernel from the degrade image. Traditional 
methods of motion deblurring include the Richardson-Lucy method, Wiener filter method and Markov random field method [11]. 
While, for agriculture image processing, the deblurring methods are preferred to blind deblurring, because of the changing scenes of 
agriculture, changes of irregular morphological and unpredictable external factors. In recent years, the deep learning algorithm as a 
novel blind deblurring technology has been presented for motion image deblurring [12], because of its robust feature representation 
abilities. It surpasses previous feature representation methods based on manual design in portraying the superiority of image features. 
It is found that deep learning methods are most widely used in precision agriculture image motion deblurring through section 4 
literature reviews. 

background in agriculture. 

Fig. 1. Computer vision and motion deblurring technology application.  
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Image motion deblurring has opened a new avenue for the development of computer vision attacked by its unique advantages. It 
has been widely studied and applied to many fields. The application of image motion deblurring in precision agriculture can yield 
benefits in terms of productivity and efficiency. However, the depth and scope of its application in agriculture are initial stages. The 
cutting-edge motion deblurring algorithms are still not mature and limited. Hence, one of objects of this study is to summarize the 
application of image motion deblurring technology in precision agriculture in the past decade, including precision fertilizer spreading, 
precision livestock farming, precision weed detection, intelligent postharvest sorting and grading and plant precision detection and 
phenotyping identification, etc. In addition, we briefly introduce the image motion deblurring methods and analyze the advantage and 
disadvantage of each type technique. We also discuss the challenge for precision agriculture image motion deblurring and the future 
directions of research in image fusion technology. This paper provides the current status of application of image motion deblurring 
technology in precision agriculture and valuable guidance for further developments, which can solve practical application problems 
and bring a significant breakthrough in intelligent and precision agriculture. 

2. Motion blurred image categories in precision agriculture 

With the rapid development of computer vision technology in recent year, image processing methods are utilized in many agri
culture fields, such as livestock detection and monitoring [13], identification of plant phenotyping and disease diagnose [14], fruit 
sorting and grading and mechanized fertilization [15]. These fields are the high standard for image quality in agriculture precision 
applications. While, in the agriculture nature environment, the images are usually degraded due to the fast movement of livestock or 
shake of image capture device [4]. According to the different scenes, the motion blurred image can be divided into the following 
categories, shown in Fig. 2. 

(1) Camera static and object motion blurred image: This type blurred image is the most common blurry image in agriculture. It 
can usually be divided into blurred images of animal motion and blurred images of plant phenotyping. In precision agriculture, 
detection, monitoring and behavior analysis of animal have become increasingly crucial for animal welfare breeding and are important 
ways to increase production. While fast movement of animal always results in motion blur, which leads to false detection or other 
failed analysis [16]. The environment may cause motion blur images for the extraction of plant phenotyping, which add the difficulty 
for diseases detection [17]. These motion blurred images are irregular and the motion blurs are non-uniform. The targets are usually 
large-scale. Thus, the relatively large scale targets with large area non-uniform blurred parts are roughly difficult for image preprocess 
tasks. 

(2) Camera motion and object static blurred image: This type motion blurred image is another common blurred image in 

Fig. 2. Motion blurred image categories in agriculture application.  
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precision agriculture. It usually appears in weed detection or harvest fruit detection [18]. In these agriculture scenes, the camera is 
usually installed on a movement equipment to capture the image of static plants. So, this kind of image capture way always easily 
results in motion blurred images and affects the application in precision agriculture. For this type blurry image, the blurry area is large 
and the blur kernels are uniform [19]. For these images, the detection objects are relatively small scale targets. 

(3) Camera motion and object motion blurred image： Camera motion blurred images usually involve moving objects. Such as 
fertilizer spreading in agriculture, there are always wind and other factors adding the blurry effect for the capture image [20]. In 
fertilizer spreading process, the device motion and fertilizer particle motion both result in the motion blur. 

(4) Agriculture environment influence: In addition to the above factors of blurriness, there is some uncertain factor for high 
altitude camera, such as the unmanned aerial vehicle (UAV) system [21]. There are uncertain factors for this big scene, such as camera 
shake, big wind and fast speed etc. For this motion blurred image, the blur kernel is spatial variation and un-uniform, which makes the 
image deblurring more challenging. 

3. Development of image motion deblurring techniques 

The image blurring process can be named as image degradation process. In 1972, Richardson presented the image degradation 
model [22]. In practice agriculture production, the complex environment and motion of animal, plant, and device always result in 
motion blurring images and roughly affect the effective application of computer vision in precision agriculture [23]. Thus, motion 
deblurring is a fundamental and cutting-edge problem in the computer vision field. In the past two decades, motion deblurring 
techniques have been carried out to help develop better models and algorithms for the precision understanding of agriculture images. 
In agriculture, image deblurring technology has been applied in some special areas but is still immature. In this part, we summarize the 
typical image motion deblurring techniques development from basic motion deblurring algorithms, traditional motion deblurring 
methods and neural network-based deep learning deblurring methods. 

3.1. Motion blurring algorithm 

(1) Blur kernel. 
The blur kernel, also known as the point spread function (PSF) caused an image pixel to record light photons from multiple scene 

points [24]. Many factors can extrinsically or intrinsically cause image blur. For image motion deblurring, the blur is mainly divided 
into object motion blur and camera shake blur. These blurs can degrade an image or video in different ways. An accurate estimation of 
the sharp image and the blur kernel requires an appropriate modeling of the digital image formation process modeling. The image 
formation model can be formulated as follow Eq. (1) [11]: 

y= S(f (D(P(s) ∗ hex) ∗ hin)) + n (1) 

This formula represents a typical camera system image formation that encompasses the radiometric processes by which a 3D world 
scene is projected into a 2D focal plane. The photography process can be modeled as a concatenation of the perspective projection and 
the geometric distortion. The final digital image is formed by discretization duo to the nonlinear sensor response. In Eq. (1), y is the 
observed image, s is the real planar scene, P( ⋅) and D( ⋅) are the perspective projection and geometric distortion operator, f( ⋅) denotes 
the nonlinear camera response function. hex is the extrinsic blur kernels caused by external factors such as motion blur. hin denotes the 
blur kernels determined by intrinsic factors such as defocus blur. The S is the discretization process, and * denotes the mathematical 
convolution operator. n is the additional noise. 

For image motion deblurring, it is interested in recovering a sharp image with no blur effect, rather than the geometry of the real 
scene. Hence, focusing on the image plane and ignoring the sample errors, the image deblurring formulation can be described as Eq. (2) 
[11]: 

y≈ f (x ∗ h) + n (2)  

Where x is the latest sharp image, it is obtained from D(P(s) and h is the blur kernel for image deblurring, approximately introduced by 
hex and hin, and assumed by most approaches. The f camera response function will still significantly influence the deblurring process if 
it is not appropriately addressed. However, in many researches, the f is neglected or as a preprocessing step for simplification in 
deblurring method. And then obtain a further simplified formulation, which is introduced most commonly in research as Eq. (3) [11]: 

y= x ∗ h + n (3) 

We can introduce the non-blind and blind deblurring methods from the above formulation. For non-blind deblurring methods, it is 
to recover a sharp image x by observation y and given blur kernel h. Blind deblurring methods are to recover a sharp image x and h, 
usually are obtained by iterative learning. This survey mainly focuses on the motion blur kernel and the noise n. Next, we will 
introduce two causes of motion blur kernel and types of the motion blur kernel. 

(2) Motion blur. 
For image motion deblurring, the blurred image is mainly caused by object motion blur and the camera motion blur. Object motion 

blur is caused by the relative motion between an object in the scene and the camera system during exposure time [25]. Suppose the 
motion is very fast relative to the exposure period. In that case, we may approximate the resultant blur kernel as a linear blur, which 
can be described as follow formulation as 1D local average of neighboring pixels and given as Eq. (4): 
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The (i, j) is the coordinate originating from the center h. L represents the moving distance and direction. Fig. 3a gives simulated 
example of a Lena standard test image corrupted by 30◦-directional motion. Whereas in the case of object motion, only the moving 
object image is blurred linear, that blur kernel is regarded as uniform blurring blur [26,27]. Real motions are extremely complex in 
agriculture, because of the large space of possible motion paths. Such a simple parametric model cannot approximate them. For 
example, in Fig. 3b, the camera and the cattle are both moving, which results in the motion blurred image and increases the difficulty 
for the target identification. It cannot use a uniform blur kernel to process the whole image in this case. We will introduce another 
un-uniform motion blur. This type of blur also usually occurs in the camera motion blur. 

Camera shake blur is another kind of motion blur, caused by camera motion during exposure in handled photography or in low- 
light situations. In an ideal scene, the camera is only translated and the resultant blur is approximately spatially invariant [7]. It can be 
modeled as the simple object linear motion blur as in Eq. (4). However, the camera rotation motion blur is more complex, especially for 
unmanned aerial vehicle (UAV) loaded camera will cause an irregular direction when photographing [21]. For this motion blur image, 
it is assumed that the entire image is uniformly blurred and the blur kernel remains unchanged. The corresponding restoration method 
is called spatially invariant motion blur [7,28,29]. 

3.2. Traditional motion deblurring techniques 

Image motion deblurring is categorized into two main categories, traditional deblurring techniques and deep learning deblurring 
techniques. The subsequent section contains the details of existing well-known deblurring techniques for motion-blurred images, along 
with their strengths and weakness. The earliest and typical methods for image deblurring are based on the Bayesian algorithm. The 
well-known methods include the Richardson-Lucy algorithm (RL) [30], Wiener filter [31], Edge prediction, variational Bayesian 
methods, etc. These methods are identified as a non-blind or blind deblurring method, according to whether the blur kernel is known or 
unknown.  

(1) Richardson-Lucy method 

The R-L algorithm uses the maximum likelihood method to repair blurred images and succeeds in many motion deblurring pro
cesses. Several improved R-L algorithms were used for image motion deblurring. For example, Yong et al. addressed an improved R-L 
algorithm [32]. This method combined the local prior to suppress the ringing artifacts caused by failures in the blur kernel estimation. 
Yang et al. proposed an a unified framework called the Gradient Attentuation Richardson-Lucy algorithm, which is applied to solve the 
loss of image details due to the suppression of the ringing artifacts around the region with strong edges [33]. Shah et al. also modified 
the Richardson-Lucy algorithm with weight calculation based on graph-cut to obtain good estimates of the unblurred image with 
ringing reduction. The method involves the selection of different weights for edges and smooth regions such that the ringing effect over 
R-L iterations can be reduced [34]. The above methods all used the Richardson-Lucy algorithm to solve the ringing artifacts for the 
non-blind motion deblurring. The R-L algorithm is also extended to incorporate a depth-aware motion blur to solve the 
spatially-varying point-spread functions in real world obtained image [6].  

(2) Wiener filter method 

The Wiener filtering method uses the minimum equalization criterion achieve the purpose of image deblurring. The Wiener filter 
algorithm has greatly ability to reduce the blurred image noise. It is usually used in a generating phase-inverting grids method to help 

Fig. 3. Simulation linear motion blur images and real agriculture motion blurred image.  
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reduce the noise for optical image deblurring [35,36]. Wiener filter algorithm is also used to restore object image of different sizes, or 
used to design a simple motion deblurring model to promote the deblurring speed [37]. Moreover, these models have been applied to 
synthetic and real-world images, such as image of rotational movement and photoelectric image [38–41]. In recent years, the Wiener 
filter algorithm has been combined with the deconvolution algorithm for non-blind image motion deblurring, which effectively 
improve the model performance [42,43]. Summarize above approaches, the Wiener filtering algorithm is suitable to design the model, 
which needs to reduce the noise and solve the spatial deblurring blur estimation.  

(3) Markov random field method 

The principle of the Markov random field (MRF) algorithm uses the grid structure to express the spatial relationship in the image. 
Woo et al. built preprocessing step that include registration and intensity matching and a data combination approach with the edge- 
preserving property. This method is carried out by Markov random field optimization, which is a super-resolution reconstruction 
technique based on volumetric tongue MR images acquired from three orthogonal acquisitions [44]. Moreover, Abbadi et al. also 
proposed a filter method based on combining Markov basis and Laplace filter. It is slightly modified to make it appropriate for color 
images and solved the escalation image edge content [45]. A framework of Markov Random Field (MRF) was formulated to solve for 
the depth map by exploiting both stereo cues and motion blur cues. This method solves that the scene depth variation is an important 
factor that leads to spatially-varying camera motion blur [46]. It is challenging to find distinct features to learn the extent of motion 
blur through deep learning precisionly. The Markov random field model was used to infer a dense non-uniform motion blur field 
enforcing motion smoothness in deep learning motion deblurring models [47,48].  

(4) Variational Bayesian method 

The Variational Bayesian (VB) method estimates the approximate joint posterior probability distribution of the blur kernel and the 
implicitly clear image. It integrates all possible hidden clear images to calculate the marginal probability distribution of the fuzzy 
kernel. So that the k with the largest marginal distribution is the estimated fuzzy kernel [49,50]. Wipf and Zhang addressed that the VB 
method can be considered as an unconventional Maximum a Posteriori method when it uses a specific form of a prior that implicitly 
combines clear images, blur kernels and noise levels [51]. Although compared with earlier methods based on Maximum a Posteriori, 
this type of method is less likely to converge to non-trivial solutions, but requires extremely complex mathematical derivation and high 
computational complexity. Thus, the variational Bayes method is used for ringing effects removal [52], and adaptive edge selection 
[53] for blind motion deblurring, achieved better results. 

4. Edge prediction method 

Edge prediction method still involves the iterative estimation process of the implicitly clear image and blur kernel, so it is 
considered as a variant of the Maximum a Posteriori based method. The method is based on explicit edge prediction and uses the 
combination of a simple bilateral filter and an impulsive filter for the estimation of the blur kernel. It performs detail suppression, edge 
enhancement of intermediate deblurred image, and the processing of the processed image [54,55]. The intermediate deblurred image 
can be estimated using simple Gaussian gradient priors by using the explicit edge prediction, which greatly improves the running speed 
of the algorithm [56,57]. This type method lacks effective modeling of the formation process for motion blur and the actual deblurring 
performance is poor. 

At the end of this section, we summarize the traditional image motion deblurring techniques in Table 1. These methods can solve 
the ringing affect, noise and blurry edge estimation for the motion blurred image. They are relatively simple and commonly employed 
for image preprocessing to enhance image quality. Table 1 presents detailed information on the name, basic theory, advantages, and 
disadvantages of each technique. We analyze the results of the motion deblurring techniques using a deblurring ability metric, where a 
greater number of stars indicates improved motion image deblurring capabilities. 

However, these methods have limitations, including the need to obtain the blur kernel and the fact that restoration results are often 
not ideal. These techniques may also result in the loss of deep image information and an inability to fully capitalize on the relationships 
between image frames and pixels. Despite these shortcomings, these methods can still be employed during the image preprocessing 
stage for computer vision methods, providing higher quality image datasets. 

4.1. Neural network based motion deblurring techniques 

The nature of the blur kernel is to cut off a high-frequency band of image, and it is not easy to recover the high-frequency in
formation. Deep learning has powerful capabilities of feature representation, and surpasses previous methods of feature representation 
based on the manual design in portraying the superiority of image features. Recently, deep learning methods have significantly 
affected on image reconstruction tasks [58]. The deep learning method is usually used to solve the spatial invariable motion blurring 
removal. These methods are largely concerned with estimating a blur kernel, and then the solution proceeds in the same way as 
non-blind deblurring. The kernel estimation based methods and direct image-to-image deblurring methods are two mainly categories.  

(1) Blur kernel estimation methods 
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Traditional motion blur estimation methods mostly assist motion blur estimation by recovering clear edge information from 
blurred images. Moreover, prior knowledge usually leads to complex optimization problems. In order to solve the above problems, 
motion blur estimation methods based on deep learning methods have been successively proposed for the motion blur kernel esti
mation. The process is shown in Fig. 4. The kernel estimation motion deblurring methods based on deep learning mainly estimate the 
motion vector kernel and frequency domain kernel. 

1)Kernel estimation from the motion vector. 
A spatially variant motion vector can be estimated by patch-wise classification, in which a neural network assigns probabilities to 

many candidate motion vectors. Sun et al. addressed the problem of estimating and removing non-uniform motion blur from a single 
blurry image [59]. This method estimated the probabilities of motion kernels at the patch level using a convolutional neural network 
(CNN). And, the patch-based estimation is used for a dense field of motion kernels by Markov random field (MRF). This patch-wise 

Fig. 4. Deep learning deblurring methods based on kernel estimation.  

Table 1 
A summary of traditional motion deblurring methods for image motion deblurring.  

Basic theory Author name Method name Advantages Disadvantages Ability for 
deblurring 

Richardson- 
Lucy(R-L) 

Yong et al. [32] R-L with local prior Suppress the ringing artifacts. Loss of detail information for 
blurred image. 

★★★ 

Yang et al. [33] GA-RL Suppress the ringing artifacts and recover 
more detail information. 

Cannot satisfy for general 
camera shake. 

★★★ 

Shah et al. [34] R-L with weight 
calculation 

Estimation accuracy of blur kernel is more in 
noiseless and in low noise condition. 

Complex to achieve the 
method. 

★★★★ 

Sheng et al. [6] R-L with depth- 
aware motion blur 
model 

Applied to real-world images with the 
assistance of motion estimation. 

Cannot solve video deblurring 
with nonuniform motion 
velocity assumption. 

★★★★ 

Wiener filter Vasu et al. [35] Wiener filter 
method 

Reduce the noise for optical image 
deblurring. 

Time consuming and better 
deblurring result requirements. 

★★★ 

Shi et al. [37] Linear deblurring 
with Wiener filter 

Restore object image of different sizes and 
have high speed. 

Proposed for specific scenarios 
and need better generalization 
performance. 

★★★★ 

Cai et al. [38] Winner filter 
method 

Deblurring for rotational movement image 
and photoelectric image. 

Just for single image, and 
cannot used for video. 

★★★ 

Zhuang [42] Knife-edge with 
Wiener filtering 

Deblurring for 3D RFID tags. Still in the laboratory research 
stage. 

★★★★ 

Markov random 
field 
method 

Abbadi et al. 
[45] 

Markov basis with 
Laplace filter 

Used for color and gray images deblurring. Cannot solve deep blur 
estimation. 

★★★★ 

Zhen et al. [46] Markov Random 
Field method 

Used for depth spatially-varying image 
deblurring. 

The scene cannot be texture less 
and translational blur 
dominates. 

★★★ 

Dhanakshirur 
[47] 

Markov Random 
Field 

Used for a dense non-uniform motion blur 
field.  

★★★★ 

Variational 
Bayesian 

Shao et al. [50] Variational 
Bayesian 

More adaptive sparse image prior with 
considerably less implementation heuristics. 

The proposed approach are not 
the off-the-shelf non- 
informative prior. 

★★★★ 

Wipf et al. [51] Variational Bayes 
for sparse priors 

Success for blind deconvolution with a 
transparent platform for introducing 
enhancements and extensions. 

The method is relatively 
complex. 

★★★★ 

Cao et al. [52] Variational 
Bayesian 
estimation 

Remove the effects of unknown camera 
shake. 

Less of processing the relative 
motion between targets in an 
image. 

★★★ 

Edge prediction Xu et al. [54] Gaussian filter for 
image edge 
prediction 

Improve the deblurring result quality with 
adaptive regularization and able to blurred 
images with very large blur kernels. 

Just useful for the blur image 
with clearly edge. 

★★★ 

Singh et al. 
[56] 

Sobel filter for 
image edge 
prediction 

Improve the running speed of the algorithm. Longer training time is a 
significant limitation. 

★★★★  
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process is complicated and time-consuming. Then, a novel blur kernel estimation method based on regression model is proposed for 
motion blur estimation. The motion blur features are first mined through a convolutional neural network (CNN), and then mapped to 
motion length and orientation by support vector regression (SVR) [60]. This method is named CNNSVR, which gives more accurate 
kernel estimation and generate better deblurring result. Gong et al. proposed an motion blur to motion flow method [61] to directly 
estimate the motion flow from the blurred image through a fully-convolutional deep neural network (FCN) and recover the unblurred 
image from the estimated motion flow. The experimental results of synthetic and real-world data all show the strong deblurring ability 
for image. The motion kernel size estimation based on the CNN method is also used to restore sharp edges [62,63].  

2) Kernel estimation in the frequency domain 

Kernel estimation in the frequency domain has proved to be effective. A combination of learning-based feature extraction and 
kernel estimation of image deconvolution was proposed by Schuler et al. [64]. The network has modules for feature extraction, kernel 
estimation, and image reconstruction. Another method of estimating a blur kernel in the frequency domain is directly kernel co
efficients regression (FNN) [65]. The neural network infers the Fourier coefficients of the inverse filter from a blurred input image. 
There is also a cascade network, which uses three stacked modules perform multiple iterations to refine the features and the latent 
image. An attention mechanism is investigated for the blind deblurring NN, including both spatial and channel attention, to effectively 
handle the significant spatial variations on blurring effects [66,67].  

(2) Direct image-to-image regression methods 

Non-uniform blind deblurring for general dynamic scenes is a challenging computer vision problem. Recent studies have started to 
use end-to-end trainable networks for image and video deblurring [68]. The process is shown in Fig. 5. These methods also use 
multi-scale loss function that mimics conventional coarse-to-fine approaches and effectively solve the problem of image deblurring in 
dynamic scenes preliminary. 

Considering the nature of the blurred process in the network structure design, Zhang et al. proposed a novel spatially variant neural 
network to solve different scene depths and dynamic scene [69]. This method embeds the recurrent neural network into a network 
structure based on encoder and decoder, and the coefficients of the recurrent neural network are realized by a network structure based 
on the encoder and decoder. For the problem of deblurring in a dynamic scene, a large number of end-to-end deep learning methods 
have been proposed in the later research [70–74]. In order to improve the end-to-end network model, some methods combined the 
fusing of prior knowledge in an end-to-end framework [75,76]. The results show that the fusion of prior knowledge can effectively 
constrain the deep learning model and make the deep learning model more compact and achieving better deblurring results. 

The recent prosperity of generative adversarial networks(GAN) often yield sharper and more plausible textures than classical feed- 
forward encoder and witness success to deblurring by treating it as a special image-to-image translation task [77]. Kupyn et al. 
presented an end-to-end learned method for motion deblurring (DeblurGAN) [78]. The learning is based on a conditional GAN and the 
content loss. Then, Kupyn improved the DeblurGAN called as DeblurGAN-v2 [79]. DeblurGAN-v2 is based on a relativistic conditional 
GAN with a doublescale discriminator. This type of method considerably boosts state-of-the-art deblurring efficiency, quality, and 
flexibility. 

The end-to-end deep learning method can be regarded as supervised learning. It needs lots of sharp images for the training. While, 
in a real world scene, it is difficult to obtain a sharp image at the simultaneously for the dynamic scene, as the camera or object motion. 
To solve this problem, un-supervised learning methods are proposed for the motion deblurring [80,81]. These methods achieved 
domain-specific and single-image deblurring by splitting the content and blurring features in a blurred image using content or using 
adversarial networks to synthesize blurred images. 

We summarize neural network-based image motion deblurring techniques in Table 2, which covers the method name, advantages, 
disadvantages, and quality evaluation indices. The summarized content highlights that deep learning techniques are non-mechanistic 
approaches to image motion deblurring. These techniques employ expertly designed network structures with large numbers of pa
rameters to simulate the relationship between original and blurred images, ultimately obtaining a blurred image reconstruction model. 
Different models possess varying deblurring capabilities, with the ultimate goal being a fast and effective solution for image motion 
deblurring. In these techniques, the motion deblurring stage is commonly considered as a part of the model, such as detection, tracking, 
and identification models. As a result, these techniques are well-suited for processing complex and dynamic scene images. 

Fig. 5. Image-to-image deblurring methods based on deep learning.  
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In Table 2, we use the PSNR and MSE (both introduced in Section 3.4) as performance evaluation metrics for these methods to offer 
readers an understanding of their effectiveness and comparison. The larger the value of PSNR means the closer the restored image is to 
the original image, and the better the image restoration effect. And, the smaller the RMSE value means the better the restoration effect. 

4.2. Quality evaluation index 

Mass images are degraded due to blur and other factors. It is almost impossible to recognize and evaluate image quality by human 
eyes alone. The recognition of image quality through one or two mathematical models is also limited image processing. Therefore, the 
use of effective evaluation methods to evaluate image quality has important research significance. The evaluating the quality of image 
restoration in image deblurring is a basic task. The mainly evaluating index includes follows.  

(1) With reference to image quality assessment 

This type of method is based on the cumulative sum of errors. It is a full reference image quality evaluation, such as Root Mean 
Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), etc. Most of the existing image deblurring 
methods for image quality evaluation using this kind of parameterized image quality evaluation method.  

1) Root Mean Square Error (RMSE) 

The basic idea of RMSE is to find the difference between the restored image and the original sharp image. Then calculate the sum of 
the squares of this difference and calculate the average as Eq. (5), and finally take the square root, which is expressed as Eq. (6): 

MSE(x, y)=
1

n × m
∑n×m

i=1
(xi − yi)

2 (5)  

RMSE(x, y)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MSE(x, y)

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n × m
∑n×m

i=1
(xi − yi)

2

√

(6) 

The original image x ∈ Rn×m, the restoration image y ∈ Rn×m. The greater the RMSE value means the greater the difference between 
restored and the original images. When using the mean square error to evaluate the image restoration effect, the smaller the RMSE 
value means the better the restoration effect.  

2) Peak Signal to Noise Ratio (PSNR) 

PSNR is the ratio of the maximum possible power of the image to the corresponding noise power. It is based on the mean square 
error, due to the wide dynamic range of most signals. Therefore, the unit of PSNR is generally expressed as a logarithmic decibel of 10, 
specifically expressed as Eq. (7): 

PSNR(x, y)= 10 log10

(
(2n − 1)2

MSE(x, y)

)

= 20 log10

(
‖2n − 1‖

RMSE(x, y)

)

(7) 

n is the number of bits for image store. The larger the value of PSNR means the closer the restored image is to the original image, 
and the better the image restoration effect. 

Table 2 
A summary deep learning method for image motion deblurring.  

Author name Method 
name 

Advantages Disadvantages PSNR MSE- 
motion 

Sun et al. [59] CNN Motion blur kernel estimation for a dense scene. Complicate and time-consuming. 44.55 7.83 
Lu et al. [60] CNNSVR More accurate blur kernel estimation and 

generate better deblurring result by support 
vector regression (SVR). 

Model structure complicate. 23.09 – 

Gong et al. [61] FCN Fully-convolutional deep neural network for 
estimation of the motion flow directly. 

Only designed for linear blur kernels, which 
limits the application domains. 

21.95 1.05 

Chakrabarti 
et al. [65] 

FNN Fourier coefficients of a deconvolution filter to be 
applied to the input patch for restoration. 

Only for blind image deblurring. – 3.01 

Zhang et al. 
[69] 

RNN Determine network parameters through the 
relationship between the top and bottom of the 
pyramid. 

Cannot calculate parallelly along the spatial 
dimension, so the inference time of this method is 
still not reduced. 

29.19 – 

Kupyn et al. 
[78] 

DeblurGAN The structure is relatively simple and the 
restoration result is more realistic. 

High requirements for data sets. 28.7 –  
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3) Structural Similarity (SSIM) 

The structural Similarity (SSIM) basic principle is to extract structural information from an image through the visual system of the 
human eye. Expressed as Eq. (8): 

SSIM(x, y)=
(
2μxμy + c1

)(
2σxy + c2

)

(
μ2

x + μ2
y + c1

)(
σ2

x + σ2
y + c2

) (8) 

μ2
x and μ2

y represent the average value of the image. σ2
x and σ2

y represent the variance of the image. σxy represents the covariance 
between the original image and the clear image. Both c1 and c2 are constants, and the value range is [− 1,1]. The larger the SSIM value 
means the more similar the restored image and the original clear image, and the better the restoration effect. 

This kind of parameterized image quality evaluation index must provide good quality and clear reference or original image during 
evaluation. In general, the restoration image does not have such a reference image, so it cannot be applied to the image quality 
evaluation method without reference. Moreover, the original images in image deblurring are always unknown in practical 
applications. 

(2) No-reference image quality assessment. 
The conventional metrics, such as the peak signal-to-noise ratio (PSNR) and the mean-squared error (MSE) operate directly on the 

intensity of the image. They do not correlate well with the subjective fidelity ratings. Thus, many efforts have been made to design 
human visual system (HVS) based on IQA metrics and learning-based quality evaluation, called no-reference image quality assessment.  

1) Human visual system (HSV) 

The first category is based on the Human visual system (HSV). This method usually uses frequency-based decomposition, including 
contrast and directional sensitivity modeling, spatial and temporal mask effects, frequency selection, and color perception. Feature- 
similarity index (FSIM) is a no-reference image assessment based on HSV algorithm [82]. While, due to the complexity of HSV, 
these metrics can become very complex and computationally expensive.  

2) Learning-based image quality evaluation 

The learning-based quality evaluation assessment methods indicator based on natural scene statistics are: BRISQUE [83], BLIINDS 
[84], DIIVINE [85], and NIQE [86]. This type method extracts features from images through machine learning. Then use machine 
learning to obtain a good model, and finally use the trained model to predict the quality of the image. Due to the limitation of single 
model evaluation, more trends adopt fusion methods for learning evaluation. 

4.3. Image motion deblurring datasets 

The method of using neural network to restore image motion blur requires training to obtain network parameters. The datasets play 
an important role for deep learning methods in image motion deblurring. In reality, it is difficult to obtain motion blurred image 
datasets. According to the construction method of blurred datasets, it can be roughly divided into two categories, datasets of artificially 
synthesized and datasets of real scene.  

(1) Synthesized datasets  
1) Dataset with simulation blur kernel 

This dataset is obtained by convolution of the sharp picture with simulation blur kernel, which built by Levin et al. [87] and Kupyn 
et al. [78]. Kupyn et al. proposed a method to simulate realistic and complex fuzzy kernels, following the idea of random trajectory 
generation. Then sub-pixel interpolation is applied to the trajectory vector to generate a kernel function.  

2) Dataset with camera trajectory synthesis 

The second category is blurred images synthesized by camera trajectory. This type of method uses a high-speed camera to 
continuously shoot and average the image to obtain a blurred image, such as Kohler [88]and GOPRO datasets. Nah et al. [89] proposed 
a realistic blury image dataset GOPRO, which chose to record the sharpening information to be integrated over time to generate the 
blurred image, and instead of modeling the kernel to convolve the sharpened image.  

(2) Real scene datasets  
1) Video Deblurring Dataset 

Su et al. [90] built a benchmark which contains videos captured by various kinds of devices such as iPhone 6s, GoPro Hero 4 and 
Nexus 5*, and each video includes about 100 frames of size 1280*720. This benchmark consists of two sub datasets: quantitative and 
qualitative ones. The quantitative subset contains 6708 blurry frames and their corresponding ground-truth sharp frames from 71 
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videos. The qualitative subset includes 22 scenes, most of which contain more than 100 images.  

2) Blurred KITTI Dataset 

Geiger et al. [91] develop a dataset called KITTI by using their autonomous driving platform. The KITTI dataset consists of several 
subsets for various kinds of tasks, such as stereo matching, optical flow estimation, visual odometry, 3D object detection and tracking. 
Based on the stereo 2015 dataset in the KITTI dataset, Pan et al. [92] create a synthetic Blurred KITTI dataset, which contains 199 
scenes. Each of the scenes includes 3 images captured by a left camera and 3 images captured by a right camera. This dataset is utilized 
only for testing. Comparison of the characteristics of mainstream data sets is shown in Table 3. 

5. Applications of motion deblurring techniques in precision agriculture 

Currently crop and livestock monitoring methods based on manual and computer vision cannot satisfy the requirements of pre
cision agriculture due to the agriculture’s unique environment and targets. The real-time and efficiency obtaining of image detail 
information has become an important and imperative part for modern agriculture production and management in a dynamic agri
culture scene. Image motion deblurring technology can overcome camera shake or object motion to obtain g relatively sharp images 
and detail information for the computer vision task. Thus, image motion deblurring technology is vital for computer vision applications 
in precision agriculture. 

The detail techniques and application areas are shown in Fig. 6, according to the paper section 4 content. As shown in Fig. 6 inside 
circle, the deep learning techniques are less than traditional deblurring techniques for motion deblurring. In contrast, the applications 
of deep learning motion deblurring are more than traditional methods in agriculture, owing to strong feature extraction ability of deep 
learning. Moreover, these techiques are mainly focus on detection and identification of plant species, identification of plant pheno
typing, sorting and grading of harvest fruit, detection, biomass estimation and tracking of animal. 

5.1. Precision fertilizer spreading 

Excessive fertilizer use has been the main contributor to the increasing environmental imbalance observed in the past 20 years. 
Better accuracy and regular spreading of fertilizer are important to improve and maintain the nutritional element content of cultivated 
soils and limit excess fertilizer loss [93]. The management of mineral fertilization using centrifugal spreaders requires the development 
of spread pattern characterization devices to improve the quality of fertilizer spreading. The velocity of the granules when they leave 
the spinning disc is a major parameter for the spreading uniformity. While, the fast speed of the particles always causes blurred images 
and complicates for the information obtained from the precision fertilizer spreading [20]. Towards the fertilizer particle fast spreading 
speed, Villette et al. presented an optimized Hough transform method to extract the velocity information from motion deblurring 
image [94]. In this method, the author used a recursive linear filter inspired by the filter developed by Ziou [95] and modeled the filter 
by approximating an approximation Guassian second derivative to preprocess the original motion blurred image. Moreover, the peak 
extraction is carried out iteratively to identify the global maximum, deduce the line parameters and subtract from Hough space the 
Hough transform of the corresponding segment. This method is demonstrated that a motion blurred image acquired in the vicinity of 
the disc with a low cost imaging system can provide the three dimensional components of the outlet velocity of the particles. 

Moreover, Villette et al. used the previous developed specific image processing method to estimate the mass flow and rotational 
speed affect fertilizer centrifugal spreading [96] and deduce the outlet angle from motion blurred image, which granule trajectories are 
identified [97]. For the measurement of the spread patterns of granular fertilizer spreaders, a global threshold operation was used to 
segment particles from the background and generate a particle binary image [98]. And then, this study used border following 

Table 3 
A summary for image motion deblurring datasets.  

Type Author 
Name 

Dataset Name Build approach Advantage and disadvantage 

Synthesized 
datasets 

Levin 
et al. 

LevinEtal Dataset Simulate fuzzy kernels by different 
algorithms. 

Easy to obtain, while local blurring is not considered. 

Kupyn 
et al. 

Kupyn dataset Simulate complex fuzzy kernels 
following the idea of random trajectory. 

Easy to obtain and the motion in two-dimensional, while the 
real three-dimensional space is not considered. 

Kohler 
et al. 

Kohler dataset The movement trajectory is captured by 
a 6D camera. 

The motion trajectory in three-dimensional space is collected, 
while the lens distortion and changes in depth of field are not 
considered. 

Nah et al. GOPRO dataset High-speed camera continuous shooting 
and average to obtain dataset. 

Close to the real blur situation, while the acquisition process is 
troublesome and the data scene is single. 

Real scene 
datasets 

Su et al. Deep video 
deblurring dataset 

Build a dataset of real videos recorded 
with a high frame rate camera. 

Useful for real world video deblurring. The scene is relatively 
comprehensive. 

Pan et al. KITTI dataset Build a Blurred KITTI dataset on realistic 
scenery with stereo camera and liner 
device. 

Detailed and authentic for dataset, and usually used for 
deblurring methods testing,  
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algorithm to determine the contours of the connected components for blur image particle trajectory segment. This method can solve 
the uncontrolled environment, the uniformity of the illumination and the black background problem of measuring the spread patterns 
of granular fertilizer spreaders. All the above methods are usually used in the original image preprocessing to remove the motion blur 
and provide precision information for the calculation of the different parameters. 

5.2. Precision livestock farming 

Livestock farming is an important part of the agriculture industry. As a basic animal husbandry industry, poultry farming plays an 
important role in promoting economic development, and ensuring increasing demands [1]. In modern livestock farming, management 
of livestock environment and animal welfare are two critical issues [99]. As an advanced and fundamental technology, computer vision 
has been widely used in livestock farming, such as detection, tracking and behavior analysis of animal. The statistical data proved that 
the motion and body deformation of feeding animal are the primary causes of the blurred image and bring errors [100], which roughly 
affect the application for computer vision. Thus, exploring the deblurring methods for the animal motion blur removal is essential.  

(1) Silkworm sex detection 

Machine vision-based technology has been applied for discriminating and sorting the sex of silkworm pupae. The motion blur of 
silkworm could lose textures and structures, e.g. edge and tail gonad, which is caused by the live silkworm pupa’s writhing motion at 
the moment of capturing an image. Tao et al. toward this problem, presented a radon transform-based motion deblurring method for 
silkworm pupa image restoration [101]. The first sharp edges were acquired using filtering techniques in the image prediction stage. 
Then the initial blur kernel was computed with Gaussian prior. The coarse version latent image was deconvoluted in the Fourier 
domain. The Radon transform was applied to estimate the accurate kernel in the kernel refinement stage (Fig. 7). The radon transform 
of blur kernel k along straight lines which could be denoted using offset ρ and the orientation θ, as presented in follows Eq. (9). 

Φk
θ(ρ)=

∫+∞

− ∞

∫+∞

− ∞

k(x, y)δ(ρ − xcos(θ) − ysin(θ))dxdy (9) 

The Φk
θ(ρ) denotes the projections of k along the direction orthogonal to different orientation θ. 

Benefiting from the prediction step and the coarse-to-fine framework, the latent silkworm pupa image was recovered without 
ringing artifacts and edge-preserving.  

(2) Farming broiler chicken detection and weight prediction 

For broiler chicken farming, computer vision technology has been used in the chicken detection, weight prediction and other fields. 
Vilas et al. presented a general framework for live detection of broilers in poultry houses [102], which solved the crowded scenes, poor 
image quality and difficulty acquiring a benchmark of labeled samples. In this method, the author used a normalized box filter as the 
homogeneous blur (with a 9*9 uniform kernel) to preprocess the original blurred image and obtain high quality binary image. This step 
increased the accuracy of broiler detection. Wang et al. proposed an automated digestive disease detector based on a deep 

Fig. 6. Application of motion deblurring techniques in precision agriculture.  
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Convolutional Neural Network model to classify fine-grained abnormal broiler droppings images as normal and abnormal [103]. 
Because, the droppings images were obtained from the conveyor and usually blurred because of the conveyor movement. To solve this 
problem, Wang et al. used Gaussian, average, uniform and median blur to preprocess the motion blur image. The enhancement images 
promoted the disease droppings detection accuracy. In above methods, the Gaussian blur is show as Eq. (10), where σ is the standard 
deviation of normal distribution. The homogeneous blur and median blur are achieved through matrix convolution. 

G(x, y)=
1

2πσ2e− (x2+y2)/(2σ2) (10) 

Nasiri et al. presented a deep convolutional neural network that was used to detect and track seven key points on the bodies of 
walking broilers [104]. This method used deep learning strong learning ability to solve the motion blur. It achieved an overall clas
sification accuracy of 95% and the average per-class classification accuracy was 97.5%. In addition, the broiler chickens’ beak and 
head motion can provide fundamental information for the biomechanical. Yao et al. adopted an motion deblurring method called 
PSS-NSC, which is built by the Gao et al. [105] for the movement chicken motion blur image preprocessing [106]. This method 
proposes a which proposes a parameter-selective sharing mechanism to build a larger and higher-quality network framework, the 
method framework and deep learning structure shown in Fig. 8(a, b). Fig. 8a is the process of origin image pre-processing and Fig. 8b is 
framework of motion deblurring network. Then, this method used the database for the gender detection model training and obtained 

Fig. 7. Radon transform [101].  

Fig. 8. The general framework of the image preprocessing process [106].  
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more accuracy results. 
While, during the eating process, the higher speed of the beak creates a blurred image on the frame, which might lead the algorithm 

to errors due to difficulty precisely detecting the beak tip [100]. This part research is still unsolved for broiler chicken feeding. The 
proposed methods may have the potential to facilitate the efficient and repeatable acquisition of biomechanical data of broiler 
chickens during feeding.  

(3) Swimming fish detection and tracking 

Monitoring the growth condition and behavior of fish will enable scientific management and reduce the threat of losses caused by 
stress and disease [107]. Machine vision has been widely used as a noninvasive, portable, and effective method to sample and monitor 
fish. While, fish swimming always results in motion blur images and adds difficulty for detection, tracking and behavior analysis of fish 
[108]. For example, the behavior of cannibalism and the phenomenon of fish chasing brings the problem of motion blur. Towards this 
problem, Wang et al. proposed a real-time detection scheme based on the improved You Only Look Once YOLO-v5 to detect the 
cannibalism of grouper fry in recirculating aquaculture systems [16]. This method used multi-head attention in the backbone network 
to obtain global information, including the motion blurred image part, and effectively solve problems of motion blur, occlusion and 
small targets in the culture environment. Hu et al. also presented an improved YOLO-V4 network by modifying the feature map to 
de-redundancy for fish image deblurring [109]. Christensen et al. utilized a unified neural network that simultaneously performed 
bounding box and class predictions coupled with the application area with poorly conditioned environment, such as the motion blur, 
ununiformed illustration and low contrast light [4]. In this method, the authors presented an Optical Fish Detection Network 
(OFDNet), which consists of a Single Shot Multibox Detector (SSD). This method can identify the low visibility and motion blur clearly.  

(4) Cattle detection and identification 

Segmenting animals from video and tracking their motion is a prerequisite for body condition scoring and behavior analysis in 
precision livestock framing has been important in recent years. Kumar et al. used the face image to identify cattle using computer 
vision approaches [110]. The proposed method used Gaussian pyramid-based low-pass filtering technique to increase the image 
quality of cattle’s face image. The preprocessing step can overcome the challenge of blurriness image, due to body dynamic of cattle. 
For cattle farming, an one-shot learning-based animal video segmentation method was proposed for movement cattle segmentation 
[111], shown in Fig. 9. 

In this method, a post-processing step was adopted for image enhancement to remove the motion blur and other noise of cattle 
image. The post-processing step consists of test time augmentation and conditional random field for boosting and segmentation ac
curacy, which experiments on DAVIS 2016 animal data, achieved 89.5% at a relatively fast speed. 

5.3. Precision weed detection 

Weed control is a significant issue in agricultural crop production. Weeds compete with crop plants for moisture, nutrients and 
sunlight. They could have a detrimental impact on crop yields and quality if UN controlled. Computer vision technology has been used 

Fig. 9. Overall flowchart for one-shot learning-based animal video segmentation [111].  
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for weed identification by visual texture. However, real imaging systems are usually imperfect and the changing environmental 
conditions always result in a degraded image [112]. Image motion blur is an important class of degradations in practice. Peng et al. 
proposed a robust weed recognition scheme using low-quality color weed images with image deblurring method [18]. This method 
used image-moment-based blur invariant features to get the features invariant of the image scale but it is sensitive to camera motion. 
The normalized blur invariant features B are as follow Eq. (11)：The N is the size of image, and the sum of p and q is a constant to 
determine the set of blur invariant features. 

B1(p, q)=B(p, q)
/

u00(N/2)p+q (11) 

Buddha et al. outlined a robotic weed management system. They developed the image analysis portion of this system to overcome 
some real aerial difficulties such as motion blur [113]. They adopted the deblurGAN network [114] with a blind motion blur for deblur 
image super resolution. Hu et al. simulated the most common image degradation observed in weed mapping applications through the 
image formation pipeline. They and explored the influence, such as Gaussian noise, motion blur. This study used CNN methods, Faster 
R–CNN, Mask R–CNN and Deeplab-v3 for weed detection and instance segmentation. The CNN method can effectively reduce the 
influence of motion blur for weed image [115]. Above methods adopt different network structure. While, the implementation process 
are similar as shown in Figs. 4 and 5. 

5.4. Intelligent postharvest sorting and grading 

In the agriculture and food industry, the proper grading of fruits is very crucial to increase profitability [116]. Traditional manual 
experts for sorting the fruits are time-consuming, laborious, and suffer from the problem of inconsistency and inaccuracy in judgement 
by different human experts. In recent years, computer vision and image processing technologies have been applied for fruit sorting and 
grading. In fruit grading processing, the roller conveyor belt or the moving camera always produces a motion blur image, which add 
the difficulty for the grading image processing. An automatic electronic vision-based system for sorting and grading of fruit Mango. 
The wiener filtering method was used in this machine grading system to remove the motion deblurring [117]. Wiener filtering, also 
known as minimum mean square error filtering. The approximate formula can be expressed as follow Eq. (12). H(x, y) is the degenerate 
function, G(x, y) is the is the Fourier transform of the degraded image, F′ is estimated image. 

F′(x, y)=

[
1

H(x, y)
|H(x, y)|2

|H(x, y)|2 + K

]

G(x, y) (12) 

Currently, many fruit grading equipment increases the shutter speed to minimize the motion blur influence for object feature 
detection. Nandi et al. built a proposed model of a mango fruit system, and in the hardware part, the authors controlled and fixed the 
shutter speed to the value of 1/200s [118]. In order to remove the motion blur through methodology, Hu et al. adopt DeblurGAN 
method to deblur the apple images to improve the accuracy of apple feature extraction in the field [119], the basic processing frame 
can be shown in Fig. 5. This algorithm can stable solve the high feeding speed or apple moved rapidly resulting in a strong image blur 
deviation of the apple from the central channel, and extraction device operated stably and accurately grading the apples. 

5.5. Plant precision detection and phenotyping identification  

(1) Detection of plant 

With the rise of artificial intelligence and machine learning in computer vision applications, images are a prime source of data that 
can help farmers improve management decision-making [120]. While for outdoor agriculture production, the dynamic environment 
and equipment movement make plant object detection or phenotyping identification still challenging tasks. A custom camera flash 
system using LEDs was developed and integrated into a machine vision platform in outdoor agriculture settings to overcome the sun’s 
influence on apple detection by Mirhob et al. This system reduced the shutter duration on the camera to help to lessen the effect of 
motion blur when cameras captured images under high-velocity movement and ground vibrations. Yuan et al. used the popular 
method YOLOV4 convolution neural network for the outdoor and densely distributed apple flower detection [121] and zhang et al. as 
well used the YOLO5 method to develop a robust and real-time spear tips locator by improving image augmentation and lightweight 
network for selective harvesting robot of White asparagus [23]. These methods used deep learning methods preliminary to solve 
complex background and movement scene plant object detection difficulties, e.g. illumination, mirror, motion blur. For more complex 
scenes and higher speed object detection, Shah and Kumar proposed a scale recurrent network for deep image deblurring of grape 
detection. The result concluded that the proposed image deblurring method significantly improves the performance of grape detection 
on the corrupted motion blur dataset [19].  

(2) Identification of plant phenotyping 

In the last two decades, agriculture plant phenotyping has become the method of choice for quantitative assessment of plant 
morphology, development and function [122]. While, the dynamic optical appearance of developing plants, illumination shadow of 
inhomogeneous scene and equipment movement all add difficulties for automated segmentation of unimodal plant images. Especially, 
the plant leaf motion or the camera movement causes the image blur. This factor is a major factor for the detail phenotyping 
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identification. Henke et al. presented an approach based on the co-registration of fluorescence and visible light camera images to 
automatic segmentation of greenhouse plant image [17]. This method used UN supervised k-means clustering of Eigen-colors is 
applied to generate a compact representation of pre-segmented visible light camera images to reduce the motion blur effects. Li et al. 
proposed a custom DCNN backbone, which is used as the first stage of the “two-stage” detector-Faster-RCNN to pre-train a model 
[123]. Furthermore, a confusion matrix of video detection is presented for the still rice disease image detection to solve the motion blur 
and defocus problems.  

5. Discussion and future directions 

Image motion deblurring is a cutting-edge problem in computational imaging filed. Currently, the traditional typical motion 
deblurring methods, such as RL, WF and MAF cannot satisfy the demand for precision agriculture applications. Given the complex 
agricultural environment and the difficulty of parameterizing spatially varying blur kernels in realistic imaging, it is crucial to study 
unrestricted nonparametric blind image motion deblurring in the context of real agricultural applications. Although deep learning 
deblurring techniques have shown significant progress in image motion blur removal, existing methods still have limitations, whether 
in terms of restoration model intuition, estimation accuracy, robustness, or algorithm efficiency. Therefore, an extended discussion on 
the pressing topic of nonparametric image deblurring is presented as follows. 

(1) Data-driven deep representation learning techniques will be essential for image motion deblurring in realistic agricultural 
scenes and complex environments. The research on data-driven deblurring and deep representation learning began later but has 
progressed rapidly in recent years. Although deep neural networks possess inherent computational advantages due to end-to-end 
training, their generalization performance needs improvement compared to traditional motion image deblurring methods, and they 
suffer from poor comprehensibility. As a result, the supervised deep learning approach should be enhanced by combining it with 
mechanism analysis models for unrestricted nonparametric blind deblurring problems in real-world agricultural scenes. Additionally, 
exploring nonparametric deblurring methods based on unsupervised deep learning could be a promising choice for agricultural image 
processing. 

In recent years, unsupervised deep learning models, represented by GANs, have gained popularity. Thus, integrating the Maximum 
a Posteriori (MAP) blind deblurring method with Deep Reinforcement Learning (DRL), and incorporating the complementary benefits 
of both MAP and DRL algorithms is a crucial scientific problem worthy of attention for motion image deblurring. Furthermore, 
achieving a fast and robust blind deblurring algorithm for salient edge depth perception, guided by the variation mechanism in 
precision agriculture, will also be an essential advancement. 

(2) Spatial changes and irregular deformations of agricultural organisms are the primary challenges for image motion deblurring in 
precision agriculture. In agriculture and aquaculture, the primary targets are living organisms, including animals and plants. Animals 
often exhibit rapid movements and non-rigid morphological changes, while plants are typically affected by external factors such as 
wind and human intervention. These motion characteristics result in spatial blur, multi-scale targets, and edge blur expansion. 
Moreover, imaging devices may also cause blurring due to spatial changes resulting from their translation, rotation, and swing during 
practical agricultural production. Handheld cameras capturing on-site emergency scenes and high-speed moving targets recorded by 
airborne cameras can introduce more complex motion blur, posing greater challenges to the deblurring problem. 

Although traditional variational methods combined with target segmentation have begun to address the problem of dynamic space- 
varying blur, these methods only consider single blur targets and blur types and introduce additional computational complexity due to 
blur target segmentation. Dynamic deblurring methods based on deep learning face considerable challenges, including issues with 
supervised training and poor generalization performance. Consequently, improving space-invariant deblurring algorithms to adapt to 
dynamic motion deblurring problems involving spatial changes remains a critical scientific problem that requires a solution. 

(3) Overcoming motion blur caused by fast-moving equipment is a significant challenge for detecting static targets and extracting 
features in agricultural settings. Unlike living organism’s motion blur, the target is usually static. Simultaneously, the capture device 
moves rapidly to ensure production efficiency, resulting in motion blur. Therefore, algorithm efficiency is crucial for scenarios with 
high real-time requirements. The computational speed of an algorithm plays an essential role in its practical application. In contrast, 
traditional image deblurring methods often face low computational efficiency and susceptibility to ringing and noise. Consequently, 
enhancing the real-time performance of image motion blur reduction algorithms can make these techniques applicable to a broader 
range of settings. For instance, during the production monitoring process, a real-time image motion blur reduction algorithm can 
capture images while objects are in motion. This eliminates the need to stop the item, thereby increasing the efficiency of the pro
duction line. 

(4) Different blurred image datasets are essential for precision agriculture. Blurred image datasets significantly affect the 
performance of deep learning methods in image enhancement. Presently, the availability and variety of open-source datasets are 
limited. The most popular and extensive dataset, GOPRO, contains only 2103 pairs of training images and 1111 pairs of test images. 
This is far less than the datasets available in other computer vision fields, especially when compared to the ImageNet dataset, which 
includes 14,197,122 images. Contrary to the areas of image recognition and segmentation, acquiring agriculture blurred image 
datasets can be quite challenging. Regardless, datasets function as the foundation for researchers in any field to make advancements. 
The scarcity of these datasets directly impacts the progress of research in this area. As a result, there is an urgent need to introduce a 
large-scale, innovative and different types agriculture datasets that addresses this gap. 
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6. Conclusion 

The rapid development of computer vision, image processing and deep learning technology has greatly benefited the precision 
agriculture by offering cost-effective, non-destructive assessment tools. However, real-world agricultural settings often present 
complex challenges such as fast animal movements, equipment vibrations, and environmental influences which can cause motion- 
blurred images and reduce the effectiveness of these technologies. This makes the computer vision tasks of precision agriculture 
such as detection, tracking and behavior analysis of animals, as well as detection and identification of plants, difficult even with high 
shutter speed cameras. 

Image motion deblurring has emerged as a crucial technology for motion-blurred image reconstruction and has the potential of 
significantly enhancing the capabilities of agricultural image analysis. Mathematically, it is feasible to reconstruct an underlying image 
from a motion-blurred one and reveal hidden information within the data. However, image deblurring is inherently an ill-posed 
problem due to the numerous unknown parameters involved, making it a challenging task. The dynamic nature of the agricultural 
environment and the movements and deformation of livestock animals further complicate the problem. These challenges underline the 
significant demand for more effective and robust image motion deblurring techniques that can tackle complex and dynamic agri
cultural scenarios, ultimately contributing to the advancements in precision agriculture. 

This study provides a detailed introduction to both traditional and current deep learning techniques for motion image deblurring. 
We also discuss various types of deblurring methods, including their basic theories, advantages and disadvantages, and motion image 
deblurring capabilities, aiming to encourage more researchers to apply these methods to address existing agricultural challenges. 
Furthermore, we highlight the future directions of motion image deblurring in precision agriculture, inspiring researchers to develop 
improved motion deblurring techniques to enhance accuracy and monitoring in the field of precision agriculture. 
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