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Abstract The pediatric bone sarcomas osteosarcoma and

Ewing sarcoma represent a tremendous challenge for the

clinician. Though less common than acute lymphoblastic

leukemia or brain tumors, these aggressive cancers account

for a disproportionate amount of the cancer morbidity and

mortality in children, and have seen few advances in sur-

vival in the past decade, despite many large, complicated,

and expensive trials of various chemotherapy combina-

tions. To improve the outcomes of children with bone

sarcomas, a better understanding of the biology of these

cancers is needed, together with informed use of targeted

therapies that exploit the unique biology of each disease.

Here we summarize the current state of knowledge re-

garding the contribution of receptor tyrosine kinases, in-

tracellular signaling pathways, bone biology and

physiology, the immune system, and the tumor microen-

vironment in promoting and maintaining the malignant

phenotype. These observations are coupled with a review

of the therapies that target each of these mechanisms, fo-

cusing on recent or ongoing clinical trials if such infor-

mation is available. It is our hope that, by better

understanding the biology of osteosarcoma and Ewing

sarcoma, rational combination therapies can be designed

and systematically tested, leading to improved outcomes

for a group of children who desperately need them.

Key Points

Many of the therapeutic targets important in

common adult cancers are also important for

osteosarcoma and Ewing sarcoma.

Preclinical and early clinical trial data are available

to support the use of many of these agents in

children.

Combination therapy has generally been safe in

children and should be evaluated further with more

agents.

1 Introduction

Osteosarcoma (OS) is the most common type of primary

bone cancer [1], occurring primarily in adolescents and

young adults, with a peak incidence in the second decade

of life. Standard therapy consists of surgical removal of any

resectable primary tumor and metastases, combined with

6–9 months of neoadjuvant and adjuvant chemotherapy

[2]. Current chemotherapy regimens include four agents:

doxorubicin (adriamycin), cisplatin, and high-dose

methotrexate with leukovorin rescue [3–5]. Some clin-

icians have used ifosfamide for patients with high-risk or

metastatic disease [6], though the recently completed

EURAMOS (European and American Osteosarcoma

Study) showed definitively that the addition of ifosfamide

to adjuvant MAP (methotrexate, doxorubicin [adriamycin],

and cisplatin) chemotherapy for OS patients with poor

necrosis increased toxicity without improving survival

(results presented at the annual meeting of the Connective
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Tissue Oncology Society Annual Meeting, Berlin, Ger-

many, 2014). Although modern multimodal therapy yields

70 % survival for patients without overt metastasis at di-

agnosis, outcome for metastatic OS remains poor: fewer

than 30 % of patients presenting with metastases survive

5 years after diagnosis [7].

Ewing sarcoma (ES) is the second most common bone

malignancy. It is characterized typically by a translocation

between chromosomes 22 and 11, generating a fusion be-

tween the EWS and FLI1 genes [8]. ES occurs through a

broad age range, from infants to older adults, with a peak

incidence in the second decade of life and a slightly higher

incidence rate in males [9, 10]. ES arises most frequently in

bones, but occasionally develops in soft tissues [11]. In-

tensive multimodal treatment with combination che-

motherapy, surgery, and radiation has increased the overall

survival rate from less than 10 % to around 50 % [12–15].

The current standard of care for newly diagnosed ES

consists of chemotherapy with five drugs: vincristine/dox-

orubicin/cyclophosphamide alternating with ifosfamide

and etoposide [16, 17]. Standard therapy should include 17

cycles of chemotherapy, though ‘good-risk’ patients with

localized disease in an extremity may be safely reduced to

14 cycles. Chemotherapy cycles should be compressed to

every 2 weeks rather than every 3 in those patients who can

tolerate it—typically younger patients—as compressed

timing has a proven survival advantage [18].

While intensive multi-agent chemotherapy has improved

survival compared with the pre-chemotherapy era, there

have been few recent improvements in outcome for either

non-metastatic patients or those who present with metastatic

disease, and it has been difficult even for therapies that prove

beneficial, such as mifamurtide [19], to obtain regulatory

approval. However, in recent years, great advances have

been made in understanding the molecular basis of patho-

genesis and progression of pediatric bone sarcomas. This

new understanding has been achieved in parallel with an

explosion of novel therapies developed specifically to in-

hibit cancer-associated genes and pathways. Identification

of key regulatory pathways and molecular biomarkers

yielded dramatic changes in outcome for several adult

cancers, but childhood cancer, and bone sarcomas in par-

ticular, have largely been sidelined in this revolution.

To help make these important discoveries relevant for

childhood bone sarcomas, it is important to have an under-

standing of the role of each signaling pathway in the biology

of the disease, as well as the available agents that target these

processes. Priority was given to those pathways for which

there is good information about the relevance to OS or ES,

and those agents for which data are available. Where pos-

sible, we describe the reported results of clinical trials

completed with novel therapies, especially highlighting

those that involve children or are specific for bone sarcoma.

We highlight the studies that we have been able to identify

that use targeted therapy for bone sarcoma, whether for

children or adults, since some treating physicians may

choose to apply knowledge gained from these adult studies

to their care of children with similar conditions. We have

also included the results of some novel therapies that have

been proven ineffective in clinical trials. To provide coher-

ence to this broad topic, we have organized this review into

sections highlighting processes at the plasma membrane,

intracellular signaling pathways, bone metabolism, and the

environmental and immune interactions of bone sarcoma.

2 Surface Markers for Osteosarcoma (OS):
Receptor Tyrosine Kinases

Receptor tyrosine kinases (RTKs) are cell-surface proteins

that act as receptors for various extracellular ligands, in-

cluding growth factors, hormones, and cytokines. In addi-

tion to regulating normal cellular processes, RTKs and the

intracellular signaling pathways they activate are critical to

oncogenesis for many types of cancer [20]. Deregulation of

a variety of RTKs, including insulin-like growth factor

receptor type I (IGF-1R), vascular endothelial growth

factor receptor (VEGFR), human epidermal growth factor

receptor 2 (HER2, also called ERBB2), and platelet-

derived growth factor receptor (PDGFR), have been im-

plicated in pediatric bone sarcomas [21, 22]. Note that,

because of the biology of the process affected, VEGFR

inhibition is discussed in the environmental interactions

section, rather than with RTKs, since the target tissue af-

fected by these agents is the tumor vasculature rather than

the tumor cells themselves. Since RTKs were the first

molecular targets attacked in the current wave of small

molecule therapeutics, with the greatest range of drugs

approved or in development, each of the RTK pathways

relevant to OS and ES biology is considered below.

2.1 Insulin-Like Growth Factor Receptor Type I

(IGF-1R)

IGF-1R mediates cell differentiation, proliferation, and

apoptosis in human cancer by activating two major onco-

genic signaling cascades: the phosphoinositide 3-kinase

(PI3K) pathway and the mitogen-activated protein kinase

(MAPK) pathway [23, 24]. Elevated expression of IGF-1R

has been observed in most OS and ES cell lines and tumor

samples [25–27]. Overexpression of IGF-1R and its ligand

IGF-1 in pediatric bone sarcomas is correlated with a

poorer prognosis, and IGF pathway inhibition impeded

tumor growth and metastasis in preclinical models [28, 29].

Current therapeutic approaches directed against the IGF-

1R pathway can be grouped into three categories:
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monoclonal antibodies targeting IGF-1R, IGF ligand-neu-

tralizing antibodies, and small-molecule tyrosine kinase

inhibitors. At present, eight different anti-IGF-1R

monoclonal antibodies (mAbs) have been or are currently

being evaluated in phase I/II clinical trials, and one of

which is being evaluated in pediatric patients (Table 1).

Although their safety has been proven in pediatric patients,

these IGF-1R antagonists displayed limited or no clinical

benefit as monotherapy for patients with advanced bone

sarcomas [30–37]. Investigations using IGF-1R-targeted

agents in combination are ongoing, though it is not clear

what benefit these studies will show. Further, since these

agents showed no benefit in common adult malignancies,

their development has been abandoned by the pharma-

ceutical industry, suggesting that they are unlikely to be

available for future bone sarcoma patients.

An alternative approach to inhibit IGF signaling is to

neutralize the bioactivity of IGF ligands IGF-I and -II with

mAbs. In preclinical studies, these agents achieved more

effective inhibition of IGF signaling than IGF-1R mAbs by

blocking binding of IGF-I and -II ligands to IGF-1R and

insulin receptor (IR)-A [38, 39]. Two neutralizing anti-

bodies against IGF-I/II are available: MEDI-573 and

BI836845. A phase I clinical trial for MEDI-573 in adult

patients with advanced solid tumors demonstrated stable

disease in 13 of 39 patients [40]. Currently, five phase I

clinical trials of BI836845 are ongoing in adult patients

with various solid tumors, but there have been no specific

studies in OS or ES patients. Since IGF-II and IGF-2R can

also be overexpressed in OS and ES, these patients might

benefit from therapies that target both IGF ligands [27, 41].

In addition to mAbs, small-molecule inhibitors of IGF-

1R are also being developed. Some of these agents also

inhibit IR-A-dependent tumor growth [42]. Novel IGF-1R

tyrosine kinase inhibitors include linsitinib, XL-228,

INSM-18, GSK1904529A, GSK1838705A, and BMS-

554417, all of which have shown promising results in pe-

diatric sarcoma models during preclinical studies [22]. As

yet, no pediatric clinical trial data have been reported for

these agents.

2.2 Human Epidermal Growth Factor Receptor

2 (HER2) and the ERBB Family

HER2 is one of the four RTKs in the epidermal growth

factor receptor (HER/EGFR/ERBB) family and has an

essential role in tumor growth. In recent years, targeted

therapies against HER2 have achieved significant

therapeutic benefits in the treatment of several solid tu-

mors. However, data have been conflicting regarding ex-

pression of HER2 in OS and ES and its association with

clinical outcome. While some reports demonstrated mini-

mal expression of HER2 in tumor samples of pediatric

bone sarcomas or lack of correlation between HER2 ex-

pression level and patient outcome [43–48], other studies

have suggested that HER2 is highly expressed in up to

40 % of OS cases and 20 % of ES cases and its overex-

pression is correlated with metastases and poor prognosis

[46, 49–55]. One possible reason for these disparate results

may be purely technical: the Her-2 antigen is susceptible to

oxidative degradation, such that it is essentially unde-

tectable 6 months after slides are cut [56, 57]. The safety of

the HER2 mAb trastuzumab in combination with standard

chemotherapy has been shown in a phase II clinical trial for

OS, but no benefit was seen [58]. There is no clear evi-

dence of therapeutic benefit for this agent in bone sarcoma,

and no basis for treating bone sarcoma patients with it

except in the context of a clinical trial. In addition to the

antibody approach, small-molecule tyrosine kinase in-

hibitors of the ERBB family such as erlotinib, lapatinib,

afatinib, neratinib and dacomitinib are currently in clinical

development [59]. Since HER4, another member of the

HER family, has emerged in recent years as an essential

regulator in OS, ES, and other pediatric solid tumors [60–

62], the pan-Her small-molecule inhibitors (afatinib, da-

comitinib, and neratinib) may represent a more effective

approach in treating pediatric bone sarcomas than EGFR-

specific small-molecule inhibitors such as erlotinib [63,

64].

2.3 Platelet-Derived Growth Factor Receptor

(PDGFR)

The PDGF family of signaling molecules consists of five

ligands (PDGF-AA, -BB, -AB, -CC, -DD), and two RTKs

(PDGFR-a and -b) [65]. In OS and ES, PDGF/PDGFR

signaling has a central role in tumor growth and metastasis,

and overexpression of PDGFR-a and -b is often correlated

with poor prognosis [66–69]. Imatinib, a potent inhibitor of

c-Kit and PDGFR, has been evaluated in phase II clinical

trials for treating bone sarcomas. However, this compound

failed to demonstrate significant antitumor activity as a

single agent in children with recurrent OS and ES [70, 71].

Since blocking PDGF/PDGFR signaling is not sufficient to

inhibit tumor progression in patients, other multi-targeted

RTK inhibitors such as dasatinib are currently being

studied in phase I/II studies for patients with advanced

sarcomas (Table 1).

3 Intracellular Signaling Pathways

Cellular signaling is a complex process by which extra-

cellular events alter intracellular physiology and gene ex-

pression. While there is a great diversity of transmembrane

receptors and other agents that can initiate signaling,
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Table 1 Active clinical trials in osteosarcoma and Ewing sarcoma [180–183]

Target Class Drug Clinical trial Age (y)

IGF-1R Anti-IGF-1R antibodies Cixutumumab with temsirolimus Phase II: Recurrent or refractory solid tumors in

pediatric patients (NCT01614795)

[1 to 30

VEGF/VEGFR Anti-VEGF antibodies Bevacizumab with chemotherapy Phase II: OS (NCT00667342) [180] Up to 30

Bevacizumab with chemotherapy Phase II: ES family of tumor and desmoplastic

small round cell tumors (NCT01610570)

[1

VEGF inhibitors Endostar (recombinant human

endostatin) with chemotherapy

Phase II: OS (NCT01002092) 12–60

Small-molecule TKIs Pazopanib Phase II: OS metastatic to the lung

(NCT01759303)

[60

Pazopanib Phase II: Refractory solid tumors in children,

adolescents, and young adults (NCT01956669)

[1 to 18

Regorafenib Phase II: Refractory liposarcoma, OS, and ES

(NCT02048371)

[18

Sorafenib with irinotecan Phase I: Relapsed or refractory solid tumors in

pediatric patients (NCT01518413)

2–22

Sorafenib with everolimus Phase II: Relapsed and non-resectable high-grade

OS (NCT01804374) [181]

[18

PDGFR Small-molecule TKIs Imatinib mesylate Phase II: Refractory or relapsed solid tumors in

children (NCT00030667)

Up to 30

Dasatinib Phase II: Advanced sarcomas including ES

(NCT00464620)

[13

Dasatinib with ipilimumab Phase I: Advanced sarcomas including OS and ES

(NCT01643278)

[18

HDACi Small-molecule

inhibitors of histone

deacetylase

Vorinostat, docetaxel, and

gemcitabine

Phase Ib/II: Advanced sarcoma [18

Vorinostat and etoposide Phase I/II: Relapsed/refractory sarcomas \4 to 21

Valproic acid and bevacizumab

with gemcitabine and docetaxel

Phase I/II: Locally advanced, unresectable or

metastatic sarcoma (NCT01106872) Note: this

is a combination of HDACi with VEGF

inhibition

[18

Bone metabolism Bisphosphonates Zoledronic acid/zoledronic acid

with ‘standard chemotherapy’

Phase II/III: High-grade OS (NCT00691236) 18–65

Zoledronic acid with

chemotherapy

Phase III: High-grade OS (NCT00470223) 5–50

Zoledronic acid with busulfan Phase III: Localized and disseminated ES

(NCT00987636)

4–50

Conjugated

radioisotopes

153SM-EDTMP with external

beam radiotherapy

Phase II: High-risk OS (NCT01886105) 13–65

Radium-223 dichloride Phase I/II: High-risk OS (NCT01833520) [15

mTOR Small-molecule

inhibitors

Everolimus Phase II: Refractory or relapsed OS

(NCT01216826)

Up to 21

Sirolimus with chemotherapy Phase I: Recurrent and refractory solid tumors in

children (NCT01331135)

Up to 30

Sirolimus with

cyclophosphamide

Phase II: Advanced sarcomas including OS and

ES (NCT00743509)

[16

Notch Gamma secretase

inhibitors

RO4929097 with vismodegib Phase I/II: Advanced or metastatic sarcoma

including OS and ES (NCT01154452)

[18

Hedgehog Hedgehog signaling

antagonists

Vismodegib with RO4929097 See above [18

Src Small-molecule

inhibitors

Saracatinib Phase II: Recurrent OS localized to the lung

(NCT00752206)

15–74
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common pathways often are used by diverse receptors, and

therapeutic approaches have been developed to attack the

most vital pathways in cancer. In recent years, there have

been many advances in our understanding of how these

pathways function in OS and ES, and which are essential

for the cancer cell. The intracellular signaling pathways

important for OS and ES are discussed here.

3.1 Ezrin

As a member of the ezrin/radixin/moesin (ERM) family,

ezrin links the actin cytoskeleton to the plasma membrane.

Gene microarray studies demonstrated increased Ezrin

expression in metastatic OS lesions [72]. Further, high

ezrin expression in OS patients, both human and canine,

was correlated with poor overall survival [72, 73]. Khanna

and colleagues [73, 74] demonstrated that early steps in OS

pulmonary metastases are dependent on ezrin-mediated

protein kinase B (AKT) and MAPK signaling, and reduc-

tion of ezrin expression by a short hairpin RNA (shRNA)

decreased the survival of metastatic cells in the lung. The

relevance of ezrin in metastatic disease has been validated

for other sarcomas, including ES, although in this model

ezrin mediates metastasis by signaling through the

AKT/mammalian target of rapamycin (mTOR) pathway

[75]. Two small-molecule ezrin inhibitors have been suc-

cessfully studied in vitro and in vivo using OS models, but

these agents still await testing in clinical trials [76].

3.2 Mammalian Target of Rapamycin (mTOR)

The mTOR is a serine/threonine kinase and integral ef-

fector of the PI3K–AKT signaling pathway. It regulates

cell cycle progression and protein synthesis among other

steps during carcinogenesis [77]. Rapamycin (sirolimus)

and its derivatives have been effective at reducing tumor

growth in OS and ES murine models and in clinical trials

[78–82] and has been used as a radiosensitizer for OS [83].

A recent phase III clinical trial tested ridaforolimus in adult

sarcoma patients who had achieved objective responses

with prior chemotherapy [84]. For the 702 patients treated

on that study (only 10 % had bone sarcoma), ridaforolimus

increased progression-free survival by 28 % (p\ 0.001),

but greatly increased grade 3 or higher toxicities, especially

stomatitis, cytopenias, and infection. The report does not

provide a subset analysis for the bone sarcoma patients.

Several clinical trials using mTOR inhibitors in combina-

tion therapies are in progress (Table 1).

3.3 Steroid Receptor Co-Activator (Src)

The steroid receptor co-activator (Src) family of kinases is

expressed at high levels and is constitutively active in

many cancers, including OS and ES. Pharmacologic inhi-

bition of Src in vitro led to apoptosis and decreased inva-

sion, migration, and adhesion of OS and ES cells; however,

these results were not reproducible using OS in vivo

Table 1 continued

Target Class Drug Clinical trial Age (y)

PARP PARP inhibitors/

alkylating agents

Olaparib with temozolomide Phase I: Recurrent or metastatic ES following

failure of prior chemotherapy (NCT01858168)

[18

Olaparib Phase II: Recurrent of metastatic ES following

failure of prior chemotherapy (NCT01583543)

[182]

[18

Niraparib with temozolomide Phase I: Previously treated, incurable ES

(NCT02044120)

[13

BMN-673 with temozolomide Phase I/II: Refractory or recurrent malignancies

including ES in younger patients

(NCT02116777)

13–30

Immunotherapy Interferons Low-dose IFNa-2b with

thalidomide

Phase II: Soft tissue sarcoma or bone sarcoma

(NCT00026416)

[18

Immunostimulants Aerosol IL-2 Phase I/II: Pulmonary metastases of solid tumors

including OS and ES (NCT01590069)

12–50

GD2-based therapies Activated T cells armed with

GD2-bispecific antibody

Phase I/II: OS and neuroblastoma in children and

young adults (NCT02173093)

[1 to 29

Humanized anti-GD2 antibody

(HU14.18K233A)

Phase I: OS and ES in children and adolescents

(NCT00743496) [183]

Up to 21

T cells expressing an anti-GD2

chimeric antigen receptor

Phase I: GD2? solid tumors in children and young

adults (NCT02107963)

1–35

ES Ewing sarcoma, HDACi histone deacetylase inhibitor, IFN interferon, IGF-1R insulin-like growth factor receptor type 1, IL interleukin,

mTOR mammalian target of rapamycin, OS osteosarcoma, PARP poly ADP ribose polymerase, PDGFR platelet-derived growth factor receptor,

Src steroid receptor co-activator, TKIs tyrosine kinase inhibitors, VEGF vascular endothelial growth factor, VEGFR VEGF receptor, y years

Pediatric Bone Sarcoma Biology and Therapy 261



models, pointing at possible redundancy in activation of

downstream effectors like focal adhesion kinase (FAK)

[85–88]. A dual inhibitor of BCR-Abl and Src, dasatinib

has been used in one clinical trial where the maximum

tolerated dose was determined but no objective responses

were observed [89]. Clinical trials are in progress with

either dasatinib alone or in combination therapy or with

saracatinib, an Src-specific inhibitor.

3.4 Notch

Signaling via the Notch pathway is essential for the devel-

opment of most organ systems, including for both neuroge-

nesis [90] and osteoblast maturation [91]. Activation of the

Notch pathway is required for vasculogenesis during tumor

progression in ES [92]. Notch has been linked to increased

invasion and metastasis in OS, in part through promoting a

tumor-initiating cell phenotype [93–95]. Membrane-bound

Notch activation upon ligand binding occurs through a two-

step proteolytic process carried by ADAMs family proteases

followed by gamma-secretase cleavage, releasing a soluble

intracellular Notch that can regulate transcription [96]. A

phase I clinical trial in advanced solid malignancies using a

gamma-secretase inhibitor (GSI) showed anti-tumor activity

and a low toxicity profile [97]. A phase I/II clinical trial using

a GSI in combination with an inhibitor of the hedgehog

pathway for the treatment of metastatic sarcomas is currently

recruiting patients. In considering the effects of GSI, one

should recall that GSIs inhibit the processing of several re-

ceptors that effect metastasis, including Her-4, CD44,

E-cadherin, and N-cadherin [98].

3.5 Hedgehog

The hedgehog pathway is important for embryonic devel-

opment and is dysregulated in various cancers. High ex-

pression of the hedgehog ligands and targets are observed in

both OS and ES models, where this pathway is activated in

both a ligand-dependent and a ligand-independent manner

[99–101]. Interestingly, EWS-FLI1 signaling is mediated

through GLI, an effector and transcription regulator in the

hedgehog pathway [102]. Inhibition of the hedgehog path-

way in vitro and in ES and OS xenografts has been suc-

cessful and warrants further research [100, 103]. In a recent

clinical trial in adult patients with advanced solid tumors, an

oral inhibitor of the hedgehog pathway was fairly well

tolerated [104]. While the skeletal abnormalities seen in

young mice briefly treated with hedgehog pathway in-

hibitors might raise concerns about pediatric applications

for these agents [105], most OS and ES patients are close to

their expected adult size at diagnosis, suggesting that these

concerns should not preclude study.

3.6 Histone Deacetylase Inhibitors

Histone deacetylase inhibitors (HDACi) have been studied

in cancer due to their effects in promoting transcription of

tumor suppressor genes silenced during malignant trans-

formation. Phase I clinical trials in pediatric patients with

relapsed or refractory solid tumors using pracinostat or

vorinostat monotherapy showed no tumor responses [106,

107]. Patient trials are underway using combination ther-

apy with HDACi and adjuvant chemotherapies and may

have greater promise (Table 1). Additionally, treatment

with HDACi in preclinical models caused upregulation of

natural killer (NK) cell recognition markers and of the

apoptosis-promoting Fas receptor, resulting in increased

sensitivity to NK-mediated killing [108, 109]. These results

warrant further investigation in clinical trials of HDACi

plus NK cells.

3.7 Ras

Ras proteins are small GTPases that regulate cell prolif-

eration, apoptosis, and survival by activating multiple

downstream signaling pathways, including MAPK. Though

constitutively active, Ras mutations are uncommon in pe-

diatric sarcomas; targeting Ras reduced tumor growth,

possibly due to the many pathways requiring Ras relay

signals [110–113]. Reolysin is an oncolytic virus that se-

lectively targets Ras transformed cells, and xenografts

showed tumor growth inhibition by reolysin used alone or

with chemotherapy agents [114]. A phase II study in sar-

coma patients has been completed. While partial results

were presented at the American Society of Clinical On-

cology (ASCO) annual meeting in 2009 [115], there have

been no peer-reviewed publications for sarcoma since that

abstract was presented.

3.8 MDM2

MDM2 is a ubiquitin ligase that regulates p53 activity by

targeting this tumor suppressor for proteasomal degrada-

tion. Nutlins are small molecules that inhibit MDM2 and

p53 binding, leading to increased availability of p53.

Treatment using nutlins have been effective in OS and ES

models, inducing apoptosis and cell cycle arrest [116–118].

RG7112, a nutlin family member, induced tumor regres-

sion in ES models, but no objective response was observed

with OS models [119]. Recently, a phase I clinical trial

using RG7112 in patients with relapsed or refractory tu-

mors was completed, though results have yet to be

reported.
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4 Targeting Bone Metabolism

Tumor growth and metastasis often require constant in-

teractions between tumor cells and their surrounding mi-

croenvironments [54, 120–123]. Therapeutic agents that

target the bone environment and modulate bone metabo-

lism have demonstrated some efficacy in pediatric bone

sarcomas.

4.1 Bisphosphonates

Bisphosphonates, which inhibit the mevalonate pathway at

high concentrations and impede osteoclast-mediated bone

resorption through induction of osteoclast apoptosis, have

been shown to suppress tumor growth and pulmonary

metastasis of ES in preclinical models [124–128]. To date,

several types of bisphosphonates, including zoledronate,

pamidronate, and alendronate, displayed significant anti-

tumor activity in vitro and in vivo [129–132]. A phase II

study evaluating the combination of chemotherapy and

pamidronate for patients with OS demonstrated little im-

pact on patient survival [133]. However, pamidronate has

been shown to improve the durability of limb reconstruc-

tion [133]. In a recently completed phase I study, the ad-

dition of zoledronate to conventional multi-agent

chemotherapy was safe but failed to demonstrate statisti-

cally significant differences in event-free or overall sur-

vival in patients with newly diagnosed metastatic OS [134].

However, our clinical team has treated many patients with

bone metastasis of OS with zoledronate, and we have found

that patients usually do not develop new bone metastases

after receiving four to six doses of monthly zoledronate.

We also have the impression that the need for opiates

during palliation is reduced after patients receive bis-

phosphonates, suggesting that the clinical trials performed

to date may not have looked at the correct endpoints.

Currently, three phase II/III trials that evaluate the efficacy

of zoledronate as a single agent or as an adjuvant to che-

motherapy in localized and metastatic OS and ES are on-

going (Table 1).

4.2 Conjugated Radioisotopes

Conjugated radioisotopes such as Samarium (153Sm) lex-

idronam (Samarium-153 EDTMP) and radium-223

dichloride (Xofigo) have high specificity for bone uptake,

which allows for the local delivery of high-dose radiation

in bone tumors [135, 136]. Standard dose of Samarium-153

EDTMP was originally approved by the US FDA for pain

management in patients with bone metastases, and radium-

223 was recently approved for the treatment of castration-

resistant prostate cancer patients with symptomatic bone

metastases. Although radiation therapy is not widely used

in treatment for OS, high-dose conjugated radioisotopes are

under clinical investigation for their anti-tumor activities

against OS. In a follow-up study of 14 patients with os-

teoblastic OS, Samarium-153 EDTMP in combination with

the radiosensitizer gemcitabine induced short-term anti-

tumor response in eight patients [137]. Thus far, conju-

gated radioisotopes have no clear role in Ewing sarcoma.

The ongoing clinical trials for this class of agents include a

phase I/II study for radium-223 dichloride and a phase II

study for Samarium-153 EDTMP in combination with

external radiotherapy in high-risk OS (Table 1).

4.3 Denosumab

Among the signaling molecules that have been associated

with worse outcome in OS is the receptor activator of

nuclear factor-kb (RANK), along with its ligand (RANKL)

and decoy osteoprotegerin (OPG), which normally are

essential for regulation of the homeostasis between bone

lysis and formation during bone remodeling [138, 139].

High expression of RANKL is associated with reduced

survival in OS [140], and some OS cell lines have func-

tional RANK expression [141], allowing for possible au-

tocrine stimulation of this pathway. Inhibition of RANK

with shRNA reduced motility and anoikis resistance in OS

cell lines, while overexpression of RANK using a retroviral

vector increased OS cell motility without affecting prolif-

eration [142].

Denosumab is an mAb specific for human RANKL and

was developed initially to treat osteoporosis [143] and was

later found effective in treating painful bone metastasis

[144–147]. It was subsequently found to be an effective

treatment for giant cell tumor of bone [148], a benign but

destructive neoplasm in which transformed mononuclear

cells secrete RANKL, causing osteoclast hyperactivity. We

have found that denosumab can be effective in treating

painful bone metastasis in OS, which is in line with the

FDA-approved indication for the drug. Whether it will

have any direct effect against OS in patients remains to be

seen.

5 Environmental and Immune Interactions
of Bone Sarcoma

While initial studies of cancer biology took a purely cell-

autonomous view of the cancer problem and sought to

understand and then target the specific biology of the ma-

lignant cell, it is now abundantly clear that all cancers,

including bone sarcomas, exist in a complex environment

of non-malignant supporting cells like fibroblasts and en-

dothelial cells, non-cellular stromal elements and matrix
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proteins, and cellular and protein components of the innate

and adaptive immune system [149]. While malignant cells

may become resistant to conventional chemotherapy, they

still must evade the immune system and continue to recruit

a blood supply and engage their environment for tumors to

grow and spread [150]. Recent developments seek to better

understand these interactions and exploit them for therapy.

5.1 Immunotherapy

5.1.1 Mifamurtide

Muramyl tripeptide phosphatidyl ethanolamine (L-MTP-

PE or mifamurtide) is a synthetic peptide derived from the

cell wall of the Bacille Calmette-Guerin mycobacterium

that has potent immunostimulatory properties [151]. Li-

posomal encapsulation of MTP-PE with phospholipids that

include phosphatidyl serine specifically triggers uptake into

macrophages and monocytes [152], which then become

activated, increasing phagocytosis and secreting interleukin

(IL)-6, tumor necrosis factor (TNF)-a and other cytokines

[19, 151, 153]. A phase III clinical trial concluded that

addition of mifamurtide to standard chemotherapy leads to

an increase in the 6-year overall survival in primary OS

patients from 70 to 78 % [19]. Mifamurtide has been ap-

proved as an adjuvant for the treatment of primary OS in

Europe, Israel, Japan, and Mexico, among other places, but

has not been approved by the US FDA [151, 153, 154].

5.1.2 Sargramostim

Sargramostim, the granulocyte macrophage colony-s-

timulating factor (GM-CSF) is an immune modulator that

promotes the activation and recruitment of neutrophils,

monocytes, and other immune cells [155]. Promising

in vitro and in vivo preclinical studies with sargramostim

prompted a phase I clinical trial of inhaled sargramostim,

which demonstrated low toxicity [156–158]. However, a

phase II clinical trial did not show any survival benefit

compared with standard treatment regimes in OS and ES

patients [159, 160].

5.1.3 Other Immunomodulators

Conflicting results have been observed using interferon

(IFN)-a for OS treatment. Despite some promising early

studies [161], the good responder arm of the EURAMOS 1

trial proved there is no benefit of adjuvant IFN in OS pa-

tients [162]. Systemic treatment use of IL-2 has limited

effects in survival due to life-threatening side effects [163].

Aerosol IL-2 has been demonstrated to target metastatic

lung disease by recruiting NK cells to the lungs [164, 165].

A clinical trial using aerosol IL-2 in metastatic lung lesions

is underway (Table 1).

5.1.4 Other Immunotherapies

Other immunotherapy approaches currently being investi-

gated in clinical trials include tumor vaccines using tumor

antigens or autologous antigen-presenting cells loaded with

tumor antigens, T-cell and NK-cell adoptive therapy, and

targeted therapy using antibodies for tumor antigens (GD2)

or to enhance T-cell activation (ipilimumab) (Table 1).

Immunotherapy approaches provide exciting new avenues

for pediatric sarcoma treatment.

5.2 Environmental Interactions:

Matrix and Vasculature

Part of the pathogenesis of bone sarcomas includes the

ability to invade through extracellular matrix tissues and to

recruit a new blood supply as tumors grow [166]. As a part

of hematogenous metastasis, tumor cells must also gain

access to the endovascular space [91]. These activities

typically proceed through hijacking normal biological

processes that are then exploited by tumor cells to facilitate

their growth and spread [167].

5.2.1 Matric Metalloproteases

Matrix metalloproteases (MMPs) are important mediators

of invasion and metastatic disease. Expression of MMPs

allows tumor cells to effectively degrade extracellular

matrix, which in turn allows tumor growth and supple-

ments cancer cells with growth factors [168]. Enhanced

expression of MMPs is found in tumors, including pediatric

sarcomas [169]. Inhibition of MMP2 and MMP9 affects OS

and ES tumor growth and metastasis formation [7, 111,

169, 170]. MMPs inhibition has also been observed in

animal models using bisphosphonates [128, 168].

5.2.2 Vascular Endothelial Growth Factor Receptor

VEGF ligands and receptors, as crucial regulators of tu-

mor-associated angiogenesis and vasculogenesis, have

been observed to be overexpressed in OS and ES [27, 171],

relative to corresponding normal tissues. High levels of

VEGF were predictive of pulmonary metastasis and poor

prognosis for both diseases in several studies [172–174].

Preclinical efficacy of VEGF-based therapeutics, including

anti-VEGF antibodies and small-molecule inhibitors

against VEGFR, has been confirmed in pediatric bone

sarcomas [27, 175]. The anti-VEGF mAb bevacizumab

demonstrated some clinical benefit as monotherapy or in

combination with doxorubicin in patients with recurrent ES
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[176, 177]. Three phase II trials of bevacizumab in com-

bination with chemotherapy for patients with OS and ES

are currently underway. Further, several multi-kinase in-

hibitors that target VEGFR, including sunitinib, sorafenib,

pazopanib, dasatinib, and cediranib, have demonstrated

growth inhibition in OS models in preclinical studies [21].

Clinical trials of several of these compounds in bone sar-

comas are in progress (Table 1).

6 Discussion

Treatment of pediatric bone sarcomas is complex, requiring

multimodal therapy and a comprehensive approach, best

delivered in a medical center experienced in caring for

children with OS and ES. The field has certainly advanced

since chemotherapy became widely accepted in the treat-

ment of these diseases in the 1970s and 1980s, but our

inability to improve outcomes in the past 20 or more years

underscores the importance of finding new approaches.

It is now clear that cancer therapy, rather than focusing

on delivering toxins at maximally tolerated doses, needs to

exploit the expanding understanding of tumor biology, both

for the signaling within the cells themselves and the in-

teractions between cancer cells and their environment. At

the same time, the enthusiasm for novel therapies needs to

be tempered by the reality of assessing primarily those

agents that are likely to be brought forward for regulatory

approval. In this way, as a field, we can avoid the kinds of

disappointment that arose from the IGF-1R antibody

therapies, which ‘died on the vine’ not because of a lack of

efficacy in bone sarcoma, but because these agents did not

have an identified utility for a common adult malignancy

and were, therefore, financially non-viable for further de-

velopment. Even more important, good clinical trial design

needs to be supported by excellent preclinical evidence

[178] so we can avoid rushing into large, expensive clinical

trials in children that result in no improvement in outcome

and expose children to unnecessary toxicity [58]. However,

what should not impede progress is a misguided effort to

‘protect children from the risk’ of testing targeted therapies

when there is sound basis for the evaluation. For the most

part, children tolerate all therapies better than do adults,

presumably because they have less ‘wear and tear’ and are

generally more resilient than adults. Even the known child-

specific concerns, such as the reduced growth that is known

to result from samarium therapy [179] or that may be a

concern for hedgehog inhibitors [105], needs to be bal-

anced against the potential benefit to a patient with a poor

prognosis. As one parent of a 10-year-old girl with ad-

vanced OS seen in our institution articulated, ‘‘I would

rather have her alive and short than not have her at all’’.

The investigations most urgently needed now are what

treatments to apply during a minimal disease state for pa-

tients at high risk of relapse before overt treatment-resistant

metastases are identified. An ideal therapy would be

relatively non-toxic, allowing its use for a prolonged period

after cytotoxic therapy is complete, and would specifically

attack the signaling pathways that allow for prolonged

survival of treatment-resistant dormant tumor cells. Large

genomic studies and personalized therapy may help us to

identify those patients at greatest risk of recurrence, but

these approaches may not give insight into the biology of

dormancy, nor of putative cancer stem cells. The focus of

the field now needs to turn to understanding how OS and

ES persist in these patients, and which approaches would

best eradicate the remaining tumor cells at that stage.
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