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Abstract

Mutation cluster analysis is critical for understanding certain mutational mechanisms rele-

vant to genetic disease, diversity, and evolution. Yet, whole genome sequencing for detec-

tion of mutation clusters is prohibitive with high cost for most organisms and population

surveys. Single nucleotide polymorphism (SNP) genotyping arrays, like the Mouse Diversity

Genotyping Array, offer an alternative low-cost, screening for mutations at hundreds of thou-

sands of loci across the genome using experimental designs that permit capture of de novo

mutations in any tissue. Formal statistical tools for genome-wide detection of mutation clus-

ters under a microarray probe sampling system are yet to be established. A challenge in the

development of statistical methods is that microarray detection of mutation clusters is con-

strained to select SNP loci captured by probes on the array. This paper develops a Monte

Carlo framework for cluster testing and assesses test statistics for capturing potential devia-

tions from spatial randomness which are motivated by, and incorporate, the array design.

While null distributions of the test statistics are established under spatial randomness via

the homogeneous Poisson process, power performance of the test statistics is evaluated

under postulated types of Neyman-Scott clustering processes through Monte Carlo simula-

tion. A new statistic is developed and recommended as a screening tool for mutation cluster

detection. The statistic is demonstrated to be excellent in terms of its robustness and power

performance, and useful for cluster analysis in settings of missing data. The test statistic

can also be generalized to any one dimensional system where every site is observed, such

as DNA sequencing data. The paper illustrates how the informal graphical tools for detecting

clusters may be misleading. The statistic is used for finding clusters of putative SNP differ-

ences in a mixture of different mouse genetic backgrounds and clusters of de novo SNP dif-

ferences arising between tissues with development and carcinogenesis.
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Introduction

Mutation signatures are useful tools for identifying mutagens and mutational mechanisms,

and understanding genetic diversity, disease, adaptation and evolution. These signatures are

identified by comparison of genomic sequences with a reference sequence and association

with specific exogenous and/or endogenous conditions. Genome sequences can be viewed as a

string in the genome alphabet, or equivalently as a time series or lattice sequence of a large

length. For the mouse genomic experiments discussed here, the length of a single chromosome

ranges from 6.14 × 107 base pairs (bp) of nucleotides for chromosome 19 to 1.95 × 108 bp for

chromosome 1.

Current genomic technologies have broadened our perspective to mutation analysis, reveal-

ing a critically important phenomenon of non-random spacing of mutations as a new muta-

tion signature [1]. This signature is crucial for discovery of mechanisms for mutagenesis and

carcinogenesis, as well as for development of cancer treatments that target effects of driver

mutations. Proximal spacing of multiple mutations has been termed ‘Kataegis’ or thunder-

showers of mutations [2]. Mutation showers have been reported in genomes of yeast [3, 4],

mice [5, 6] and humans [7], within genes and dispersed across the genome. To date, mutation

showers have been arbitrarily defined based on cancer whole genome sequencing data as the

occurrence of sequence segments containing six or more consecutive mutations with an aver-

age intermutation distance of less than or equal to 1,000 bp [7]. Another definition for muta-

tion clusters was based on empirical data for the observation of multiple mutations within

30 kb in the context of postzygotic mutations in healthy mouse tissues [6]. The largest dataset

for detection of mutation showers exists for large pan-cancer studies, where mutation showers

are found with low incidence in certain cancer types [7]. A chief mechanism proposed for this

signature is transient hypermutagenesis, an elusive and incompletely understood phenomenon

[8, 9]. Examination of the human genome for mutation showers is restricted to a very limited

number of tissues or cell types and next generation sequencing. Whole genome sequencing,

although the highest resolution possible, is not affordable as a population screening approach

in general.

Since complete genome sequencing is expensive and generally impractical as a screening or

survey method, genotyping microarrays are a low-cost alternative which are commonly used

to detect mutations at loci with single nucleotide polymorphisms (SNPs). These loci are

referred to as SNP sites. Differences in a single nucleotide, referred to as SNP genotype differ-

ences, can be interpreted as mutations when comparing samples. SNPs are genotyped using

designed single-stranded short nucleotide probes affixed to a microarray platform. These

probes complement specific locations within the genome and these locations are quite sparse

in distribution across the genome relative to the genome length, yielding low cost for the array

process relative to sequencing. Thus, a SNP genotype difference can be detectable or undetect-

able by a microarray platform, depending on whether the probes on the array are at that SNP

locus. The objective we study in this paper is the development of a population, i.e., a large sam-

ple size, screening tool for a wide variety of tissues and cell types, using the low cost SNP array

data for identifying clusters of putative mutations. The challenge is that arrays provide win-

dows of observations along the genome, which depend on probe sites, in terms of both number

of sites and distribution or spacing of the sites. Hence the screening tool would need to accom-

modate this constraint in the experimental design with microarray platforms.

The Mouse Diversity Genotyping Array (MDGA) is a single nucleotide polymorphism

(SNP) microarray [10] that detects SNP alleles at 493,290 SNP loci [11] across the mouse

genome. The alleles at each SNP locus are detected by a SNP probe set on the array. A probe

set consists of eight single-stranded DNA sequences (probes) 25 bp in length. The probes are
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fixed to a solid surface (or chip) in a known arrangement. Due to several conditions a SNP

probe needs to satisfy in design, the probes are not evenly distributed along each chromosome.

To illustrate the sparsity of the probes, Fig 1 is a boxplot of the MDGA inter-SNP locus dis-

tances for each autosome and the X chromosome. The average inter-SNP locus distance is

5,210 bp, with a maximum and minimum distance of 7,268,520 bp and 16 bp, respectively. Of

the SNP loci, 83.6% (412,181 SNP loci) are within 10,000 bp of another SNP locus, and 38.7%

(190,714 SNP loci) are within 1,000 bp of another SNP locus. There are 22 SNP probe deserts,
defined as consecutive probe sites spanning more than 1 million bp; the two largest gaps

between consecutive probe sites are 7,268,520 bp and 7,033,330 bp on chromosomes 7 and X,

respectively.

With the rapid development of genotyping and sequencing techniques in recent years,

more genetic studies have begun to focus on assembling, visualizing and studying the spatial

information of genomic events under different scenarios such as genome-wide association

studies [12]. For cluster detection, several statistical methods have been developed and applied

in DNA and protein sequencing data [3, 13–15]. Despite previous efforts for detecting clusters

with sequencing data, to our knowledge, there have not been formal studies attempting to

detect mutation clusters under a genotyping array system. For sequencing data, the rainfall

plot has been introduced recently for visualizing the landscape of mutations [7, 16]. Specifi-

cally, a rainfall plot portrays the base pair distance of intermutation spacing along the chromo-

some or entire genome sequence. Here, rainfall plots are adopted to visually examine the

potential existence of clusters on the whole genome or individual chromosomes for data from

a mouse SNP genotyping array. Mutation clusters are suggested by low intermutation spacing

values in such plots; the goal of this paper is to attach rigorous statistical inference to the iden-

tification of clusters.

From the discussion above we see that the observable microarray data depend on the probe

design, that is, the locations of the probes. In this paper, we study several statistics for detecting

mutation clusters: a set of non-parametric statistics based on neighbourhood measures, and a

test statistic based on distances between SNP loci where mutations are detected, which is

related to rainfall plots. These statistics are also studied in real-valued functional forms to sum-

marize the cluster features. The microarray probe sampling system yields missing observations

in the domain of interest. Numerical techniques have become increasingly important for the

analysis of complex data structures, such as observed here. Such techniques are utilized in our

analyses to incorporate the probe design constraints. The null process of complete randomness

is a homogeneous Poisson process. For a natural alternative cluster process we consider the

family of Neyman-Scott processes, which are a class of parent-child point processes. We evalu-

ate the techniques through power studies which demonstrate that the tests proposed provide

suitable tools for screening samples for clustering effects on the genome scale. We then apply

the recommended statistical tools for finding clusters of putative SNP differences in a mixture

of different mouse genetic backgrounds and for finding clusters of de novo SNP differences

between tissues with development and with carcinogenesis.

Methods

To detect mutation clusters genome-wide, chromosomes are studied individually as each chro-

mosome consists of a linear space in itself. Define the set of the probe locations, determined by

design, as S: S � R. Denote the location of the first probe target site (a SNP locus) on the chro-

mosome as sf = mins2S s, and the location of the last probe target site on the chromosome as sl
= maxs2S s. Denote the locations of SNP genotype differences detected by the probes as X: X�
S.

Genome-wide mutation cluster detection under a microarray probe sampling system
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The test statistics proposed below consider SNP genotype differences within the neighbor-

hood of a known SNP genotype difference, where neighbourhood is defined by either distance

d from the known SNP genotype difference, or by the number of SNP differences n, within the

neighborhood. Each statistic can be considered as a function of a specific value of d or n, or

alternatively, the behavior of each statistic over a range of d or n may be considered. The sum-

mary statistics for functional behaviors utilize the well-known frameworks of the Kolmogo-

rov-Smirnov (KS) and Cramér-von Mises (CvM) tests, adapted for this missing data context.

The test statistics proposed are:

(I) Mean over all sites with SNP differences of the ratio of the number of sites with SNP geno-

type differences to the number of probes within fixed distance d

�RðdÞ � �RSðdÞ ¼

P
x2X

NXðx; dÞ
NSðx; dÞ
jXj

ð1Þ

where for arbitrary set A, fixed distance d, and site with a SNP genotype difference x, we have

NAðx; dÞ ¼
X

z2A

Ið0 < jz � xj � dÞ ð2Þ

where I(E) is the indicator function for the event E.

(II) Pooled mean detection ratio: the ratio of the total, over all SNP genotype differences, of the

number of SNP genotype differences within distance d of each SNP genotype difference, to

the total, over all SNP genotype differences, of the number of probes within distance d of

each SNP genotype difference

~RðdÞ � ~RSðdÞ ¼
P

x2X NXðx; dÞP
x2X NSðx; dÞ

ð3Þ

Fig 1. The inter-SNP locus distances (bp) for 493,290 SNP loci assayed by the probes on the Mouse Diversity

Genotyping Array (MDGA) summarized for each chromosome. A boxplot of the distribution of inter-SNP locus

distances (bp) for each autosome and the X chromosome.

https://doi.org/10.1371/journal.pone.0204156.g001
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The two statistics above summarize properties in the neighborhood of distance d from

observed SNP genotype differences, while adjusting for varying probe sparsity over the chro-

mosome. The index S is used to emphasize that the statistics depend on the design of the probe

set S. While we focus on the above formulations, for comparison purposes, we also consider

traditional neighbourhood formulations of test statistics:

(III) Consider D(x0, n) the minimum distance to include n SNP genotype differences around

x0

Dðx0; nÞ ¼ inf
d

d :
X

x2X

Iðjx0 � xj � dÞ ¼ n

( )

ð4Þ

The test statistic is the minimum of such distances over all SNP genotype differences

x0 2 X,

DminðnÞ ¼ min
x02X

Dðx0; nÞ ð5Þ

Notice than when n = 2, Dmin(n) becomes the minimum of the distances between any two

SNP genotype differences. Algorithm 1, provided at the end of this section, describes an

efficient procedure for the calculation of Dmin(n).

(IV) Maximum of the number of SNP genotype differences within distance d of any given SNP

genotype difference

NmaxðdÞ ¼ max
x2X

NXðx; dÞ ð6Þ

Another test statistic proposed is a count statistic related to the distances between SNP loci

with genotype differences, which are features shown in the rainfall plots. The count statistic is

defined as follows:

(V) Count of inter-SNP locus distances for those SNP loci with different genotypes under

threshold d

CðdÞ ¼
X

b2BX

Iðb < dÞ ð7Þ

where BX ¼ ]n� 1
i¼1
fXðiþ1Þ � XðiÞg, and X(i) is denoted as the ith ordered statistic in X, where

i = 1, � � �, |X|. The multiset BX contains all of the inter-SNP locus distances for those SNP

loci with different genotypes for the sample X.

These five statistics, generically denoted as G(y), may be viewed as function valued statistics

with a fixed argument d or n. Instead of considering a fixed argument y, they may also be

viewed as a functional form G(�), G(�)� {G(y), y 2 R(y)}, where R(y) is the range of y consid-

ered. Let G�(�) = E0(G(�)), the expectation of G(�) under an appropriate null hypothesis, e.g.,

homogeneous Poisson process, which is discussed in the next section. Two test statistics mea-

suring the distance of G(�) from G�(�) as considered here are of the forms of Kolmogorov-

Smirnov (KS) and Cramér-von Mises (CvM) tests [17] described as follows:

Genome-wide mutation cluster detection under a microarray probe sampling system
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1. Kolmogorov-Smirnov test framework

The KS test statistic is the supremum norm distance of G to G� over a range of y:

KSðG;G�Þ ¼ sup
y
jGðyÞ � G�ðyÞj ð8Þ

2. Cramér-von Mises test framework

The CvM test statistic integrates the squared difference between G and G� over a range of y:

CvMðG;G�Þ ¼
Z

½GðyÞ � G�ðyÞ�2dy ð9Þ

The five test statistics G(y) for specific argument y as described above and KS and CvM
based on their functional forms G(�) are used to conduct inference.

To evaluate KS and CvM, the support of function G(�) is discretized and set as a finite grid

Y = {yi, i = 1, � � �, k}. The grid points y1 and yk represent the smallest and largest values of d and

n in the evaluation range respectively. Given the grid Y, the discrete versions of KS and CvM
statistics are calculated as:

fKSðG;G�Þ ¼ max
yi ;i¼1;���;k

jGðyiÞ � G
�ðyiÞj ð10Þ

gCvMðG;G�Þ ¼
1

2

Xk� 1

i¼1

�
f½GðyiÞ � G

�ðyiÞ�
2
þ ½Gðyiþ1Þ � G

�ðyiþ1Þ�
2
gðyiþ1 � yiÞ

	
ð11Þ

The parameter k controls how dense the function G(�) is evaluated on the support [y1, yk]. If

the selected grid points are dense, fKS and gCvM converge to KS and CvM; yet the selection of k
should also account for feasible computational load.

Algorithm 1: Calculation of Dmin(n)
1: Let X = {xi, i = 1, � � �, K} denote the set of ordered SNP genotype

differences, where xi is the ith ordered SNP genotype difference on
the chromosome. Then there are K − n + 1 clusters of consecutive SNP
genotype differences of size n: {{xl, � � �, xl+n−1};l = 1, � � � K − n + 1}.

2: Define Dl � minm2[l+1,l+n−2]max(xm − xl, xl+n−1 − xm), l = 1, � � � K − n + 1.
For the lth cluster of SNP genotype differences, consider the set
of minimum distances to include n cluster SNP genotype differences
around each SNP genotype difference in the cluster; then Dl is the
minimum distance in the set. Note that cluster SNP genotype differ-
ences refer to SNP genotype difference in the lth cluster.

3: Dmin(n) = minl Dl; l = 1, � � � K − n + 1.

Small sample properties of the test statistics

Mutations may occur at any of the 2.8 billion base positions in the mouse genome. Among

these mutations some exist at the genomic loci targeted by SNP probes and are thus detectable

as SNP genotype differences by the SNP probe system, while the existence of the other muta-

tions remains unknown. Both null and alternative hypotheses are established on underlying

processes that generate all mutations, both detectable and undetectable. Since the target loci of

the SNP probes are unique and non-random on each chromosome, the null and alternative

distributions of the proposed test statistics are calculated conditional on the probe locations on

the specific chromosome considered.

Genome-wide mutation cluster detection under a microarray probe sampling system
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Proposed underlying processes for the null hypothesis

Under the null hypothesis that SNP genotype differences are located at random locations

along the chromosome, the underlying process generating SNP genotype differences can be

assumed as a homogeneous Poisson process (hPP). Under such a process, every site on the

chromosome, and in particular, every probe site, is independent and has an identical probabil-

ity of having a SNP genotype difference. The relationship between the hPP rate parameter and

the total expected number of detected SNP genotype differences η is linear. Numerical meth-

ods are adopted to obtain the null distributions of the test statistics for testing that Xs, the

observed locations of SNP genotype differences from the sample, are randomly located along

the chromosome. Algorithm 2 develops the Monte Carlo estimate of the null distribution of

the test statistics, while algorithm 3 provides inferential procedure.

Algorithm 2: Monte Carlo estimates of the null distributions of summary statistics
2.1: Set a finite grid Y = {yi, i = 1, � � �, k}, which defines the scale

of d or n as the evaluation range;
2.2: Simulate M replications of detected SNP genotype differences

fXðmÞ0 ;m ¼ 1; � � � ;Mg from the hPP. At the mth replication, XðmÞ0 is
obtained as follows:

(a): Generate the total number of underlying SNP genotype differ-

ences NðmÞnull � Poisðl̂Þ, where l̂ is an estimate of the rate parameter

from the observed sample Xs: l̂ ¼
ðsl � sf ÞZ
jSj . The parameter η can be set

as |Xs|, where |A| is the norm of set A, that is the count of the
number of elements in A;

(b): Generate the set of underlying (both observable and unobservable)
locations with SNP genotype differences UðmÞnull ¼ fuj; j ¼ 1; � � � ;N ðmÞnullg,
where independent and identically distributed random variables
uj � U[sf, sl], and U is the discrete uniform distribution on
{sf, � � �, sl};

(c): Obtain the set of observed SNP genotype differences:
XðmÞ0 ¼ UðmÞnull \ S.

2.3: For each m = 1, � � � M, obtain GXðmÞ
0

ð�Þ � fGXðmÞ
0

ðyiÞ; i ¼ 1; � � � ; kg at the grid

sites yi, i = 1, � � �, k;

2.4: The Monte Carlo estimate of G�(�) is Ĝ�ð�Þ � 1

M

PM
m¼1

GXðmÞ
0

ðyiÞ; i ¼ 1; � � � ; k
n o

;

2.5: For each m = 1, � � � M, calculate the fKS or gCvM test statistic:

(a): fKS
XðmÞ

0
G ¼ fKSðGXðmÞ

0

; Ĝ�Þ;

(b): gCvM
XðmÞ

0
G ¼ gCvMðGXðmÞ

0

; Ĝ�Þ;

2.6 The Monte Carlo estimates of the cumulative distribution functions
of the test statistics F̂fKSG and F̂gCvMG

are:

(a): F̂fKSG ðtÞ ¼
1

M

PM
m¼1

IðfKS
XðmÞ

0

G � tÞ

(b): F̂gCvMG ðtÞ ¼ 1

M

PM
m¼1

IðgCvM
XðmÞ

0
G � tÞ

Algorithm 3: Hypothesis testing procedure
3.1 Based on the observed sample Xs, calculate GXs

ð�Þ � fGXs
ðyiÞ; i ¼ 1; � � � ; kg.

The test statistics are:

(a): fKSXsG ¼ fKSðGXs
; Ĝ�Þ;

Genome-wide mutation cluster detection under a microarray probe sampling system
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(b): gCvMXs
G ¼ gCvMðGXs

; Ĝ�Þ;
3.2 Statistical inference:

(a): For hypothesis testing at significance level α:

(i): KS test: if fKSXsG > F̂fKSG
� 1ð1 � aÞ, reject the null hypothesis, other-

wise do not reject.

(ii): CvM test: if gCvMXs
G > F̂gCvMG

� 1 ð1 � aÞ, reject the null hypothesis,

otherwise do not reject.

(b): The p-values are calculated as:

(i): KS test:
1þ

PM
m¼1

IðfKSX
ðmÞ
0

G � fKSXsG Þ
1þM

;

(ii): CvM test:
1þ

PM
m¼1

IðgCvM
XðmÞ

0

G � gCvMXs
G Þ

1þM
;

The p-value calculation methods in step 3.2(b) of Algorithm 3 are based on the approaches

for calculating p-values for Monte Carlo simulation provided in [18], which would yield

empirical p-values having correct type-I error rate.

Proposed underlying processes for alternative hypotheses

Under the alternative hypotheses, the underlying process would generate SNP genotype differ-

ences following a non-random spacing pattern. Here, the Neyman-Scott (NS) process is pro-

posed as a suitable clustering process. The NS process is a parent-offspring process, where a

cluster of several offspring is generated around each unobservable parent. The parent locations

can be randomly spaced along the chromosome or follow some alternate spacing patterns.

This parent-offspring type of underlying process is reasonable because it mimics a specific

mutagenesis mechanism that one source of error may lead to a cluster of mutations nearby.

The error source could be a binding site of a particular protein that leads to the generation of

nearby mutations. This is an example of a transient state of an error-prone polymerase or a

period in replication of biased dNTP pools or error-prone conditions associated with transle-

sion bypass [5, 8, 19–22].

Three alternative hypotheses are considered, all derived from the NS parent-offspring clus-

tering process. Each of these three alternatives differs in the domain Dp on which parent sites

are generated as discussed below. Each parent site generates a cluster of offspring sites, with

the random number of offspring following the Poisson distribution with the expected number

μo. The offspring sites are independent and identically distributed, truncated normal random

variables centered at the parent site location. The standard deviation of the truncated normal

distribution is denoted as σ. The half-length of the window of the truncation range is denoted

as h.

1. Parent sites with an expected number μp are generated along the chromosome from an

hPP. The domain on which parent sites are located, Dp, is [sf − h, sl + h]. Only parents

within this range can yield offspring detectable by the probe set, because of the truncation

range in offspring distribution.

2. Parent sites are constrained to SNP probe locations: Dp = S. There are two important rea-

sons to constrain parent sites to probe locations. First, probes are located where the corre-

sponding SNP genotype differences have an occurrence of at least 1% in the population, so

Genome-wide mutation cluster detection under a microarray probe sampling system
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that the probe sites are selected based on their being favorable in terms of having SNP geno-

type differences. Secondly, under this constraint, all of the test statistics will attain the high-

est power compared to other parent site settings. Thus this setting is helpful for eliminating

some candidate tests with sub-optimal performance.

3. The parent sites are constrained to be within a certain distance hp of a probe;

Dp = [s2S[s − hp, s + hp]. This setting recognizes possible errors in identifying probe loca-

tions, so parents may not be exactly placed at favorable sites for SNP genotype differences.

In the simulation of each alternative hypothesis, as in the null hypothesis, the expected total

number of detected SNP genotype differences η is set to equal the observed total SNP genotype

differences |Xs|, which is achieved by adjusting the parameters in the alternative process. Algo-

rithm 4 details the Monte Carlo estimates of the powers.

Algorithm 4: Power Study
4.1: Set a finite grid Y = {yi, i = 1, � � �, k} the same as in Algorithm

2;
4.2 Simulate M0 replications of detected SNP genotype differences

fXðmÞa ;m ¼ 1; � � � ;M0g from a Neyman Scott process. At the mth replica-
tion, XðmÞa is generated as follows:

(a): Generate the total number of unobservable parent points
NðmÞp � PoisðmpÞ, where μp is the Poisson mean parameter.

(b): Generate the set of parent points ZðmÞ ¼ fzðmÞt ; t ¼ 1; � � � ;NðmÞp g, where

the iid random variable zðmÞt � UðDpÞ and U is the discrete uniform
distribution on the domain Dp.

(c): For each parent point zðmÞt , generate the number of offspring
NðmÞot � PoisðmoÞ, and a set of offspring OðmÞt ¼ fu

ðmÞ
tj ; j ¼ 1; � � � ;NðmÞot g, where

iid random variables uðmÞtj � NðzðmÞt ;s2Þ with truncation interval

½zðmÞt � h; z
ðmÞ
t þ h�;

(d): Obtain the set of all generated offspring UðmÞalt ¼ [
NðmÞp
t¼1 O

ðmÞ
t ;

(e): Obtain the set of observed SNP genotype differences
XðmÞa : XðmÞa ¼ U ðmÞalt \ S.

4.3: For each m = 1, � � � M 0, obtain GXðmÞa
ð�Þ � fGXðmÞa

ðyiÞ; i ¼ 1; � � � ; kg at the grid

sites yi, i = 1, � � �, k;
4.4: For each m = 1, � � � M 0, using Ĝ�ð�Þ from step 2.4 in Algorithm 2,

calculate:

(a): fKSX
ðmÞ
a

G ¼ fKSðGXðmÞa
; Ĝ�Þ;

(b): gCvMXðmÞa
G ¼ gCvMðGXðmÞa

; Ĝ�Þ;

4.5 The Monte Carlo estimates of the power of the test statistics b̂fKSG

and b̂ gCvMG
are as follows, where:

(a): b̂fKSG
= 1

M0
PM0

m¼1
IðfKSX

ðmÞ
a

G > F̂ � 1
fKSG
ð1 � aÞÞ;

(b): b̂ gCvMG
= 1

M0
PM0

m¼1
IðfKSX

ðmÞ
a

G > F̂ � 1
gCvMG
ð1 � aÞÞ.
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Simulation parameter settings and results

Chromosome 19 is selected as an illustrative example to conduct simulation studies. Mouse

36.2 in our dataset, a mouse with a primary mammary tumor and lung metastasis, has about

50 putative de novo SNP genotype differences between these two tissue samples on its chromo-

some 19. Based on this example, the total expected number of detected SNP genotype differ-

ences η is chosen as 50. Under the null hypothesis, the underlying rate parameter of the hPP l̂

is calculated as 1.77 × 10−4 (See step 2.2(a) in Algorithm 2).

All of the statistics are evaluated using a grid of values for d or n, which are selected to be

scientifically meaningful. In sequencing data, having six or more consecutive mutations with

an average distance of less or equal to 1 kb is considered as a mutation shower [7]. Another

definition of a mutation cluster, obtained empirically from analysis of a genic region, is having

multiple mutations (2 or more) within a 30 kb region [6]. In genotyping array data, as infor-

mation is missing between SNP probe sites, the evaluation range for identifying clusters would

necessarily be larger than the range used in sequencing data with single base pair resolution. In

this simulation study, a grid of distances di, i = 1, � � �, 20 are set from 5000 bp to 100, 000 bp

with an interval of 5000 bp, so di = 5000i; while a grid of cluster sizes ni, i = 1, � � �, 7 is set from

2 to 8 with an interval of 1, so ni = i + 1.

Thus there are, in total, 97 statistics formulated: �RðdiÞ; i ¼ 1; � � � ; 20, ~RðdiÞ; i ¼ 1; � � � ; 20,

Dmin(ni), i = 1, � � �, 7; Nmax(di), i = 1, � � �, 20, C(di), i = 1, � � �, 20, and the 10 functional forms of

these statistics based on KS or CvM frameworks. For each statistic, the null distribution is esti-

mated from M = 104 replications generated under the null process. The critical values for all

tests are based on α = 0.05.

For the alternative processes, the parameters σ and h jointly reflect the spread of clusters of

the SNP genotype differences. Here, the truncation range h is set as h = 3σ, as there are very

low probabilities associated with the normal distribution outside this range. In the definition

of Dp in alternative hypothesis (3), hp is set as hp = σ; note that hp = +1 for alternative hypothe-

sis (1), where hp = 0 for alternative hypothesis (2). The simulation study evaluates power per-

formance of all test statistics with two factors, μo and σ. With μo and σ specified, the parameter

μp is set to ensure that the expected number of detected SNP genotype differences η = 50. The

experiment adopts a full factorial design with: (i) μo having two levels, 375 and 1125, denoting

low and high levels of offspring within a cluster in order that powers of the statistics being eval-

uated are away from the extremes of 0 and 1, so that the performance of the test statistics can

be differentiated; and (ii) σ having levels of grid distances of 500 bp, and from 1000 bp to

10000 bp with increment of 1000 bp. These values of σ are based on the definition of a muta-

tion cluster by [6]; i.e., the truncation range 6σ ranges from 3kb to 60kb.

In Supplementary Information, S1–S3 Tables provide power results for μo = 375 under each

of the three alternative hypotheses, while S4–S6 Tables provide associated results for μo = 1125.

In each table, for the test statistics with fixed argument of d or n, only the highest powers across

all the arguments are displayed. These tables in the Supplementary Information provide the

identical information as in Fig 2, and S2–S5 Figs, and also provide additional details on the

lower performance of two statistics that are not displayed. The optimal argument settings for

all five statistics with fixed arguments to achieve highest powers across various parameter set-

tings of σ are available in S7–S9 Tables for μo = 375, and S10–S12 Tables for μo = 1125, under

each of the three alternative hypotheses respectively.

Under the alternative hypothesis (1), for μo = 375, in general, the power of each test statistic

decreases as σ increases. The test statistics based on ~RðdÞ, �RðdÞ and C(d) generally have higher

powers than those based on Nmax(d) and Dmin(n). Fig 2 contrasts the power performance of

nine categories of statistics based on ~RðdÞ, �RðdÞ and C(d), including the statistics with fixed
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arguments as well as their function forms. Among these nine, ~RðdÞ has the highest power and

outperforms �RðdÞ and C(d) in all the settings of σ. Among the six functional forms of statistics,

gCvM ~R and fKS~R outperform the other four functional forms of statistics, and gCvM ~R has better

power performance than fKS~R as σ increases.

The power performance under alternatives (2) and (3) for μo = 375, available in S1 and S2

Figs, provide similar results to that described for alternative hypothesis (1). Power is generally

highest under alternative (2) and lowest under alternative (1) given all the other settings

remain constant. One noticeable difference from alternative hypotheses (2) and (3) compared

to (1) is that the powers of C(d) outperform ~RðdÞ when σ is not small. The comparison among

the six functional forms of statistics shows similar results for alternative hypothesis (1).

For μo = 1125, the powers of the test statistics are higher than when μo = 375. The powers

are closer to 1 and decrease less dramatically over σ than for the cases where μo = 375. The pat-

terns of power comparisons are similar to the cases where μo = 375. Yet the powers of ~RðdÞ are

comparable with C(d) when σ is large and both are quite close to 1 under alternative hypothe-

ses (2) and (3). The power performance of the statistics under the three alternative hypotheses

for μo = 1125 is available in S3–S5 Figs.

The power performance of ~RðdÞ and C(d) seem to be best among the nine categories of sta-

tistics, yet they suffer the disadvantage that they require a choice of d. The optimal argument

choices of d are usually unknown in application. Moreover, the optimal choices of dmay

change over parameter settings, particularly for σ, as seen in Fig 3 for ~RðdÞ. Importantly, using

a sub-optimal choice of d can yield very low power.

Fig 2. Power performance of statistics related to �RðdÞ, ~RðdÞ, and C(d) under alternative hypothesis (1) with parameter μo =

375. Only maximum powers of �RðdÞ, ~RðdÞ, and C(d) over values of d considered are displayed; dmax refers to the value of d
yielding the largest power.

https://doi.org/10.1371/journal.pone.0204156.g002
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In conclusion, the functional statistic gCvM ~R is the preferred test statistic in applications

because of its general high power performance, oftentimes close to the best among all statistics;

importantly, with this statistic no specific choice of tuning parameter d needs to be defined.

Application

Genotyping method

DNA was extracted from mouse tissue samples using the Wizard1 Genomic DNA Purifica-

tion Kit (Promega, Madison, WI). Isolated DNA was submitted to the London Regional Geno-

mics Centre to be processed (restriction enzyme digested, amplified, fragmented and

fluorescently labeled) and hybridized to the Mouse Diversity Genotyping Array (MDGA; Affy-

metrix1, Santa Clara, CA) [10]. Genotyping was performed for each of the three specific

examples within the context of separate experimental designs with a minimum cohort size of

12 samples and a maximum of 351 samples. Genotyping Console (Affymetrix1, Santa Clara,

CA) was used to call genotypes at the 493,290 SNP loci represented by the MDGA, using the

fluorescence intensity data. The Genotyping Console software uses a clustering algorithm,

Birdseed v2, and assigns each SNP locus as 1 of 4 possible calls: AA (homozygous for the most

common allele), AB (heterozygous, one of each allele), BB (homozygous for the less common

allele), or no call if the SNP genotype calls did not cluster well with any of the three possible

genotypes. The resulting data for each biological sample used for further analysis consist of a

list of SNP genotype calls, their locations in the genome (chromosome number and base pair

number) and the genotyping call given by Genotyping Console for each sample. In the data

sets utilized for testing for existence of clusters in this paper, the events are defined as SNP

genotype differences, which are the binary indicators of differences at SNP loci when contrast-

ing two biological samples. The genotyping call and the consequent SNP genotype differences

are putative until the genotyping is confirmed by an alternate technology. All animal work was

conducted according to relevant national and international guidelines. Western University’s

Fig 3. Power performance of test statistics ~RðdÞ across a grid of d under alternative hypothesis (1) with parameter

μo = 375. The solid points indicate the maximum power for the particular parameter setting.

https://doi.org/10.1371/journal.pone.0204156.g003
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Animal Use Subcommittee approved the study. All guidelines were followed including those

approved standard operating procedures for euthanasia.

Analyses for three biological samples of interest

Three specific examples are considered here.

1. Detection of known clusters of putative SNP genotype differences in a mouse with a known

mixed genetic background;

2. Test for the existence of clusters of putative SNP genotype differences arising postzygoti-

cally between two healthy tissues from a C57BL/6J mouse;

3. Test for the existence of clusters in comparison of two cancerous tissues from a

MMTV-PyMT transgenic mouse [23].

Rainfall plots portraying the mutation landscapes of the three samples are provided in

Fig 4. On a rainfall plot, each point represents a single mutation with its distance (in base

pairs) to the previous mutation in log scale plotted on the y axis, and the base pair location in

the genome is plotted on the x axis. Rainfall plots display mutations detected along a single

chromosome or potentially across the entire genome. Although the plots offer a helpful visuali-

zation of the data, they do not provide formal evidence of clustering [16].

As an example of a positive control for known clustered putative SNP genotype differences

in a genome, the recommended gCvM ~R test statistic was used to analyze SNP genotype differ-

ences in normal cerebellar tissue from a mouse with a known mixed genetic background of

two common inbred mouse strains (75% C57BL/6J and 25% CBA/CaJ), example 1. For chro-

mosome 6 (Fig 4A), the test statistic rejects the null hypothesis at a significance level of 0.05,

indicating existence of mutation clusters along the chromosome.

In example 2, the gCvM ~R test statistic was used to analyze SNP genotype differences along

chromosome 1 between cerebellar and splenic tissue from a healthy C57BL/6J inbred mouse

(Fig 4B). The SNP genotype differences detected are hypothesized to have arisen by spontane-

ous mutation mechanisms resulting in somatic mutations propagated with cell division during

development. The test statistic failed to reject the null hypothesis at the significance level of

0.05, indicating no existence of clusters of putative SNP genotype differences along the

chromosome.

In the third example, the gCvM ~R test statistic was used to analyze SNP genotype differences

observed along chromosome 1 for a comparison of primary mammary tumor and lung tissue

with metastases from the same MMTV-PyMT transgenic mouse (Fig 4C). The test statistic

rejects the null hypothesis at a significance level of 0.05, indicating existence of mutation clus-

ters along the chromosome. As mentioned in [16], the interpretation of rainfall plots is difficult

and subject to pitfalls. The example in Fig 4C shows that when a subjective judgment from a

visual examination of the rainfall plot is ambiguous and inconclusive, the rigorous statistical

tool developed here can provide an objective decision-making approach for detecting the exis-

tence of mutation clusters.

Discussion

In order to perform rigorous statistical testing to detect existence of clusters of putative SNP

genotype differences identified by genotyping array probe systems, 97 candidate test statistics

are proposed and evaluated. Conditional null distributions of test statistics are obtained by

Monte Carlo simulations. The powers of all the test statistics are studied under three different

types of Neyman-Scott processes, intended to mimic the unknown underlying mutation
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Fig 4. Rainfall plots portraying the SNP genotype differences due to mixed genetic background, putative new

mutations arising during development of two normal tissues of the same mouse and putative mutations arising

between two cancerous tissues from the same mouse. (A) Rainfall plot for chromosome 6 from a mouse (identifier:

904.11) with mixed genetic background (75% C57BL/6J and 25% CBA/CaJ). (B) Rainfall plot for chromosome 1 for a

comparison of normal cerebellum and spleen tissue from the same mouse (identifier: 300.7). (C) Rainfall plot for
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generation mechanisms. Various choices of parameters for alternative hypotheses are used to

evaluate the power performance of the candidate statistics. Among all of the parameter set-

tings, the Cramér-von Mises version of the pooled ratio estimate ( gCvM ~R) has high power

among all candidate tests and lacks dependence on optimal argument choices. It also possesses

the desirable property of having power performance degrade less over various parameter set-

tings as the cluster range becomes larger. The functional form of the C(d) statistic based on the

rainfall plot performs substantially poorer. Therefore gCvM ~R is recommended as an effective

statistic for detection of clustering.

The test statistics are developed conditional on the probe design and total number of

detected SNP genotype differences. When applied to a new scenario, the null distributions of

all the statistics need to be established according to the specific probe design on a chromosome

and total number of detected SNP genotype differences using Algorithm 2. The rate parameter

of hPP under the null hypothesis can be estimated from a single chromosome of interest with-

out the need of extra information from other chromosomes in the same biological sample or

any other replicates. However, it can also be estimated from several chromosomes under a jus-

tified experimental setting. For example, the rate parameter can be estimated from certain rep-

licates which can be assumed to share a common underlying mutation rate under certain

experimental conditions. When the objective is to carry out the mutation cluster detection

genome-wide, all of the chromosomes in a sample should be tested separately. Multiple testing

issues arise when the statistic is applied to multiple chromosomes from either one or a number

of biological samples. These multiple tests can be independent or correlated depending on the

biological context. In order to achieve a desirable overall type I error rate or false discovery

rate (FDR), statistical methods such as the Bonferroni correction or by [24] may be applied to

achieve desirable testing properties, depending on the goal of the research.

The methods developed in this article are designed for cluster detection under a genotyping

array probe design. The probe design provides a cost-effective way for mutation detection

compared to sequencing every base pair of the entire genome. Instead of a high resolution of

mapping of mutations in the genome, the probe system usually only reveals a small proportion

of information on a chromosome, leaving the regions outside of the probe sites unknown. As

mutations in regions where probes are absent are undetectable by design, any mutation clus-

ters occurring in such regions are correspondingly undetectable. The test statistics are estab-

lished based on the information on the probe system, so they can only identify clustering when

the probe system is capable of detecting potential clusters. The power evaluations in this study

are conditional on the existence of the underlying clusters generated from a known clustering

mechanism. This mechanism does not necessarily guarantee that clusters are detectable by the

specific probe system. If all the samples evaluated in the power studies contained clusters

detectable by the probe systems, the power performances of the tests would most likely be

higher. One of the reasons for some low power performances in certain alternative parameter

settings may be that clusters generated are not detected by the probe system. Designing an

array with a larger number of probes or switching to an existing array system with a larger

number of probes will augment the probability of detecting existing clusters.

In studies involving known genetic backgrounds, prior information on detected SNP differ-

ences may be utilized to improve the power of testing for mutation clusters. For example,

chromosome 1 for comparison of primary mammary tumor and lung tissue with metastases from a MMTV-PyMT

transgenic mouse (mouse identifier 36.1). (Legend: Cl cerebellum, Sp spleen, PMT primary mammary tumor, WLM

whole lung with metastases).

https://doi.org/10.1371/journal.pone.0204156.g004

Genome-wide mutation cluster detection under a microarray probe sampling system

PLOS ONE | https://doi.org/10.1371/journal.pone.0204156 September 25, 2018 15 / 20

https://doi.org/10.1371/journal.pone.0204156.g004
https://doi.org/10.1371/journal.pone.0204156


information on SNP differences in high linkage disequilibrium (LD) with more unobserved

SNP differences in their neighborhood may be given greater weight in the testing procedure.

Alternatively, information on SNP genotypes undetectable by the microarray platform may be

inputed based on other information such as known haplotypes [25]. However, for studies with

de novo mutations, such as in healthy somatic tissues and in cancer studies, the imputation

based on LD or known haplotypes may not be appropriate; even so, other prior knowledge

may become helpful. Extensions of the methods discussed in this paper could incorporate

improvements based on such prior knowledge.

After mutation clusters have been detected, different downstream analyses are possible. The

nature of the mutation types in clusters can be used to identify mutation signatures and to

infer the underlying mutational mechanisms. Alternatively, the mutation clusters can be

linked to functional annotations for the genome and inferences can be made about the func-

tional impact of the mutation clusters.

The method can be generalized to any one dimensional system where every site is observed,

such as DNA or protein sequencing data, with probes designated as having length one at each

site of the system. The method can be applied to cluster detection of any single site event along

any one dimensional system, as for example, the distribution of DNA methylation locations

detected by the CpG site probe system as described by [12].

The arbitrary and informal graphical tools and definitions for portraying and detection

mutation clusters can now be replaced with a formal statistic test for mutation cluster detec-

tion. The recommended test statistics in this study provide tools for genome-wide detection of

mutation clusters under the genotyping probe system. Due to the cost-effectiveness of array

systems, larger scales of experimental designs can be adopted compared to those possible with

next generation sequencing techniques. Certain samples with putative mutation clusters can

be further confirmed and investigated by sequencing techniques.
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S1 Fig. Power performance of statistics related to �RðdÞ, ~RðdÞ, and C(d) under alternative

hypothesis (2) with parameter μo = 375. Only maximum powers of �RðdÞ, ~RðdÞ, and C(d)

over values of d considered are displayed; dmax refers to the value of d yielding the largest

power.

(TIF)

S2 Fig. Power performance of statistics related to �RðdÞ, ~RðdÞ, and C(d) under alternative

hypothesis (3) with parameter μo = 375. Only maximum powers of �RðdÞ, ~RðdÞ, and C(d)

over values of d considered are displayed; dmax refers to the value of d yielding the largest

power.

(TIF)

S3 Fig. Power performance of statistics related to �RðdÞ, ~RðdÞ, and C(d) under alternative

hypothesis (1) with parameter μo = 1125. Only maximum powers of �RðdÞ, ~RðdÞ, and C(d)

over values of d considered are displayed; dmax refers to the value of d yielding the largest

power. σ.

(TIF)

S4 Fig. Power performance of statistics related to �RðdÞ, ~RðdÞ, and C(d) under alternative

hypothesis (2) with parameter μo = 1125. Only maximum powers of �RðdÞ, ~RðdÞ, and C(d)

over values of d considered are displayed; dmax refers to the value of d yielding the largest
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power. σ.

(TIF)

S5 Fig. Power performance of statistics related to �RðdÞ, ~RðdÞ, and C(d) under alternative

hypothesis (3) with parameter μo = 1125. Only maximum powers of �RðdÞ, ~RðdÞ, and C(d)

over values of d considered are displayed; dmax refers to the value of d yielding the largest

power. σ.

(TIF)

S1 Table. Power of the tests under alternative hypothesis (1) with μo = 375 under various σ
choices. Under each parameter setting, h is set as h = 3σ and μp is set to match with η = 50. For

�RðdÞ, ~RðdÞ, Dmin(n), Nmax(d) and C(d), only the maximum power across the values considered

for d or n is shown. The significance level of the test is set as α = 0.05.
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�RðdÞ, ~RðdÞ, Dmin(n), Nmax(d) and C(d), only the maximum power across the values considered

for d or n is shown. The significance level of the test is set as α = 0.05.
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S3 Table. Power of the tests under alternative hypothesis (3) with μo = 375 under various σ
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�RðdÞ, ~RðdÞ, Dmin(n), Nmax(d) and C(d), only the maximum power across the values considered

for d or n is shown. The significance level of the test is set as α = 0.05.
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ered for d or n is shown. The significance level of the test is set as α = 0.05.
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S5 Table. Power of the tests under alternative hypothesis (2) with μo = 1125 under various

σ choices. Under each parameter setting, h is set as h = 3σ and μp is set to match with η = 50.

For �RðdÞ, ~RðdÞ, Dmin(n), Nmax(d) and C(d), only the maximum power across the values consid-

ered for d or n is shown. The significance level of the test is set as α = 0.05.
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S7 Table. Optimal argument settings under alternative hypothesis (1) with μo = 375. Opti-
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(1) with μo = 375 under various σ choices. Under each parameter setting, h is set as h = 3σ and

μp is set to match with η = 50.

(PDF)
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(2) with μo = 375 under various σ choices. Under each parameter setting, h is set as h = 3σ and

μp is set to match with η = 50.
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S9 Table. Optimal argument settings under alternative hypothesis (3) with μo = 375. Opti-
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