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Abstract

We present a spatio-temporal assessment of microRNA expression throughout early human brain 

development. We assessed the prefrontal cortex, hippocampus, and cerebellum of 18 normal 

human donor brains spanning infancy through adolescence by RNA-seq. We discovered 

differentially expressed microRNAs and broad microRNA patterns across both temporal and 

spatial dimensions, and between male and female prefrontal cortex. Putative target genes of the 

differentially expressed miRNAs were identified, which demonstrated functional enrichment for 

transcription regulation, synaptogenesis, and other basic intracellular processes. Sex-biased 

miRNAs also targeted genes related to Wnt and TGF-β pathways. The differentially expressed 

miRNA targets were highly enriched for gene sets related to autism, schizophrenia, bipolar 

disorder, and depression, but not neurodegenerative diseases, epilepsy, or other adult-onset 

psychiatric diseases. Our results suggest critical roles for the identified miRNAs in transcriptional 

networks of the developing human brain and neurodevelopmental disorders.
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Introduction

Human neurodevelopment requires coordinated expression of thousands of genes, 

exquisitely regulated in both spatial and temporal dimensions, to achieve the proper 

specialization and inter-connectivity of brain regions. Consequently, the dysregulation of 

complex gene networks in the developing brain is thought to underlie many 
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neurodevelopmental and psychiatric disorders (1). In order to understand these pathologic 

gene expression changes, it is critical to achieve a comprehensive understanding of normal 

gene expression regulation throughout human neurodevelopment. While broad surveys of 

gene expression across the developing human brain have recently been described (2), the 

molecular regulators of this gene expression--most notably microRNAs-- have only been 

assessed in a few brain regions or developmental periods (3–6). As microRNAs are 

increasingly recognized in fundamental brain developmental processes and neurologic 

diseases (7), a comprehensive understanding of their expression dynamics throughout 

human brain development is important.

Therefore, we analyzed the differential expression of all microRNAs (miRNAs) detected by 

RNA-sequencing of 82 neurologically-normal post-mortem human brain tissue samples, 

which derived from 18 individual donor brains spanning 4 months through 19 years of age 

(see Methods). Donor samples were grouped into four developmental time windows 

(infancy, early childhood, late childhood, and adolescence, Table 1). Six distinct brain 

regions were assessed: four regions of the prefrontal cortex, the hippocampus, and the 

cerebellum. We also assessed for differential miRNA expression between males and females 

in the prefrontal cortex. Then, we identified putative gene targets of the differentially 

expressed miRNAs, determined if these gene targets were enriched for particular functional 

processes, and finally assessed if the identified targets were enriched for genes associated 

with common neurodevelopmental, psychiatric, and neurodegenerative diseases.

Methods

miRNA Data and Pre-processing

All data was obtained from the Allen Institute for Brain Science BrainSpan Atlas of the 

Developing Human Brain (www.brainspan.org). Details of tissue acquisition, processing, 

and RNA-sequencing can be found on the BrainSpan website. Data was downloaded at: 

download.alleninstitute.org/brainspan/MicroRNA. The full dataset contained 1620 miRNAs 

measured across 215 brain samples. Only brain samples originating from the orbitofrontal 

prefrontal cortex (OFC; Brodmann’s Area (BA) 11), dorsolateral prefrontal cortex (DFC; 

BA 9, 46), medial prefrontal cortex (MFC; BA 32, 33, 34), ventrolateral prefrontal cortex 

(VFC; BA 44,45), hippocampus (HIP), or cerebellum (CER) were retained (82 total 

samples, Supplementary Table 11). For analysis between sexes, brain regions were 

aggregated from the prefrontal cortex samples. Next, miRNAs with read counts likely to be 

noise rather than true reads were removed, in order to increase subsequent statistical power; 

this has been demonstrated not to affect the dispersion model used to calculate differential 

expression (8). Importantly, we did this prior to any analysis of the data. To do so, the sum 

total of read counts for each miRNA across all 82 samples was calculated. miRNAs with 

zero total reads were immediately discarded (58 miRNAs). Next, miRNAs were ordered 

from most to least reads (range 1 to 41,540,463) and the dispersion of read counts was 

plotted for visualization. Then, any miRNA with a total read count less than 60 was 

discarded, resulting in 902 retained miRNAs (Supplementary Table 11).
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miRNA Differential Expression Analysis

Differentially expressed miRNAs were discovered using the edgeR package (9) run in the R 

programming environment. The edgeR user guide was followed as detailed in the “classic 

analysis” section. We chose this method to evaluate differential expression because its 

performance is intermediately conservative among various RNA-seq analysis packages (10). 

miRNAs were considered to be significantly differentially expressed between groups only if 

the false discovery rate (FDR) p-value was < 0.05 and the absolute log2 of Fold Change 

(FC) was > 1.5. Differentially expressed miRNAs were identified across three dimensions: 

spatial, temporal, and by sex. Spatial miRNAs were differentially expressed between two 

anatomic brain regions within one developmental time period. Temporal miRNAs were 

differentially expressed over developmental time within the one anatomic brain region. Sex-

biased miRNAs were differentially expressed between male and female prefrontal cortex 

samples within one time period (data was combined from all four prefrontal cortex regions).

Downstream analysis of miRNA targets

miRNAs that were determined to be differentially expressed temporally or by sex were 

further analyzed for putative target genes under their control. To do so, we used the target 

prediction algorithms of TargetScanHuman 6.2 (11) and miRDB (12). We considered as 

significant only those targets that were predicted by both algorithms. Gene ontology (GO) 

enrichment analysis of the target genes was performed using DAVID Bioinformatics 

Resources 6.7 Functional Annotation Tool (13). Gene ontologies were considered 

significant only if their Benjamini-Hochberg multiple testing corrected p-value was < 0.05. 

GO enrichment analysis was performed on lists of aggregated targets (all time periods) that 

were brain region specific.

Test for enrichment of disease-associated genes

To determine if the target genes of differentially expressed miRNAs may relate to 

neurological diseases, we assessed for their enrichment into disease-related gene sets. 

Disease related gene sets were downloaded from the Genotator database (14). Enrichment 

was tested using the Hypergeometric probability distribution function in Excel. The 

population universe (i.e. all protein-coding genes in the human genome) was set to 20,687 

(15). A success in the Hypergeometric function test was a gene that was both a predicted 

miRNA target and previously associated with a disorder. P-values were corrected for 

multiple testing by applying the conservative Bonferorri method. Enrichment was only 

considered significant if the Bonferorri-corrected p-value was < 0.01.

Results and Discussion

In total, we discovered 75 miRNAs differentially expressed across developmental time 

within brain regions (absolute log2. fold change > 1.5 and FDR < 0.05, Supplementary Table 

1). Similar to previously described changes in gene expression, the greatest differential 

expression of miRNAs occurred during the transition from infancy to early childhood 

(Figure 1). The dorsolateral prefrontal cortex exhibited the greatest number of differentially 

expressed miRNAs (35 miRNAs) and the cerebellum a similar amount (22 miRNAs); the 

hippocampus and other regions of the prefrontal cortex each displayed less than five 
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differentially expressed miRNAs. In contrast, differential expression of miRNAs between 

brain regions increased over developmental time (Figure 2, Supplementary Table 2). This 

finding is opposite previously described patterns of mRNA expression, which has been 

shown to become more globally similar between brain regions over development (2).

As many neurodevelopmental disorders display a significant sex-bias in their prevalence 

(16–18), we also assessed for differential miRNA expression by sex in the prefrontal cortex. 

We discovered 40 miRNAs with significant sex-biased expression differences between the 

prefrontal cortex of males and females (Table 2, Supplementary Table 3). Strikingly, 93% 

were more highly expressed in females, again a trend opposite to that of sex-biased gene 

expression (2). Furthermore, the majority of sex-biased gene expression occurred in 

adolescence (65%), suggesting that miRNA-targeted gene expression differences in the 

prefrontal cortex of males versus females becomes most pronounced around puberty.

To explore the potential biologic and pathogenic roles of the differentially expressed 

miRNAs, we identified putative targets of the temporally and sex-biased differentially 

expressed miRNAs (see Methods, Supplementary Table 4). We then assessed for enrichment 

of gene ontology (GO) categories in all lists of putative target genes. Overall, miRNA target 

genes were highly related to the process of transcription regulation in almost all lists 

(Supplementary Tables 5–10). This finding is in line with the well-known function of 

miRNAs as master regulators of gene expression networks (19, 20), and underscores the 

importance of identifying these key hubs of brain transcriptomes. Additionally, putative 

gene target lists were enriched for biological processes relating to nervous system 

development, synaptogenesis, and other basic intracellular processes.

Of particular note was the functional enrichment of miRNA targets that were differentially 

expressed between male and female prefrontal cortex. In addition to the processes 

implicated in all lists, the sex-biased targets were further enriched for Wnt signaling and 

transforming growth factor-beta (TGF-β) pathways. This result suggests these pathways may 

partially underlie normal behavioral differences in executive functioning between males and 

females. Furthermore, these two pathways are implicated in neurological disorders with sex-

biased differences in prevalence (21, 22), and therefore may relate this sex disparity to 

underlying miRNA expression differences during normal brain development.

Last, we assessed for enrichment of miRNA targets among genes previously implicated in 

various neurological and psychiatric disorders that have significant genetic etiology (see 

Methods). We tested for enrichment of genes involved in epilepsy, three 

neurodevelopmental disorders (autism, schizophrenia, and bipolar disease), three 

neurodegenerative disorders (Alzheimer’s, Huntington’s, and Parkinson’s diseases), and 

three psychiatric diseases (major depressive disorder, post-traumatic stress disorder, and 

obsessive-compulsive disorder). The enrichment of all gene lists significant for various 

disorders is shown in Figures 3 and 4. The three neurodevelopmental disorders (ASD, 

Schizophrenia, and Bipolar) showed a nearly identical enrichment pattern, among many 

categories. In contrast, there was almost no enrichment for neurodegenerative disease lists. 

Similarly, the neuropsychiatric disorders showed no enrichment for miRNA target genes, 

Ziats and Rennert Page 4

Mol Psychiatry. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



except for major depressive disorder, where the pattern was similar to the 

neurodevelopmental disorders.

In summary, we describe the most comprehensive assessment to date of spatio-temporal 

miRNA expression in the developing human brain. Our results identified miRNAs 

differentially expressed both within and between brain regions, and demonstrated that the 

greatest shifts in miRNA expression occur shortly after birth. However, unlike global gene 

expression patterns, miRNAs become more differentially expressed between brain regions 

over time, potentially driving regional specialization as the brain matures. Target genes 

under putative control by region-specific differentially expressed miRNAs are most related 

to the processes of transcription regulation and neurodevelopment, highlighting the central 

function of these miRNAs to brain transcription networks. Additionally, sex-biased 

expression of miRNAs increases in the prefrontal cortex around puberty, and the pathways 

related to sex-biased target genes are further enriched for Wnt signaling and TGF-β 

pathways. Common neurodevelopmental disorders with complex genetic etiologies are 

highly related to genes targeted by these miRNAs, but this was not found for genes related 

to neurodegenerative or other neuropsychiatric diseases with adult onset.

This study has a number of important limitations. First, the total sample size is 18 donor 

brains, potentially limiting the statistical power. Unfortunately, this problem is prevalent 

throughout human neurosciences research owing to the lack of large repositories of human 

post mortem brain tissue (23). Therefore, it will be important for future studies to replicate 

and aggregate the data presented here with larger datasets when they become available. 

Additionally, while computational prediction of miRNA targets based on sequence 

homology is an effective discovery tool, individual miRNAs of interest will require in vitro 

or in vivo experimental validation of their targets.

In conclusion, while thousands of genes are differentially expressed throughout human 

neurodevelopment, we have identified a set of miRNAs with differential spatio-temporal 

and sex-biased expression patterns that may regulate these expression changes. The targets 

of these differentially expressed miRNAs are highly enriched for genes related to 

transcriptional regulation, neurodevelopmental processes, and common neurodevelopmental 

disorders. Furthermore, inter-regional expression differences of miRNAs appear to increase 

over development. These results suggest the identified miRNAs are likely hubs of critical 

brain developmental and pathologic transcriptional processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Number of differentially expressed miRNAs within each brain region over 
development
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Figure 2. Number of differentially expressed miRNAs between brain regions over development
Light blue represents the prefrontal cortex, green represents the hippocampus, and the 

cerebellum is shaded in brown.
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Figure 3. Enrichment of differentially expressed miRNA target genes by brain region for disease 
associated genes
Dashed line indicates significance (corrected p-value < 0.01).
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Figure 4. Enrichment of differentially expressed miRNA target genes among male versus female 
sets for disease associated genes
Dashed line indicates significance (corrected p-value < 0.01).
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Table 1

Developmental periods and average number of donor tissue samples assessed.

Developmental Period Ages Avg. Samples per Region

Infancy 4 months – 1 year 3.5

Early Childhood 2 – 4 years 3.0

Late Childhood 8 – 13 years 2.8

Adolescence 15 – 23 years 4.3
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Table 2

Differentially expressed miRNAs between male and female prefrontal cortex over development.

Up-regulated in Males Up-regulated in Females Total

Infancy 1 1 2

Early Childhood 1 9 10

Late Childhood 0 2 2

Adolescence 1 25 26

Total 3 37 40
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