
Song et al. BMC Bioinformatics  (2015) 16:39 
DOI 10.1186/s12859-015-0464-9
METHODOLOGY ARTICLE Open Access
Effective alignment of RNA pseudoknot structures
using partition function posterior log-odds scores
Yang Song1, Lei Hua1, Bruce A Shapiro2 and Jason TL Wang1*
Abstract

Background: RNA pseudoknots play important roles in many biological processes. Previous methods for
comparative pseudoknot analysis mainly focus on simultaneous folding and alignment of RNA sequences. Little
work has been done to align two known RNA secondary structures with pseudoknots taking into account both
sequence and structure information of the two RNAs.

Results: In this article we present a novel method for aligning two known RNA secondary structures with pseudoknots.
We adopt the partition function methodology to calculate the posterior log-odds scores of the alignments between bases
or base pairs of the two RNAs with a dynamic programming algorithm. The posterior log-odds scores are then used to
calculate the expected accuracy of an alignment between the RNAs. The goal is to find an optimal alignment with the
maximum expected accuracy. We present a heuristic to achieve this goal. The performance of our method is investigated
and compared with existing tools for RNA structure alignment. An extension of the method to multiple alignment of
pseudoknot structures is also discussed.

Conclusions: The method described here has been implemented in a tool named RKalign, which is freely accessible on
the Internet. As more and more pseudoknots are revealed, collected and stored in public databases, we anticipate a tool
like RKalign will play a significant role in data comparison, annotation, analysis, and retrieval in these databases.
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Background
RNA pseudoknots are formed by pairing bases on
single-stranded loops, such as hairpin and internal loops,
with bases outside the loops [1,2]. They are often min-
gled with other RNA tertiary motifs [3], and are also
found in non-coding RNAs [4,5]. RNA pseudoknots,
with diverse functions [6,7], play important roles in
many biological processes [8,9]; for example, they are re-
quired for telomerase activity [7], and have been shown
to regulate the efficiency of ribosomal frameshifting in
viruses [10].
Analysis and detection of RNA pseudoknots has been

an active area of research. Many published articles in
this area were focused on pseudoknot alignment [11-14].
In this paper, we present a new approach, called RKalign,
for RNA pseudoknot alignment. RKalign accepts as in-
put two pseudoknotted RNAs where each RNA has both
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sequence data (i.e. nucleotides or bases) and structure
data (i.e. base pairs), and produces as output an align-
ment between the two pseudoknotted RNAs. The struc-
ture data of a pseudoknotted RNA can be obtained from
the literature or public databases [15-18].
RKalign adopts the partition function methodology to

calculate the posterior probabilities or log-odds scores of
structural alignments. The idea of using posterior prob-
abilities to align biomolecules originated from [19,20]
where the partition function methodology was employed
to calculate the posterior probabilities of protein se-
quence alignments. Similar techniques were proposed by
Do et al. [21] where the authors used hidden Markov
models (HMMs) to calculate the posterior probabilities.
Will et al. [22] extended the idea of [19-21] to structure-
based multiple RNA alignment where the authors
calculated partition functions inside and outside of sub-
sequence pairs on two pseudoknot-free RNAs. Here, we
further extend this idea to pseudoknot alignment.
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Several tools are available for RNA sequence-
structure alignment [23-25]. These tools do not deal
with pseudoknots. Mohl et al. [26] proposed a method
to perform sequence-structure alignment for RNA
pseudoknots. The authors set up a pipeline for com-
bining alignment and prediction of pseudoknots, and
showed experimentally the effectiveness of this pipe-
line in pseudoknot structure annotation. Han et al.
[27] decomposed embedded pseudoknots into simple
pseudoknots and aligned them recursively. Yoon [28]
used a profile-HMM to establish sequence alignment
constraints, and incorporated these constraints into
an algorithm for aligning RNAs with pseudoknots.
Wong et al. [29] identified the pseudoknot type of a
given structure and developed dynamic programming
algorithms for structural alignments of different pseu-
doknot types. Huang et al. [4] applied a tree decom-
position algorithm to search for non-coding RNA
pseudoknot structures in genomes.
The above methods were concerned with aligning a

pseudoknot structure with a sequence or genome.
Through the alignment, the sequence is folded and its
structure is predicted. Xu et al. [11] presented a differ-
ent method, called RNA Sampler, which can simultan-
eously fold and align two or multiple RNA sequences
considering pseudoknots without known structures.
Similar techniques were implemented in DAFS [12] and
SimulFold [13]. Additional methods can be found in the
CompaRNA web server [30]. In contrast to these
methods, which perform alignment and folding at the
same time, RKalign aims to align two known RNA pseu-
doknot structures where the structures are obtained
from existing databases [15-17]. As more pseudoknot
structures become available in these databases, a tool
like RKalign will be useful in performing data analysis in
the repositories.
There are two groups of algorithms which are also cap-

able of aligning two known RNA structures. The first group
is concerned with aligning two RNA three-dimensional
(3D) structures, possibly containing pseudoknots. Ferre
et al. [31] presented a dynamic programming algorithm by
taking into account nucleotide, dihedral angle and base-
pairing similarities. Capriotti and Marti-Renom [32] devel-
oped a program to align two RNA 3D structures based on
a unit-vector root-mean-square approach. Chang et al. [33]
and Wang et al. [34] employed a structural alphabet of
different nucleotide conformations to align RNA 3D
structures. Hoksza and Svozil [35] developed a pairwise
comparison method based on 3D similarity of general-
ized secondary structure units. Rahrig et al. [36] pre-
sented the R3D Align tool for performing global
pairwise alignment of RNA 3D structures using local
superpositions. He et al. [37] developed the RASS web
server for comparing RNA 3D structures using both
sequence and 3D structure information. The above
methods and tools were mainly designed for aligning
two RNA tertiary structures by considering their geomet-
ric properties and torsion angles. In contrast, RKalign
is used to align two RNA secondary structures with
pseudoknots.
The second group of algorithms is concerned with

aligning two RNA secondary structures without pseudo-
knots. These algorithms employed general edit-distance
alignment [38] or tree matching techniques [39-41].
Jiang et al. [42] developed an approximation algorithm
for aligning a pseudoknot-free structure with a pseu-
doknotted structure. Our work differs from Jiang
et al.’s work in that we focus on the alignment of two
pseudoknotted structures. Furthermore, we use the
partition function methodology whereas Jiang et al.
adopted a general edit-distance approach to the struc-
tural alignment.
The method that is most closely related to ours is an

option offered by the CARNA tool [14]. Like RKalign,
this option is able to accept two known RNA secondary
structures with pseudoknots, and produce an alignment
between the two RNA structures. This option employs
constraint programming techniques with a branch and
bound scheme. It gradually refines solutions until the
best solution is found. To understand the relative per-
formance of the two tools, we perform extensive experi-
ments to compare RKalign with CARNA using different
datasets.
Methods
In this section, we present algorithmic details of RKalign.
To align two RNA pseudoknot structures A and B, we
adopt the partition function methodology to calculate
the posterior probabilities or log-odds scores of the
alignments between bases or base pairs in A and B re-
spectively. After calculating the posterior log-odds scores,
we then compute the expected accuracy of an alignment
between structure A and structure B. The goal is to find
an optimal alignment between A and B where the align-
ment has the maximum expected accuracy. We will
present a heuristic to achieve this goal.
Definitions and notation
Suppose (i, j) is a base pair of pseudoknot structure
A and (p, q) is a base pair of pseudoknot structure
B. We use score((i, j), (p, q)) to represent the score
of aligning (i, j) with (p, q) where the score is ob-
tained from the log-odds RIBOSUM matrix [43].
The use of this scoring matrix permits RKalign to
determine the similarity between pseudoknot struc-
tures that contain compensatory base changes. With
this scoring matrix, RKalign is able to handle non-
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canonical base pairs. Aligning a single base with a
base pair is prohibited by RKalign.
Suppose structure A has m nucleotides, i.e. the length

of A is m, and structure B has n nucleotides, i.e. the
length of B is n. We use A[c1, c2] where 1 ≤ c1 ≤ c2 ≤m
to represent the portion of A that begins at position c1
and ends at position c2 inclusively. We use B[d1, d2]
where 1 ≤ d1 ≤ d2 ≤ n to represent the portion of B that
begins at position d1 and ends at position d2 inclu-
sively. We use A[c] to represent the nucleotide and
secondary structure at position c of A, and B[d] to
represent the nucleotide and secondary structure at
position d of B.

Partition function computation
Suppose (i, j) ∈ A is aligned with (p, q) ∈ B. Let Zc,d

( Z′
c; d respectively) represent the partition function

of all alignments between A[1, c] (A[c, m] respect-
ively) and B[1, d] (B[d, n] respectively). Let Z′′

c;d

represent the partition function of all alignments
between A[i + 1, c] and B[p + 1, d]. We focus on the
case in which both (i, j) and (p, q) are base pairs.
The case for aligning single bases is simpler, and
thus omitted.
First, we show how to calculate Zc,d where 1 ≤ c < i

and 1 ≤ d < p. There are three cases to be considered:
(i) A[c] is aligned with B[d]; (ii) B[d] is aligned to a
gap; and (iii) A[c] is aligned to a gap. Let ZM

c;d repre-
sent the partition function of all alignments between
A[1, c] and B[1, d] where A[c] is aligned with B[d].
Let ZE

c;d represent the partition function of all align-
ments between A[1, c] and B[1, d] where B[d] is
aligned to a gap. Let ZF

c;d represent the partition func-
tion of all alignments between A[1, c] and B[1, d]
where A[c] is aligned to a gap. Then Zc,d can be cal-
culated by Equation (1).

Zc;d ¼ ZM
c;d þ ZE

c;d þ ZF
c;d ð1Þ

We ignore and skip the computation of Zc,d when
A[c] or B[d] is the left base of some base pair. If A[c]
(B[d], respectively) is a single base and B[d] (A[c],
respectively) is the right base of some base pair, ZM

c;d ¼ 0.
Otherwise, let A[c] be the right base of some base
pair (x, c) and let B[d] be the right base of some
base pair (y, d). Following [20], ZM

c;d can be calcu-
lated by Equation (2).

ZM
c;d ¼ Zc−1;d−1e

score x; cð Þ; y; dð Þð Þ
T ð2Þ

Here T is a constant, and score((x, c), (y, d)) is obtained
from the RIBOSUM85-60 matrix [43]. Thus, the partition
function ZM
c;d can be computed recursively by dynamic

programming as follows:

ZM
c;d ¼ ZM

c−1;d−1 þ ZE
c−1;d−1 þ ZF

c−1;d−1

� �
e
score x; cð Þ; y; dð Þð Þ

T

ð3Þ

When calculating ZE
c;d , since B[d] is aligned to a

gap, we know that A[c] must be aligned with B[d-1].
Therefore,

ZE
c;d ¼ Zc;d−1e

score −; y;dð Þð Þ
T ð4Þ

where score(−, (y, d)) is the gap penalty value obtained
by aligning base pair (y, d) to gaps. Thus,

ZE
c;d ¼ ZM

c;d−1 þ ZE
c; d−1 þ ZF

c;d−1

� �
e
score −; y;dð Þð Þ

T ð5Þ

When calculating ZF
c;d , since A[c] is aligned to a gap, B

[d] must be aligned with A[c-1]. Therefore,

ZF
c;d ¼ Zc−1;d e

score x; cð Þ;−ð Þ
T ð6Þ

where score((x, c),−) is the gap penalty value obtained by
aligning base pair (x, c) to gaps. Thus,

ZF
c;d ¼ ZM

c−1;d þ ZE
c−1;d þ ZF

c−1;d

� �
e
score x; cð Þ;−ð Þ

T ð7Þ

Next, we show how to calculate Z′
c; d where j < c ≤m

and q < d ≤ n. There are three cases to be considered:
(i) A[c] is aligned with B[d]; (ii) B[d] is aligned to a gap;

and (iii) A[c] is aligned to a gap. Let Z′M
c;d represent the

partition function of all alignments between A[c, m]

and B[d, n] where A[c] is aligned with B[d]. Let Z′E
c;d

represent the partition function of all alignments
between A[c, m] and B[d, n] where B[d] is aligned to

a gap. Let Z′F
c;d represent the partition function of

all alignments between A[c, m] and B[d, n] where A[c]
is aligned to a gap. Then Z′

c; d can be calculated by
Equation (8).

Z′
c; d ¼ Z′M

c;d þ Z′E
c;d þ Z′F

c;d ð8Þ

We ignore the computation of Z′
c; d when A[c] or B[d]

is the right base of some base pair. If A[c] (B[d], respect-
ively) is a single base and B[d] (A[c], respectively) is the

left base of some base pair, Z′M
c;d ¼ 0. Otherwise, let A[c]

be the left base of some base pair (c, x) and let B[d] be
the left base of some base pair (d, y). Following [20],

Z′M
c;d can be calculated by Equation (9).
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Z′M
c;d ¼ Z′

cþ1;dþ1e

score c; xð Þ; d; yð Þð Þ
T

¼ Z′M
cþ1;dþ1 þ Z′E

cþ1;dþ1 þ Z′F
cþ1;dþ1

� �
e

score c; xð Þ; d; yð Þð Þ
T

ð9Þ

When calculating Z′E
c;d , since B[d] is aligned to a gap,

A[c] must be aligned with B[d + 1]. Therefore,

Z′E
c;d ¼ Z′

c;dþ1e

score −; d; yð Þð Þ
T

¼ Z′M
c;dþ1 þ Z′E

c;dþ1 þ Z′F
c;dþ1

� �
e

score −; d; yð Þð Þ
T

ð10Þ

When calculating Z′F
c;d , since A[c] is aligned to a gap,

B[d] must be aligned with A[c + 1]. Therefore,

Z′F
c;d ¼ Z′

cþ1;de

score c; xð Þ;−ð Þ
T

¼ Z′M
cþ1;d þ Z′E

cþ1;d þ Z′F
cþ1;d

� �
e

score c; xð Þ;−ð Þ
T

ð11Þ

Finally, we show how to calculate Z′′
c;d where i < c < j

and p < d < q. There are three cases to be considered: (i) A
[c] is aligned with B[d]; (ii) B[d] is aligned to a gap; and (iii)

A[c] is aligned to a gap. Let Z′′M
c;d represent the partition

function of all alignments between A[i + 1, c] and B[p

+ 1, d] where A[c] is aligned with B[d]. Let Z′′E
c;d rep-

resent the partition function of all alignments be-
tween A[i + 1, c] and B[p + 1, d] where B[d] is aligned

to a gap. Let Z′′F
c;d represent the partition function of all

alignments between A[i + 1, c] and B[p + 1, d] where A
[c] is aligned to a gap. Then Z′′

c;d can be calculated by
Equation (12).

Z′′
c;d ¼ Z′′M

c;d þ Z′′E
c;d þ Z′′F

c;d ð12Þ

We ignore the computation of Z′′
c;d when A[c] or B[d]

is the left base of some base pair. If A[c] (B[d], respect-
ively) is a single base and B[d] (A[c], respectively) is the

right base of some base pair, Z′′M
c;d ¼ 0. Otherwise, let A

[c] be the right base of some base pair (x, c) and let
B[d] be the right base of some base pair (y, d). If x <
i + 1 or y < p + 1, we ignore and skip the computation
of Z′′

c;d . We consider only the case where x ≥ i + 1
and y ≥ p + 1. Following [20], Z′′M
c;d can be calculated

by Equation (13).

Z′′M
c;d ¼ Z′′

c−1; d−1e

score x; cð Þ; y; dð Þð Þ
T

¼ Z′′M
c−1;d−1 þ Z′′E

c−1;d−1 þ Z′′F
c−1;d−1

� �
e

score x; cð Þ; y; dð Þð Þ
T

ð13Þ

When calculating Z′′E
c;d , since B[d] is aligned to a gap,

A[c] must be aligned with B[d-1]. Therefore,

Z′′E
c;d ¼ Z′′

c; d−1e

score −; y; dð Þð Þ
T

¼ Z′′M
c;d−1 þ Z′′E

c;d−1 þ Z′′F
c;d−1

� �
e

score −; y; dð Þð Þ
T

ð14Þ

When calculating Z′′F
c;d , since A[c] is aligned to a gap,

B[d] must be aligned with A[c-1]. Therefore,

Z′′F
c;d ¼ Z′′

c−1; de

score x; cð Þ;−ð Þ
T

¼ Z′′M
c−1;d þ Z′′E

c−1;d þ Z′′F
c−1;d

� �
e

score x; cð Þ;−ð Þ
T

ð15Þ
Calculation of posterior log-odds scores
There are four cases to be considered when calculating
the posterior probability or log-odds score of aligning
base pair (i, j) of structure A with base pair (p, q) of
structure B, denoted by Prob((i, j) ~ (p, q)).

Case 1
Base pair (i, j) doesn’t cross another base pair and (p, q)
doesn’t cross another base pair. That is, for any base pair
(u, v), i < v < j if and only if i < u < j. Furthermore, for any
base pair (x, y), p < y < q if and only if p < x < q. Conse-
quently, the alignment between structure A and struc-
ture B can be divided into the following three parts: (i)
the alignment between A[1, i – 1] and B[1, p – 1]; (ii)
the alignment between A[i + 1, j – 1] and B[p + 1, q – 1];
and (iii) the alignment between A[j + 1, m] and B[q + 1, n].
Following [20] we get

Prob i; jð Þ∼ p; qð Þð Þ ¼ Zi−1;p−1Z′′
j−1;q−1Z

′
jþ1;qþ1

Zm;n
e
score i;jð Þ; p;qð Þð Þ

T

ð16Þ

Case 2
Base pair (i, j) crosses another base pair whereas (p, q)
doesn’t cross another base pair. That is, there exists a



Song et al. BMC Bioinformatics  (2015) 16:39 Page 5 of 15
base pair (u, v) in A such that (i) i < v < j and u < i, or (ii)
i < u < j and v > j. Furthermore, for any base pair (x, y),
p < y < q if and only if p < x < q. In this case, (i, j) crosses
(u, v), which forms a pseudoknot in structure A, while
(p, q) doesn’t form a pseudoknot in structure B.
When (i) is true, since u < i, we have 1 ≤ u ≤ i − 1.

Furthermore, since v > i > i − 1, (u, v) is ignored when
calculating Zi − 1,p − 1 in Equation (16). In addition,
since u < i < i + 1, (u, v) is ignored when calculating
Z′′

j−1;q−1 in Equation (16). Base pair (u, v) will be con-

sidered when calculating Prob ((u, v) ~ (p, q)). Thus,
our algorithm doesn’t miss the calculation of the pos-
terior log-odds score of aligning any two base pairs
from structure A and structure B respectively.
When (ii) is true, since v > j, we have j + 1 ≤ v ≤m. Fur-

thermore, since u < j < j + 1, (u, v) is ignored when calcu-
lating Z′

jþ1;qþ1 in Equation (16). Base pair (u, v) will be

considered when calculating Prob ((u, v) ~ (p, q)).

Case 3
Base pair (p, q) crosses another base pair whereas (i, j)
doesn’t cross another base pair. This case is similar to
Case 2 above.

Case 4
Base pair (i,j) crosses another base pair and (p,q) also
crosses another base pair. That is, there exists a base pair
(u,v) in A such that (i) i < v < j and u < i, or (ii) i < u < j and
v > j. Furthermore, there exists a base pair (x, y) in B such
that (iii) p < y < q and x < p, or (iv) p < x < q and y > q. In
this case, (i,j) crosses (u,v), which forms a pseudoknot in
structure A. Furthermore (p,q) crosses (x,y), which also
forms a pseudoknot in structure B.
When (i) and (iii) are true, (u, v) is ignored when cal-

culating Zi − 1,p − 1 and Z′′
j−1;q−1 as discussed in Case 2 (i).

Moreover, (x, y) is also ignored when calculating Zi − 1,p − 1

and Z′′
j−1;q−1 (Case 3). When (i) and (iv) are true, (u, v) is

ignored when calculating Zi − 1,p − 1 and Z′′
j−1;q−1 (Case 2

(i)); (x, y) is also ignored when calculating Z′
jþ1;qþ1 (Case

3). When (ii) and (iii) are true, (u, v) is ignored when cal-
culating Z'

j + 1,q + 1 (Case 2 (ii)); (x, y) is also ignored when
calculating Zi − 1,p − 1 and Z′′

j−1;q−1 (Case 3). When (ii) and

(iv) are true, (u, v) is ignored when calculating Z′
jþ1;qþ1

(Case 2 (ii)); (x, y) is also ignored when calculating
Z′
jþ1;qþ1 (Case 3).

When both (i, j) and (p, q) are single bases, i.e. i = j
and p = q, the value of Z′′

j−1;q−1 in Equation (16) is

defined as 1, and we use the same formula in Equation
(16) to calculate Prob((i, j) ~ (p, q)).
From the above discussions, Equation (16) can be used

to calculate the posterior log-odds score of aligning two
bases or base pairs with a dynamic programming algo-
rithm. Furthermore, the algorithm doesn’t miss the
calculation of the posterior log-odds score of aligning
any two bases or base pairs from structure A and struc-
ture B respectively.

Pairwise alignment
Let aA,B be an alignment between structure A and structure

B. The expected accuracy of aA,B, denoted Accu
�

aA;B
� �

, is
defined as follows [21]:

Accu
�

aA;B
� � ¼

X
i;jð Þe p;qð Þ∈aA;B

� �Prob i; jð Þ∼ p; qð Þð Þ

max h; kf g
ð17Þ

where ((i, j) ~ (p, q) ∈ aA,B) means (i, j) ∈A is aligned with
(p, q) ∈ B in aA,B, Prob((i, j) ~ (p, q)) is the posterior log-
odds score of aligning (i, j) ∈A with (p, q) ∈ B as defined
in Equation (16), and h (k respectively) is the number of
single bases plus the number of base pairs in A (B
respectively).
An optimal alignment between structure A and struc-

ture B is an alignment with the maximum expected
accuracy. We present here a heuristic to find a (sub)opti-
mal alignment. From the previous subsection, we are
able to construct the posterior log-odds score matrix for
aligning structure A with structure B where the matrix
contains Prob((i, j) ~ (p, q)) for all (i, j) ∈A and (p, q) ∈ B.
Our heuristic is an iterative procedure. In the first step,
we select two bases or base pairs with the largest score
from this matrix to build the first alignment line be-
tween A and B where the alignment line connects the
selected bases or base pairs. Then, we select the second
largest score from the matrix to construct the next
alignment line provided that the newly constructed
alignment line satisfies the following two constraints:

(1) A base (base pair, respectively) can be aligned with
at most one base (base pair, respectively).

(2) The newly constructed alignment lines do not cross
the alignment lines built in the previous steps.
Specifically, suppose (i, j) is aligned with (p, q) and
(i ', j ') is aligned with (p ', q '). The alignment lines
between (i, j) and (p, q) do not cross the alignment
lines between (i ', j ') and (p ', q ') if and only if the
following conditions hold: (i) i ' < i iff p' < p, (ii) i < i '
< j iff p < p ' < q, (iii) i ' > j iff p ' > q, (iv) j ' < i iff q ' < p,
(v) i < j ' < j iff p < q ' < q and (vi) j ' > j iff q ' > q.

If the newly constructed alignment line violates the
above constraints, it is discarded. We repeat the above
steps until the smallest posterior log-odds score in the
matrix is considered. If there are still bases or base pairs
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that are not aligned yet, these remaining bases or base
pairs are aligned to gaps.

Time and space complexity
In calculating Prob((i, j) ~ (p, q)), we need to compute Zi− 1,

p− 1, Z
′′
j−1;q−1 and Z'

j+ 1,q+ 1; cf. Equation (16). Computing

Zi − 1,p − 1, Z′′
j−1;q−1 and Z′

jþ1;qþ1 requires O(mn) time.

Since we need to calculate Prob((i, j) ~ (p, q)) for all
(i, j) ∈ A and (p, q) ∈ B, the time complexity of the pair-
wise alignment algorithm is O(m2n2). At any moment,
we maintain a two-dimensional matrix for storing Zi − 1,

p − 1, Z
′′
j−1;q−1 and Z′

jþ1;qþ1 , which requires O(mn) space.

Since the total number of bases and base pairs in struc-
ture A (B respectively) is at most m (n respectively), we
use a two-dimensional matrix to store Prob((i, j) ~ (p, q)),
which also requires O(mn) space. Thus, the space com-
plexity of the algorithm is O(mn). Notice that the time
complexity derived here is a very pessimistic upper bound
since in calculating the partition functions, some base
pairs are ignored as described in the previous subsections.
During our experiments, we tested over 200 alignments
and the running times of our algorithm ranged from
16 ms to roughly 7 minutes, where the lengths of the
aligned structures ranged from 22 nt to 1,553 nt.

Experimental design
Datasets
RKalign is implemented in Java. The program accepts as
input two pseudoknotted RNAs where each RNA has
both sequence data (i.e. nucleotides or bases) and struc-
ture data (i.e. base pairs), and produces as output an
alignment between the two pseudoknotted RNAs. Popu-
lar benchmark datasets such as BRAliBase [44], RNase P
[45] and Rfam [46] are not suitable for testing RKalign.
The reason is that BRAliBase contains only sequence
information, while RNase P and Rfam contain consen-
sus structures of multiple sequence alignments rather
than alignments of individual structures of RNAs. As a
consequence, we manually created two datasets for test-
ing RKalign and comparing it with related alignment
methods.
The first dataset, denoted Dataset1, contains 38 RNA

pseudoknot structures chosen from the PDB [16] and
RNA STRAND [15] (see Additional file 1: Table S1).
These RNAs were selected in such a way that they have a
wide range of sequence lengths. Each three-dimensional
(3D) molecule in this dataset was taken from the PDB.
The secondary structure of the 3D molecule was obtained
with RNAview [47], retrieved from RNA STRAND. The
second dataset, denoted Dataset2, contains 36 RNA
pseudoknot structures chosen from PseudoBase [17,18]
(see Additional file 1: Table S2). As in the first dataset,
the RNA molecules in the second dataset have a wide
range of sequence lengths. The pseudoknots in these
datasets can be broadly classified into two types: H-type
and recursive pseudoknots [8,29]. There are 12 H-type
pseudoknots and 26 recursive pseudoknots in Dataset1.
There are 22 H-type pseudoknots and 14 recursive
pseudoknots in Dataset2.

Alignment quality
A good structural alignment tends to align a base pair
with another base pair rather than with two single bases
[35,36]. We therefore use the base_mismatch ratio to
assess the quality of an alignment. A base mismatch
occurs when a single base is aligned with the left or right
base of a base pair or when a nucleotide is aligned to a
gap. The base_mismatch ratio of an alignment aA,B
between structure A and structure B is defined as the
number of base mismatches in aA,B divided by the total
number of alignment lines in aA,B, multiplied by 100%.
Statistically significant performance differences between
alignment methods are calculated using Wilcoxon
signed rank tests [48], which are commonly used for
comparing alignment programs [49-51]. As in [49-51] we
consider p-values below 0.05 to be statistically significant.

Results
We conducted a series of experiments to evaluate the
performance of RKalign and compare it with related
methods, where the performance measure used was the
base_mismatch ratio. In the first experiment, we selected
106 pairs of RNA pseudoknot structures from Dataset1
and applied our method to aligning the two molecules
in each pair. The two molecules in a pair belonged to
the same pseudoknot type, as it is biologically meaning-
less to align RNA molecules that lack consensus [35,52].
The average base_mismatch ratio calculated by RKalign
for the selected 106 pairs was 34.84%, compared to the
average base_mismatch ratio, 78.53%, for all pairs of
molecules in Dataset1.
In addition, we also ran CARNA [14], RNA Sampler

[11], DAFS [12], R3D Align [53] and RASS [37] on the
106 pairs of molecules. The CARNA tool was chosen
because an option of the tool is closely related to RKalign,
both of which can align known pseudoknot structures.
RNA Sampler and DAFS were chosen because they are
widely used tools capable of simultaneously folding and
aligning RNA sequences considering pseudoknots without
known structures. When running these two tools, the
structure information in Dataset1 was ignored and only
the sequence data was used as the input of the tools. R3D
Align and RASS were chosen because they are state-of-
the-art RNA 3D alignment programs; furthermore, like
RKalign, R3D Align and RASS output the entire align-
ment of two RNA structures. Since R3D Align and
RASS accept 3D structures as input whereas RKalign
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and CARNA accept bases and base pairs as input, we
used the PDB files in Dataset1 as the input for R3D
Align and RASS while using the corresponding RNA
STRAND entries in Dataset1 as the input for RKalign
and CARNA. The 106 pairwise alignments produced by
RKalign can be found in Additional file 2.
Figure 1 presents histograms for the base_mismatch

ratios of the six tools. Figure 2 presents boxplots for the
base_mismatch ratios of the six tools. These figures
show the distribution of the base_mismatch ratios for the
six tools. RKalign and CARNA were not statistically
different according to a Wilcoxon signed rank test
(p > 0.05). On the other hand, they both were signifi-
cantly better than the other four tools according to
the Wilcoxon signed rank test (p < 0.05). It was ob-
served that the structures predicted by RNA Sampler
and DAFS might not be correct. Consequently, there
were many base mismatches with respect to the known
structures in the alignments.
For example, consider Figure 3, which shows the align-

ment result of DAFS, R3D Align and RKalign respect-
ively on two pseudoknot structures with PDB IDs 1L2X
and 1RNK. The base_mismatch ratio of DAFS (R3D
Align, RKalign, respectively) is 57.14% (67.39%, 27.78%,
respectively). Figure 3(a) shows the predicted common
secondary structure and the alignment produced by
DAFS. Figure 3(b) shows the known secondary struc-
tures of 1L2X and 1RNK and the alignment produced by
DAFS where the known secondary structures are used
to calculate the base_mismatch ratios. Figure 3(c) shows
the alignment obtained from R3D Align and Figure 3(d)
shows the alignment obtained from RKalign. It can be
Figure 1 Histogram for the base_mismatch ratios yielded by RKalign,
the base_mismatch ratios of the alignments produced by RKalign, CARNA,
structure pairs selected from Dataset1. Buckets on the x-axis are defined by
(rounded down to the nearest whole number). These histograms show the
by the six tools.
seen that the predicted common secondary structure in
Figure 3(a) is quite different from the known secondary
structure of 1L2X. Refer to Figure 3(b). The base G (G,
C, C, A, A and A respectively) at position 1 (2, 8, 22, 23,
24 and 25 respectively) in 1L2X is a single base, which is
aligned with the left or right base of some base pair in
1RNK, leading to base mismatches in the alignment.
Similarly, the base G (A, C, A and U respectively) at
position 7 (20, 21, 24 and 34 respectively) in 1RNK is a
single base, which is aligned with the left or right base of
some base pair in 1L2X. R3D Align doesn’t align the
pseudoknot structures well either, due to the fact that
many gaps are involved in the alignment (Figure 3(c)).
In this example, RKalign produces the best alignment
(Figure 3(d)). It should be pointed out, however, that 3D
alignment programs such as R3D Align are general-
purpose structure alignment tools capable of comparing
two RNA 3D molecules with diverse tertiary motifs,
whereas RKalign focuses on secondary structures with
pseudoknots only.
In the second experiment, we compared RKalign,

CARNA, RNA Sampler and DAFS using the RNA struc-
tures in Dataset2. As in the first experiment, we selected
124 pairs of molecules from Dataset2 where the two
molecules in a pair belonged to the same pseudoknot
type. The average base_mismatch ratio calculated by
RKalign for the selected 124 pairs was 35.89%, compared
to the average base_mismatch ratio, 81.56%, for all pairs
of molecules in Dataset2. We applied each of the four
tools to the molecules to produce 124 pairwise align-
ments. The 124 alignments produced by RKalign can be
found in Additional file 3.
CARNA, RNA Sampler, DAFS, R3D Align and RASS. Histograms for
RNA Sampler, DAFS, R3D Align and RASS respectively on the 106
equal-width ranges 0 to19, 20 to 39, 40 to 59, 60 to 79, and 80 to 99
distribution of the base_mismatch ratios of the alignments produced



Figure 2 Boxplot for the base_mismatch ratios of RKalign, CARNA, RNA Sampler, DAFS, R3D Align and RASS. Boxplots for the base_mismatch
ratios of the alignments produced by RKalign, CARNA, RNA Sampler, DAFS, R3D Align and RASS respectively on the 106 structure pairs selected from
Dataset1. The median of the base_mismatch ratios yielded by RKalign (CARNA, RNA Sampler, DAFS, R3D Align, RASS, respectively) is 35.29% (34.38%,
45.86%, 41.99%, 67.57%, 63.29%, respectively).

Song et al. BMC Bioinformatics  (2015) 16:39 Page 8 of 15
Figure 4 presents histograms for the base_mismatch
ratios of the four tools. Figure 5 presents boxplots for
the base_mismatch ratios of the four tools. These figures
show the distribution of the base_mismatch ratios for
the four tools. RKalign and CARNA were not statisti-
cally different (Wilcoxon signed rank test, p > 0.05); both
tools were significantly better than RNA Sampler and
DAFS (Wilcoxon signed rank test, p < 0.05).
Based on the above experimental results, there is no

statistically significant difference between RKalign and
CARNA in terms of base_mismatch ratios. As described
in [4,54], a good pseudoknot alignment has many matched
stems and few mismatched stems. In the last experiment,
we further compared RKalign with CARNA by examining
how they match stems in two pseudoknot structures A
and B. A stem sA ∈ A is said to match a stem sB ∈ B if (i)
sA,sB are aligned together and they cannot be aligned with
other stems, and (ii) for every base pair x ∈ sA and base
pair y ∈ sB, a base of x is aligned with a base of y if and
only if the other base of x is aligned with the other base
of y; otherwise, there is a stem mismatch between sA and sB.
The stem_mismatch ratio of an alignment aA,B between
structure A and structure B is defined as (1 – M) where
M is the number of matched stems in aA,B divided by
the total number of stems in A and B, multiplied by 100%.
Figure 6 shows the average stem_mismatch ratios of

RKalign and CARNA obtained by running the tools on
Dataset1 and Dataset2 respectively. RKalign was signi-
ficantly better than CARNA (Wilcoxon signed rank
test, p < 0.05). A close look at the alignment results of
CARNA reveals why this happens. For instance, con-
sider Figure 7(a), which shows how CARNA aligns the
two PDB structures, 1L2X and 1RNK, given in Figure 3.
Figure 7(b) illustrates mismatched stems in the alignment
in Figure 7(a). Figure 7(c) shows the alignment of the
same molecules, 1L2X and 1RNK, produced by RKalign
where there is no stem mismatch. Refer to Figure 7(b). In
1L2X, there are two stems, highlighted in blue and red re-
spectively. In 1RNK, there are also two stems, highlighted
in blue and red respectively. In 1L2X, the base G at pos-
ition 7 and the base C at position 14 form a base pair in
its blue stem. In 1RNK, the base U at position 13 and the
base G at position 28 form a base pair in its red stem.
Now, observe that the base C at position 14 in 1L2X is

aligned with the base U at position 13 in 1RNK, but the
base G at position 7 in 1L2X is not aligned with the base
G at position 28 in 1RNK; instead the base G at position
7 in 1L2X is aligned with the single base G at position 7
in 1RNK. Thus, there is a stem mismatch between the
blue stem of 1L2X and the red stem of 1RNK, a situ-
ation that is not favored when performing pseudoknot
alignment [4,54]. This situation occurs more frequently
in CARNA alignment results than in RKalign alignment
results. As a consequence, CARNA has much higher
stem_mismatch ratios than RKalign.
Comparing Figure 7(a) and Figure 7(c), we also note

that the overall alignments produced by CARNA and
RKalign are quite different. In Figure 7(a) in which the
alignment from CARNA is shown, the base G at pos-
ition 6 and the base C at position 15 form a base pair
in 1L2X. The base A at position 6 in 1RNK is a single
base. It can be seen that the base G at position 6 in
1L2X is aligned with the base A at position 6 in 1RNK,
i.e., a base pair is aligned with a single base. In addition,



Figure 3 (See legend on next page.)
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Figure 3 Example showing base mismatches in an alignment produced by DAFS, R3D Align, and RKalign respectively. (a) The predicted
common secondary structure and the alignment produced by DAFS between two pseudoknot structures with PDB IDs 1L2X and 1RNK respectively.
(b) The known secondary structures of 1L2X and 1RNK and the alignment produced by DAFS. (c) The known secondary structures of 1L2X and 1RNK
and the alignment produced by R3D Align. (d) The known secondary structures of 1L2X and 1RNK and the alignment produced by RKalign.
The base_mismatch ratio of DAFS (R3D Align, RKalign, respectively) is 57.14% (67.39%, 27.78%, respectively), where the base_mismatch ratios
are calculated using the known secondary structures. RKalign produces the best alignment with respect to the known secondary structures of
1L2X and 1RNK.
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in 1L2X the base C at position 14, which is the right base
of a base pair, is aligned with the base U at position 13,
which is the left base of a base pair in 1RNK. Aligning a
base pair with a single base, and aligning the right base of
a base pair with the left base of another base pair, occur in
CARNA’s output shown in Figure 7(a), but do not occur
in RKalign’s output shown in Figure 7(c). On the other
hand, there are more gaps in RKalign’s output than in
CARNA’s output; specifically there are 10 gaps in RKa-
lign’s output shown in Figure 7(c) compared to 8 gaps in
CARNA’s output shown in Figure 7(a).

Discussion and conclusions
In this paper, we present a novel method (RKalign) for
comparing two known RNA pseudoknot structures. The
method adopts the partition function methodology to
calculate the posterior log-odds scores of the alignments
between bases or base pairs of the RNAs with a dynamic
programming algorithm. The posterior log-odds scores
are then used to calculate the expected accuracy of an
Figure 4 Histogram for the base_mismatch ratios yielded by RKalign,
ratios of the alignments produced by RKalign, CARNA, RNA Sampler and D
Buckets on the x-axis are defined by equal-width ranges 0 to19, 20 to 39, 4
number). These histograms show the distribution of the base_mismatch ra
alignment between the RNAs. The goal is to find an
optimal alignment with the maximum expected accuracy.
We present a heuristic to achieve this goal. Experimental
results demonstrate the good performance of the pro-
posed RKalign method.
New pseudoknotted structures are found periodically,

as exemplified by the recently determined ribosomal
CCR5 frameshift pseudoknot [55] and the translational
enhancer structures found in the 3′ UTRs of plant
viruses [56-59]. It is therefore important to be able to
compare these new structures to a database of known
pseudoknots to determine the possibility of similar func-
tionality. For example, some of the recently functionally
similar pseudoknots found in the 3′ UTRs of plant
viruses have been shown to act as translational enhancers
and have 3D structures that are similar to tRNAs. Import-
antly they contain pseudoknots that produce tRNA-like
3D folds, but are not derived from the standard tRNA
secondary structure cloverleaf. In addition, these elements
have been shown to be important for ribosome binding.
CARNA, RNA Sampler and DAFS. Histograms for the base_mismatch
AFS respectively on the 124 structure pairs selected from Dataset2.
0 to 59, 60 to 79, and 80 to 99 (rounded down to the nearest whole
tios of the alignments produced by the four tools.



Figure 5 Boxplot for the base_mismatch ratios of RKalign,
CARNA, RNA Sampler and DAFS. Boxplots for the base_mismatch
ratios of the alignments produced by RKalign, CARNA, RNA Sampler
and DAFS respectively on the 124 structure pairs selected from Dataset2.
The median of the base_mismatch ratios yielded by RKalign
(CARNA, RNA Sampler, DAFS, respectively) is 36.31% (35.81%,
45.83%, 39.29%, respectively).
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RKalign will be useful in performing this kind of database
search for structure-function analysis of pseudoknots.

Extension to multiple alignment
Our pairwise alignment method can be extended to align
multiple RNA pseudoknot structures by utilizing a guide
tree. Specifically, we treat each structure as a cluster and
use the expected accuracy defined in Equation (17) as the
measure to determine the similarity of two structures or
Figure 6 Comparison of the stem_mismatch ratios yielded by RKalign
produced by RKalign and CARNA on the 106 structure pairs selected from Da
Error bars are included in the figure. For Dataset1, the average stem_mismatc
CARNA is 23.5%. For Dataset2, the average stem_mismatch ratio of RKalign is
performs significantly better than CARNA in terms of stem_mismatch ratios (W
clusters. Initially, we merge two RNA structures that are
most similar into one cluster. Subsequently we merge two
clusters that are most similar into a larger cluster using
the agglomerative hierarchical clustering algorithm [60],
where the similarity of two clusters is calculated by the
average linkage algorithm [60].
An alignment of two clusters is actually an alignment

of two profiles, where each cluster is treated as a profile.
Initially, each profile contains a single RNA pseudoknot
structure. As the guide tree grows, a profile may contain
multiple RNA pseudoknot structures; more precisely,
the profile is a multiple alignment of these RNA struc-
tures. A single base of a profile is a column of the profile
where the column contains single bases or gaps; a base
pair of a profile includes two columns of the profile
where the left column contains left bases or gaps and
the right column contains corresponding right bases or
gaps, and left bases and corresponding right bases form
base pairs.
Suppose we want to align profile A' and profile B',

which amounts to aligning two multiple alignments. Let
R (S respectively) be an RNA pseudoknot structure in pro-
file A' (B' respectively) and let (i, j) ((p, q) respectively) be a
base pair of R (S respectively). Let (i ', j ') represent a base
pair of profile A' and let (p ', q ') represent a base pair of
profile B'. We use (i, j) ∈ (i ', j ') ((p, q) ∈ (p ', q ') respect-
ively) to represent that (i, j) ((p, q) respectively) occurs in
the column(s) of base pair (i ', j ') ((p ', q ') respectively) of
profile A' (B' respectively). Equation (18) below shows how
to calculate Prob'((i', j') ~ (p', q')), which represents the
transformed probability of aligning base pair (i ', j ') of pro-
file A' with base pair (p ', q ') of profile B'.
and CARNA. Average stem_mismatch ratios of the alignments
taset1 and the 124 structure pairs selected from Dataset2 respectively.
h ratio of RKalign is 10.8% and the average stem_mismatch ratio of
13.1% and the average stem_mismatch ratio of CARNA is 28.9%. RKalign
ilcoxon signed rank test, p < 0.05).



Figure 7 Example showing mismatched stems in an alignment produced by CARNA. (a) The alignment of two pseudoknot structures with
PDB IDs 1L2X and 1RNK respectively produced by CARNA. (b) Illustration of mismatched stems in the alignment produced by CARNA. There is a
stem mismatch between the blue stem of 1L2X and the red stem of 1RNK, a situation that is not favored when performing pseudoknot alignment.
(c) The alignment of 1L2X and 1RNK produced by RKalign where there is no stem mismatch.
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Here, Prob((i, j) ~ (p, q)) is defined in Equation (16), |A'|
represents the number of RNA pseudoknot structures in
profile or cluster A', and |B'| represents the number of
RNA pseudoknot structures in profile or cluster B'.
The multiple alignment algorithm can now be sum-

marized as follows. The input of the algorithm is a set
SS of RNA pseudoknot structures. For every two struc-
tures A and B in SS, we calculate their posterior log-
odds score matrix as described in the ‘Calculation of
posterior log-odds scores’ subsection. After all the pos-
terior log-odds score matrices are calculated, we
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compute the expected accuracy Accu
�

aA;B
� �

as defined
in Equation (17) where aA,B is a (sub)optimal alignment,
found by the heuristic described in the ‘Pairwise align-
ment’ subsection, between structure A and structure B.
We use the expected accuracy or similarity values to
construct the guide tree for the set SS, to determine the
order in which two structures or profiles are aligned. To
align two profiles A' and B', we use the same heuristic as
described in the ‘Pairwise alignment’ subsection, with
the transformed probabilities Prob ' ((i ', j ') ~ (p ', q '))
defined in Equation (18) replacing the posterior prob-
abilities Prob((i, j) ~ (p, q)) of structures A and B defined
in Equation (16). The time complexity of this multiple
alignment algorithm is O(k2n4) where k is the number
of structures in the alignment and n is the maximum of
the lengths of the structures; the space complexity of
the algorithm is O(k2n2).
We tested our algorithm by selecting 30 groups each

having 3, 4, or 5 pseudoknot structures of the same
type from the datasets used in this study, and by per-
forming multiple alignment in each group. The mul-
tiple alignments produced by our algorithm can be
found in Additional file 4. We then compared our algo-
rithm with three related methods: CARNA [14], RNA
Sampler [11] and DAFS [12]. The base_mismatch ratio
of a multiple alignment MA is defined as the sum of
base_mismatch ratios of all pairs of structures in MA
divided by the total number of structure pairs in MA,
multiplied by 100%. The average base_mismatch ratio
of RKalign (CARNA, RNA Sampler, DAFS, respectively)
was 26.01% (25.79%, 32.15%, 29.23% respectively). RKalign
and CARNA were not statistically different (Wilcoxon
signed rank test, p > 0.05); the two methods were signifi-
cantly better than RNA Sampler and DAFS (Wilcoxon
signed rank test, p < 0.05).
Both our pairwise alignment and multiple alignment

programs are available in the RKalign tool. This tool is
capable of accepting as input pseudoknotted RNAs with
both sequence (nucleotides or bases) and structure data
(base pairs), and producing as output an alignment be-
tween the pseudoknotted RNAs. As more and more
pseudoknots are revealed, collected and stored in public
databases, we anticipate a tool like RKalign will play a
significant role in data comparison, annotation, analysis,
and retrieval in these databases.

Comparison with related methods
RKalign is designed to align known RNA pseudoknot
structures. A different approach is to simultaneously fold
and align RNA sequences without known structures, as
adopted by several existing tools [11-13]. When the
structure information is not available, this simultaneous
folding and alignment approach is the best. However,
when pseudoknot structures already exist, RKalign
performs significantly better than the existing tools, as
observed in our experiments. The reason is that the
structures predicted by these tools may not be correct.
As a consequence, there are many base mismatches with
respect to the known structures in the resulting alignments.
Pseudoknots are part of RNA tertiary motifs [2]. There

are 3D alignment programs that can compare RNA ter-
tiary structures including pseudoknots [36,37]. These
programs consider the entire RNA 3D structure as a
whole, and accept PDB files with 3D coordinates as in-
put. As shown in our experiments, when considering
and aligning secondary structures with pseudoknots,
RKalign outperforms the 3D alignment programs. It
should be noted, however, that the 3D alignment pro-
grams are general-purpose structure alignment tools
capable of comparing two RNA 3D molecules with di-
verse tertiary motifs, whereas RKalign deals with second-
ary structures with pseudoknots only.
While the work reported here focuses on pseudoknot

alignment, it can also be applied to RNA secondary
structures without pseudoknots. We applied RKalign to
102 pairs of pseudoknot-free structures taken from RNA
STARND where the pseudoknot-free structures belonged
to Rfam [46] (see Additional file 1: Table S3). We com-
pared RKalign with three other tools: CARNA [14], RNA-
forester [41] and RSmatch [40]. RNAforester, included in
the widely used Vienna RNA package [61], is a versatile
RNA structure alignment tool. Like RKalign and CARNA,
an option of RNAforester is able to accept as input two
RNA molecules with both sequence data (nucleotides or
bases) and secondary structure data (base pairs), and
produce as output the global alignment of the two mol-
ecules. However, a limitation of RNAforester is that the
aligned secondary structures cannot contain pseudo-
knots. RSmatch is similar to RNAforester, sharing the
same limitation. Our experimental results showed that the
average base_mismatch ratio for RKalign (CARNA, RNAfo-
rester, RSmatch, respectively) was 43.52% (42.27%, 35.11%,
39.66%, respectively), indicating RNAforester performed
the best. These results are understandable, considering
that RKalign is mainly designed for comparing complex
pseudoknot structures whereas RNAforester focuses on
simpler pseudoknot-free structures.
The work that is most closely related to RKalign is

CARNA [14]. Both methods are able to accept as input
known pseudoknot structures and produce as output an
alignment of the known structures. Our experimental
results indicated that the two methods perform well in
terms of base_mismatch ratios, though RKalign yields
much lower stem_mismatch ratios. It should be pointed
out, however, that the comparison with CARNA is not
completely fair. The input data of RKalign are restricted
to fixed structures, which are structures used in this
study. Using CARNA with fixed structures is more or
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less a mis-use of the tool. The main purpose of CARNA
is to align dot-plots, and its scoring is optimized for that
data format. Thus, when dot-plots are considered, one
should use CARNA. When fixed structures are consid-
ered, RKalign is recommended.

Availability
The latest version of RKalign can be downloaded at:
http://bioinformatics.njit.edu/RKalign.

Additional files

Additional file 1: Supplementary information for ‘Effective alignment
of RNA pseudoknot structures using partition function posterior
log-odds scores’. Table S1. The RNA pseudoknot structures selected from
the PDB and RNA STRAND to perform the alignment quality experiments. Table
S2. The RNA pseudoknot structures selected from PseudoBase to perform the
alignment quality experiments. Table S3. The RNA pseudoknot-free
structures selected from Rfam and RNA STRAND to perform the alignment
quality experiments.

Additional file 2: The 106 pairwise alignments produced by RKalign
on Dataset1.

Additional file 3: The 124 pairwise alignments produced by RKalign
on Dataset2.

Additional file 4: The 30 multiple alignments produced by RKalign.
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