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A multimodal neural signature of  
face processing in autism within the  
fusiform gyrus

Atypical face processing is commonly reported in autism. Its neural 
correlates have been explored extensively across single neuroimaging 
modalities within key regions of the face processing network, such as the 
fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation 
in brain anatomy and function jointly impacts face processing and social 
functioning. Here we leveraged a large multimodal sample to study the 
cross-modal signature of face processing within the FFG across four  
imaging modalities (structural magnetic resonance imaging (MRI),  
resting-state functional magnetic resonance imaging, task-functional 
magnetic resonance imaging and electroencephalography) in 204 autistic 
and nonautistic individuals aged 7–30 years (case–control design).  
We combined two methodological innovations—normative modeling and 
linked independent component analysis—to integrate individual-level 
deviations across modalities and assessed how multimodal components 
differentiated groups and informed social functioning in autism. Groups 
differed significantly in a multimodal component driven by bilateral resting-
state functional MRI, bilateral structure, right task-functional MRI and left 
electroencephalography loadings in face-selective and retinotopic FFG. 
Multimodal components outperformed unimodal ones in differentiating 
groups. In autistic individuals, multimodal components were associated 
with cognitive and clinical features linked to social, but not nonsocial, 
functioning. These findings underscore the importance of elucidating 
multimodal neural associations of social functioning in autism, offering 
potential for the identification of mechanistic and prognostic biomarkers.

Autism is a lifelong neurodevelopmental condition with a prevalence 
of 1 in 36 children1. Social–communicative differences are among 
the most prominent features of autistic individuals2. In particular, 
difficulties with processing social information and faces, such as 
perceiving and interpreting facial expressions of emotions and other 
mental states, are thought to have a profound impact on their social 
functioning and daily living skills3,4. While nonautistic individuals 
(NAI) appear to develop highly skilled strategies to discriminate facial 
cues at a very early age, autistic individuals have been reported to 

acquire less expertise with facial expression recognition5. This has, 
for example, been attributed to diminished social attention6 and 
structural and functional differences in brain regions implicated in 
face processing3,5,7. While individual neuroimaging modalities have 
separately been used to characterize the neural correlates of face 
processing, multimodal studies of key regions associated with face 
processing remain scarce. Illuminating the rich multimodal informa-
tion shared across different imaging modalities can unravel complex 
interactions and variations that may only be partially addressed by 
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role of the FFG in the neurobiology of autism. Still, the precise nature 
and a fine-grained topographical characterization of the multimodal 
neurobiological interactions within the FFG and their relationship with 
the broader clinical phenotype related to social functioning in autism 
remain to be established.

In the present study, our aim was to provide a more comprehensive 
understanding of the FFG in face processing in autism by elucidating 
the simultaneous involvement and multivariate interplay of different 
neural sources. Such analysis requires both large and deeply pheno-
typed samples, and given the scarce availability, especially in clinical 
populations, this has previously limited its application. Hence, in this 
study, we leveraged the unique, large-scale and deeply phenotyped 
EU–AIMS Longitudinal European Autism Project47,48 (LEAP), which 
is the largest European multicenter initiative aimed at identifying 
biomarkers in autism. This dataset provides a rich set of different 
neuroimaging modalities and cognitive, clinical measures, as well as 
tasks related to face processing and social and nonsocial functioning. 
Differences in facial expression recognition in autistic individuals have 
been established in this dataset5. To further tap into their multimodal 
neural correlates, we combined two methodological innovations: (1) 
First, we employed normative modeling49 on each imaging modal-
ity separately to derive individual-level deviations from a predicted 
age-related trajectory. Prior research shows that modeling cortical 
features as deviations from a normative neurodevelopmental trajec-
tory provides a more sensitive measure to map multimodal signatures 
in psychopathology37 while also improving predictive performance50. 
(2) Next, we conducted multimodal fusion through linked independent 
component analysis (LICA)51 across structural MRI, rs-fMRI, task-fMRI 
and EEG within the right and left FFG to simultaneously decompose 
the imaging data into underlying modes that characterize multimodal 
signatures differentially in autistic and NAI. We further provided a fine-
grained characterization of implicated regions, shedding light on the 
topographic organization within the FFG in autism. We hypothesized 
that multimodal components, by leveraging joint effects across dif-
ferent biological processes, would be more sensitive to capturing 
subtle diagnostic effects cross-modally. Consequently, they would 
outperform unimodal components in discriminating autistic from 
NAI. Finally, we hypothesized that joint expression across modalities 
related to the FFG and face processing would specifically inform social 
functioning in autism.

Results
Sample
For an overview of all methods see Fig. 1. The final sample of autistic 
(N = 99) and NAI (N = 105) did not differ significantly in sex ratio, age, 
measures of intellectual functioning, handedness, measures of struc-
tural image quality, number of EEG trials or head motion associated 
with task and rs-fMRI (Table 1).

Unimodal normative models
First, unimodal normative models were estimated. Their accuracy was 
evaluated using the correlation between the true and the predicted 
voxel/time point values (Rho), the explained variance (EV), the mean 
standardized log-loss and standardized mean squared error (Supple-
mentary Fig. 1) and normative models per modality (Extended Data 
Fig. 1). Evaluation metrics were largely within recommended ranges52 
and highly similar when modeling age linearly (Supplementary Fig. 2). 
When testing for group differences in unimodal features, there were 
no significant differences in extreme Z deviations between autistic and 
NAI for any of the eight features (Supplementary Table 1).

LICA
Next, the Z deviations (features) were merged using LICA51. In 
total, 50 independent components (ICs) were derived across eight  
different brain feature maps per hemisphere (that is, modalities) 

single modalities8. Specifically, elucidating cross-modal links with 
regards to face processing in autism will be crucial for understanding 
the biological mechanisms associated with core social difficulties and 
paving the way for the development of more personalized support.

The fusiform gyrus (FFG) within the human ventral temporal 
cortex has been identified as a key neural region associated with 
higher-order processing of visual stimuli. The necessity for a thor-
ough examination of the FFG in isolation is warranted by its detailed, 
functional heterogeneity exhibiting a fine-grained topographical 
organization with distinct category-selective patches9,10 that are differ-
entially specialized for facial recognition (that is, the fusiform face area 
(FFA))11, body part discrimination12 and object features recognition13. 
With regards to face processing, the FFA in particular has increased 
activation during face perception tasks in functional magnetic reso-
nance imaging (fMRI) studies14,15 along with evidence from electroen-
cephalography (EEG) studies showing an event-related potential of 
negative polarity that peaks at around 170 ms when facial stimuli are 
presented16,17. Furthermore, face processing is a lateralized cognitive 
function with right hemisphere dominance across these modalities18,19. 
An exhaustive examination across different neural signatures of this 
fine-grained local and hemispheric heterogeneity of the FFG—beyond 
the FFA—has yet to be conducted in autistic individuals. This can offer 
valuable new insights in light of reports of atypical functional speciali-
zation in autism20,21.

Accumulating evidence suggests that there is atypical neural 
organization within the FFG in autistic individuals. Many studies show 
that the FFG is hypoactive during face processing fMRI tasks22,23 and 
functionally atypically connected24,25 in autism. EEG studies show that 
the N170 latency is delayed in autistic individuals26,27. Structurally, there 
are reports of volume increases in right FFG28, a reduction in mean FFG 
neuron density29 and reversed leftward asymmetry30 in autism. These 
atypical neural substrates are thought to be functionally relevant in 
autistic individuals. For example, they have been linked to differences 
in facial expression recognition5, face memory31, adaptive social func-
tioning27,32 and social symptom difficulties and severity24,31,33,34.

While these individual imaging modalities (that is, structural MRI, 
task-fMRI, resting-state fMRI (rs-fMRI) and EEG) converge to show 
atypical involvement of the FFG in face processing and related social 
functioning in autism, there is still little research into how these dif-
ferent neural substrates jointly inform fine-grained FFG organization 
and social–communicative functioning in autism. Extracting com-
mon information from various modalities is crucial in gaining deeper 
insights into how brain structure and function reciprocally shape each 
other and inform behavior, cognition and clinical conditions, such 
as autism. So far, structure–function coupling has predominantly 
been addressed via univariate approaches where modalities are com-
bined at the statistical or interpretation level27,35,36. However, only when 
employing multivariate multimodal approaches can we identify direct 
relationships between different neurobiological mechanisms and how 
they scale relative to each other. We can further penetrate across differ-
ent biological spatial and temporal scales of variation leveraging the 
unique, complementary aspects covered by each individual imaging 
modality. Prior multimodal efforts are promising as they show that 
combining information from brain structure and function significantly 
increases accuracy in predictive frameworks37–41. Previous research 
in autism and other clinical populations, such as attention deficit 
hyperactivity disorder, bipolar disorder and schizophrenia shows 
that multimodal approaches can both replicate and extend unimodal 
results to shared pathophysiological processes42 and even outperform 
unimodal approaches43–45. Additionally, a recent study combining dif-
ferent neuroimaging measures of rs-fMRI, diffusion-weighted imaging 
and structural morphometry specifically showed that resting-state 
(rs)-connection topographies within the FFG were differentially impli-
cated between autistic and NAI46. While such multimodal endeavors are 
still scarce in autism, this work specifically underscores the important 
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(Extended Data Fig. 2). Overall, across these, the right hemisphere 
(51.7%) and the left hemisphere (48.3%) did not contribute differen-
tially. Single modality contributions were as follows: EEG R (35.0%) > 
EEG L (33.2%) > rs-fMRI R (11.2%) > rs-fMRI L (9.6%) > task-fMRI R (3.5%) 

> task-fMRI L (3.4%) > structure L (2.1%) > structure R (2.1%). Supple-
mentary Fig. 3 shows the correlations between the 50-dimensional 
factorizations (y axis) and 40 (Supplementary Fig. 3a) and 60 (Sup-
plementary Fig. 3b) alternative dimensional factorizations. In line 
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Fig. 1 | Overview of the methodological approach. a, The features for each 
modality were extracted from the right and the left FFG. These were (1) GM 
volume based on VBM for structural MRI, (2) T-maps contrasting the faces 
condition to the shapes condition reflecting sensitivity to faces from the Hariri 
paradigm for task-fMRI, (3) seed-based connectivity analysis (SCA) between the 
FFA and all other intra-FFG voxels for rs-fMRI and (4) the principal component  
of source-reconstructed time series for EEG. b, Next, normative modeling  
was applied to each imaging modality using Bayesian linear regression.  
The depicted trajectories per modality are schematic and the actual  

modality-specific normative models are depicted in Extended Data Fig. 1. c, To 
model cross-subject individual-level variation, resulting Z-deviation maps per 
modality were statistically merged using LICA resulting in measures of modality 
contributions and subject loadings. d, Next, we tested for group differences 
in ICs and group separability using either multi- or unimodal ICs. e, Finally, we 
computed multivariate associations (that is, CCA) between subject loadings  
and clinical, cognitive measures related to either social–communicative or 
nonsocial features.
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with previous reports53, most components were recovered with high 
accuracy independently of the order of the factorization.

Group differences
Next, we compared the subject loadings of all (uni- and multimodal) 
ICs to test for differences between autistic and NAI. Among these, one 
multimodal IC (44) showed a significant group difference with autistic 
individuals having higher contributions than NAI (t = 3.5, P value of 
the false discovery rate (FDR) (PFDR) = 0.027) (Fig. 2b). This remained 
unchanged when additionally controlling for handedness (t = 3.5, 
PFDR = 0.028) or when restricting analyses to right-handed individuals 
only (t = 3.7, PFDR = 0.01). There were no significant group differences 
in the remaining ICs (Supplementary Table 2) and no IC showed a sig-
nificant association with handedness (Supplementary Table 3). The 
results further showed that there were no significant effects of site on 
group-differential IC44 (site 1: t = 0.37, P = 0.71; site 2: t = 0.1, P = 0.92; 
site 3: t = −0.78, P = 0.43), nor were there any diagnosis by site effects 
(diagnosis × site 1: t = 0.96, P = 0.34; diagnosis × site 2: t = 0.76, P = 0.45; 
diagnosis × site 3: t = 0.1, P = 0.92). The significant multimodal compo-
nent was not differentially driven by the right (52.8%) or left hemisphere 
(47.2%) and was associated with several functional modalities (rs-fMRI 
R (48.5%), rs-fMRI L (35.0%), EEG L (11.6%) and task-fMRI R (3.3%)), and 
to a smaller extent with gray matter (GM) volume (structure R (1.0%), 
structure L (0.5%)). Figure 3a depicts the spatial and temporal patterns 
for each imaging modality within IC44. When further characterizing 
these in terms of their anatomical and functional overlaps with the 
Harvard–Oxford atlas (HOA) (Fig. 3k) and the probabilistic functional 
atlas of human occipito-temporal visual cortex9 (VIS) (Fig. 3f) in the 

left hemisphere, autistic individuals showed more functional devia-
tions than expected in rs-fMRI connectivity, primarily in retinotopic 
regions of occipital FFG while, to a smaller extent, also in lower-order 
face-selective regions (Fig. 3b,g). In the right hemisphere, they showed 
linked increased deviations in rs-fMRI and structure primarily in higher-
order face (mid-lateral fusiform gyrus, mFus, also referred to as FFA-2; 
posterior lateral fusiform gyrus, pFus, also referred to as FFA-1) and 
bodies-selective regions of temporal-occipital and occipital FFG  
(Fig. 3c,h). On the other hand, regions in the left hemisphere where 
autistic individuals showed linked decreased deviations across struc-
ture and rs-fMRI compared with NAI localized to both higher-order 
face-selective (mFus, pFus) and retinotopic regions of posterior, tem-
poral-occipital and occipital FFG (Fig. 3d,i). In the right hemisphere, 
these were mostly in higher-order face-selective regions (pFus) across 
rs-fMRI and task-fMRI and in retinotopic regions across structure in 
occipital FFG (Fig. 3e,j). Furthermore, autistic individuals showed 
more left EEG source activation than expected, around 195–203 ms 
and 417–426 ms, whereas less source activation at 444–449 ms than 
expected. For further details see Supplementary Table 4.

Multimodal components
For further analyses, we focused on multimodal components only by 
excluding those that were primarily driven by one imaging modal-
ity (that is, with a multimodal index (MMI) below 0.1; Methods and  
Supplementary Fig. 4) resulting in 11 multimodal ICs (Fig. 2a). Across 
these multimodal ICs, the right hemisphere (60.0%) contributed more 
than the left hemisphere (40.0%). Single modality contributions across 
all multimodal ICs were as follows: EEG R (26.3%) > rs-fMRI R (19.7%) > 

Table 1 | Demographic, clinical and imaging-related information of the sample

Variable Individuals with autism NAI Post hoc

N 99 105

Sex 71 M 28 F 71 M 34 F χ2 = 0.23, P = 0.63

Mean S.d. Range Mean S.d. Range

Age 18.62 5.32 7.58–30.0 18.3 4.87 10.37–30.9 t = 0.44, P = 0.66

FIQ 107 14.3 63–148 106 12.3 77–142 t = 0.08, P = 0.94

VIQ 106 15.62 51–160 107 14.1 74–142 t = 0.09, P = 0.93

PIQ 107 16.52 57–145 106 14.5 70–147 t = 0.51, P = 0.61

ADI social 14.54 6.66 1.0–28.0

ADI communication 11.68 5.66 0.0–26.0

ADI RRB 3.63 2.41 0.0–12.0

ADOS CSS 5.06 2.67 1.0–10.0

ADOS SA CSS 5.79 2.7 1.0–10.0

ADOS RRB CSS 4.5 2.49 1.0–10.0

R L A R L A

Handedness 88 7 4 94 7 4

Median S.d. Range Median S.d. Range

QC structure 2.15 0.11 2.04–3.0 2.13 0.19 1.96–3.42 W = 4,926, P = 0.52

Mean FD task-fMRI 0.09 0.06 0.03–0.33 0.08 0.07 0.03–0.39 W = 5,279, P = 0.83

Mean D-VARS task-fMRI 1.23 0.14 0.9–1.74 1.24 0.16 0.83–1.61 W = 5,392, P = 0.56

Mean FD rs-fMRI 0.06 0.05 0.03–0.27 0.06 0.06 0.02–0.4 W = 4,915, P = 0.5

Mean D-VARS rs-fMRI 1.96 0.43 1.32–3.47 1.92 0.5 1.14–4.46 W = 4,894, P = 0.47

Number of EEG trials 90.6 24.8 29–148 93.1 29.7 27–149 t = 0.65, P = 0.52

Handedness was assessed with the short version of the Edinburgh Handedness Inventory. For sample characterization scores were categorized into right handed (+500 to +150), ambidextrous 
(−149 to +149) and left handed (−150 to −500). For structural QC measures, weighted overall image quality ratings ranging from 0.5 (best) to 10.5 (worst) were generated by the computational 
anatomy toolbox SPM pipeline. All variables did not significantly differ across autistic and NAI. Statistical comparisons were two sided. FIQ, full-scale IQ; VIQ, verbal IQ; PIQ, performance IQ; 
SA, social affect; CSS, calibrated severity scores; R, right handed; L, left handed; A, ambidextrous; QC, quality control; FD, framewise displacement in mm; D-VARS, root mean square of the 
temporal change of the fMRI voxel-wise signal at each time point (based on the raw images).
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EEG L (13.9%) > rs-fMRI L (12.1%) > task-fMRI L (9.8%) > task-fMRI R (9.6%) >  
structure R (4.4%) > structure L (4.2%).

Autism classification
Next, we applied a support vector machine (SVM) to compare the 
efficacy of unimodal and multimodal ICs in differentiating between 
the two diagnostic groups. The results showed that multimodal ICs 
performed significantly better at discriminating autistic from NAI 
(area under the receiver operating characteristic curve (AUC) uni-
modal of 0.48, AUC multimodal of 0.64, P < 0.001). This result was con-
firmed across a range of different multimodality thresholds (Extended 
Data Fig. 3a) and was not influenced by varying numbers of features 
between multimodal and unimodal ICs (Extended Data Fig. 3b).

Clinical and cognitive associations
To test for brain–behavior relations, we ran canonical correlation analy-
sis (CCA). This revealed a significant multivariate association between 
the multimodal ICs and social–communicative features (that is, autism 
diagnostic observation schedule (ADOS) social affect54, autism diag-
nostic interview (ADI)-social55, ADI communication, Vineland adap-
tive behavior scale56 with communication, daily living, socialization 
subscales, the Reading the Mind in the Eyes Test (RMET)57 and Hariri 
faces task58–60) (r = 0.65, PFDR = 0.008; Fig. 4b). This remained unchanged 
when additionally controlling for handedness (r = 0.65, PFDR = 0.002) 
or when restricting analyses to right-handed individuals only (r = 0.66, 
PFDR = 0.002). On the other hand, the relationship between the multi-
modal ICs and nonsocial features (that is, ADOS restrictive and repeti-
tive behavior (RRB), ADI RRB, the Repetitive Behavior Scale (RBS)61, the 
systemizing quotient (SQ)62–64 and Hariri shape-matching condition) 
was not significant (r = 0.45, PFDR = 0.64; Extended Data Fig. 4) point-
ing to specificity with social-related features of multimodal ICs. These 
associations remained stable when varying the multimodality threshold 
(Supplementary Fig. 5). For the significant associations, multimodal 
IC37 showed the largest contribution on the imaging side followed by 
IC38, IC44 and IC34 (Fig. 4a,c), whereas ADOS social affect, RMET and 
Hariri face matching scores showed the largest contribution on the 
behavioral side (Fig. 4d). The ICs contributing most are depicted in 
Fig. 4c and Supplementary Figs. 6–8. On average, the right (56.5%) and 

the left hemisphere (43.5%) did not contribute differentially to these 
four ICs, which were mostly driven by all functional modalities. Next, 
imaging patterns correlating with social communication features were 
characterized in terms of their overlap with anatomical and functional 
overlaps with the HOA and VIS atlases (Fig. 4e and Supplementary Fig. 9).  
Especially in higher-order face-selective regions (mFus and pFus) of 
posterior and temporal-occipital FFG, there were both linked increased 
deviations in bilateral rs-fMRI and task-fMRI and linked decreased devia-
tions in bilateral structure and right rs-fMRI connectivity. At the same 
time, particularly in retinotopic regions of occipital FFG, there was more 
bilateral GM volume along with less right task activation than expected. 
There were more deviations in right EEG source activation at around 
290 ms, while left EEG did not reach significance. These joint imaging 
patterns were associated with more social difficulties as assessed by 
the ADOS, ADI and Vineland, and more errors on the RMET, while also 
with greater accuracy on the Hariri faces task. For more details, see 
Supplementary Tables 5–8.

Discussion
In the present study, we aimed to characterize the multimodal neural 
signature of face processing in autism within the FFG, the core region 
of the face processing network. We identified several ICs that were 
differentially associated with the four modalities (structure, rs-fMRI, 
task-fMRI and EEG), hemispheres and functional subdivisions of the 
FFG. Autism-associated differences in FFG organization were more pro-
nounced when penetrating across multiple rather than single modali-
ties. Furthermore, a set of multimodal ICs was associated with core 
features related to social but not nonsocial functioning in autism. Taken 
together, these findings highlight the value of cross-modal analyses in 
characterizing a key structure in the multilevel neurobiology of autism 
and its implication in core cognitive and clinical features.

Group differences
Among all components, one multimodal component (that is, IC44) 
showed a significant difference in subject loadings between autistic and 
NAI. Overall, the right and left hemispheres did not show differential 
contributions within this IC and it was associated with all modalities 
fed into the analysis, with the functional modalities, especially rs-fMRI 
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and EEG, contributing most (Fig. 3). In particular, the overlap with the 
VIS atlas highlighted that face-selective and retinotopic regions of the 
FFG were most different between autistic and NAI. More specifically, 
in the right hemisphere, higher-order face-selective regions exhibited 
less task activation and FFA connectivity in autistic individuals than 
expected, primarily in occipital FFG areas (Fig. 3e,j). At the same time 
autistic individuals showed increased deviations in FFA connectivity 
primarily in temporal-occipital FFG along with increased GM volume 
deviations in higher-order face-selective FFG regions (Fig. 3c,h). This 
strong right-hemisphere involvement of regions associated with FFA 
across several modalities is in line with reports of increased FFA vol-
ume28 and decreased FFA task activation65,66 and FFA connectivity24,67 
in autism. Similarly, temporally, autistic individuals showed more 

increased left deviations around 195 ms, potentially indicative of the 
consistently reported finding of a slower N170 in autistic individuals26. 
This has specifically also been shown and extensively characterized in 
the current sample27. Together these patterns converge to point toward 
autism-associated differences in face-selective areas of the FFG, at the 
structural, functional and temporal levels. While these results align 
with earlier unimodal discoveries, it was previously uncertain whether 
disparate signals would be separate and independent from each other 
or coalesce into a joint multimodal expression. Only by employing 
multimodal approaches are we able to identify the direct links between 
different neurobiological mechanisms and comprehend how they 
scale relative to one another while also leveraging the complementary 
aspects conveyed by each individual imaging modality. In this context, 
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we provide evidence supporting the interconnected nature of distinct 
signals within a single unified framework.

In the left hemisphere, IC44-related increased deviations in EEG 
source activation at around 420 ms may indicate reductions in the 
face N400, which has been associated with familiar face recognition 
and semantic information68. While in NAI, face processing becomes 
the most highly developed visual skill, autistic individuals may find 
social stimuli less rewarding (that is, less socially motivating), result-
ing in faces potentially conveying greater novelty and thus decreased 
familiarity69. Furthermore, occipital, retinotopic areas of the left FFG 
were most implicated as shown by increased functional connectivity 
deviations between the FFA and retinotopic and lower-order face-
selective areas of the FFG in autistic individuals (Fig. 3b,g). This was 
echoed by less GM volume than expected in left retinotopic areas of 
FFG in autistic individuals (Fig. 3d,i). Retinotopic early visual areas 
act as the first stage in a hierarchical network of face processing in 
which lower-level feature-based components are processed before 
more complex features in higher-order face-selective regions70. Neural 
deviations in early visual areas, as seen here, are in line with reports 

of autistic individuals showing differences in sensory processing at 
early perceptual stages and have been described at the cognitive level 
as weak central coherence71. Accordingly, studies show that autistic 
individuals exhibit a different strategy in processing facial and visual 
stimuli with a stronger focus on featural, local aspects at the expense 
of holistic, global information72. Similarly, fMRI studies converge to 
show greater feature-based perceptual strategies in autistic individuals 
who primarily tend to recruit object-related regions73,74 when viewing 
facial stimuli. Taken together, this suggests that the differences we 
discovered in the left hemisphere point primarily to low-level, bottom-
up processing differences, whereas in the right hemisphere they may 
indicate higher-level atypicalities in the FFA, with a differential involve-
ment across the different structural and functional modalities.

Clinical and cognitive associations
Multimodal ICs showed a significant association with a set of clinical 
and cognitive features associated with social functioning in autism 
(Fig. 4). Group-differential IC44 was also among the ICs contributing 
significantly to these associations. Components loading significantly 
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onto the CCA were mostly driven by functional modalities. Right EEG 
source activation deviations were around 280–300 ms, potentially 
indicative of the N250r generated in the FFG75 and associated with the 
repetition of familiar facial stimuli76. The amplitude of the N250r has 
been shown to decrease with increasing working memory load77. This 
suggests that the increased deviations seen here in autistic individuals 
may reflect differences in degrees of working memory resources allo-
cated to the processing of facial stimuli, which appear more novel and 
require more attentional effort in autistic individuals. This increased 
cognitive demand may indicate that the reduced reward response 
to social stimuli in autism leads to less automatic and more effortful 
processing of faces69. With regards to the other modalities, increased 
deviations particularly in higher-order face-selective regions across 
brain function (task-fMRI and rs-fMRI) while also in lower-order early 
visual regions across brain structure were associated with more autis-
tic features, such as more social difficulties as assessed by ADOS and 
lower social sensitivity as assessed by the RMET. Previous unimodal 
studies showed that the delayed latency of the N170 predicts change in 
social adaptive behavior in autistic individuals27 (that is, EEG), autistic 
individuals with low performance on facial emotion recognition have 
reduced bilateral FFG activation (that is, task-fMRI)5 and that atypical 
FFA connectivity is associated with increased social symptom severity 
in autism (that is, rs-fMRI)24. Here, we extend the unimodal results to 
a multivariate association across a range of social–communicative 
features that are related to cross-modal signatures within the FFG. Previ-
ously, it was unclear whether these separate neural signals contribute 
independently or jointly to social–communicative features in autism. 
Our findings provide evidence for an interrelated biological basis of 
core social functioning in autism and demonstrate that appropriately 
modeling shared variance across different modalities increases sensi-
tivity to clinical–cognitive features associated with autism78. Remark-
ably, at the same time, there was no association with a set of nonsocial 
features, such as repetitive behaviors, pointing to specificity of these 
multimodal ICs with regards to social functioning.

Summary and implications
Taken together, the multimodal neural signature within the FFG in 
autism presents differentially across hemispheres, modalities and 
topography. Specifically, the picture emerges that (1) the functional 
modalities contribute more than the structural modalities and (2) reti-
notopic, occipital regions are more implicated in the left hemisphere 
and higher-order regions are more implicated in the right hemisphere 
within the FFG when it comes to group differences, but they do not con-
tribute differentially with regards to social functioning. (1) Concurrent 
neural activity and functional co-expressions (task-fMRI, rs-fMRI and 
EEG) were strongly tied to social features observed in autistic individu-
als at present (such as current performance and ADOS assessment). 
On the other hand, more stable structural aspects of the brain estab-
lished over time, as well as historical symptoms reported through the 
ADI and Vineland—which provide insights into past behaviors—had 
a comparatively smaller impact on the observed association. These 
results highlight the dynamic nature of the relationship between neural 
activity and social functioning in autism, underscoring the importance 
of considering the temporal dimension when investigating the neural 
correlates of social functioning in autism. Future putative neurosci-
entifically informed interventions targeting social features may thus 
benefit from a focus on concurrent neural functioning. (2) Topographi-
cally, the FFG is known to exhibit an anterior to posterior gradient with 
more posterior regions related to lower-order, early visual processing, 
and more anterior regions related to higher-order processing79. Here, 
we see the involvement of both retinotopic and higher-order cognitive, 
particularly face-sensitive, patches. This points to differences in both 
bottom-up perceptual processes and top-down cognitive information 
processing in face processing in autism, which can amount to a dif-
ference in the face processing strategy employed (for example, more 

feature based), and which has extensively been described in autism 
as weak central coherence71. These different processing levels are not 
differentially implicated across hemispheres in the processing of social 
information in autism, suggesting that the distinctive face processing 
strategy in autism transcends right hemisphere dominance of face pro-
cessing. On the other hand, hemispheric differences are more apparent 
in the group-differential IC. Teasing apart hemispheric contributions 
is particularly important in the light of reports of atypical patterns of 
brain asymmetry in autistic individuals21,34,80. More extreme deviations 
from a normative model have, for example, been reported in right 
temporal-occipital fusiform cortex asymmetry in autistic females21, 
along with more left-lateralized volume in posterior temporal FFG in 
autistic individuals30,34. Subsequent research should further explore 
these more nuanced insights revealed by cross-modal analyses pointing 
to left-lateralized low-level and right-lateralized high-level differences 
between autistic and NAI.

Strengths and limitations
Integrating data from different modalities has the advantage of being 
biologically more informative and comprehensive in characterizing 
a complex, heterogeneous condition, such as autism. Accordingly, 
when comparing unimodal deviations in each imaging modality, as 
well as comparing predominantly unimodal ICs between autistic and 
NAI, there were no significant group differences, despite employing 
more sensitive individual-level measures derived from normative 
modeling. Additionally, in line with previous studies43–45, multimodal 
features significantly outperformed unimodal features in differenti-
ating autistic from NAI. As shown, this difference in predictive per-
formance between unimodal and multimodal features is not solely 
dependent on the quantity of information provided by each modality, 
but rather on the relevance and complementary nature of the features 
from different modalities. This suggests that the improvement in clas-
sification depends on the specific characteristics and interplay of the 
features involved. Together, these results confirm our hypothesis and 
align with previous reports78,81 that appropriately modeling cross-
modal variance increases sensitivity to detecting subtle effects that 
may otherwise be missed. It is important to note, however, that the 
inclusion of multimodal features does not automatically guarantee 
superior performance. In certain scenarios, one single modality may 
suffice, especially when it captures a pronounced biological effect, 
and adding other modalities could introduce noise rather than biologi-
cal information. Thus, the superiority of multimodal over unimodal 
approaches depends on the presence of biologically meaningful, 
shared information across the modalities. This is particularly relevant 
for complex cognitive functions, such as face processing, where mul-
tiple cellular processes and biophysical changes that manifest across 
various modalities are involved. These findings further suggest that 
the discerning signals in this specific brain region are reliably captured 
through components shared across modalities, emphasizing the mul-
tidimensional nature of social functioning associated with autism. 
Thus, integrating different structural and functional brain measures 
is among the most promising and powerful methods to achieve sub-
stantial advances in our understanding of system-level atypicalities 
in autism and provides the basis for elucidating mechanisms through 
which interventions can most efficiently improve clinically relevant 
functioning78. Furthermore, we combine different innovative meth-
ods: LICA is particularly powerful when modeling modalities that are 
different in their numbers of features, spatial correlations, intensity 
distributions and units. This is because LICA optimally weighs the con-
tributions of each modality by correcting for the number of effective 
degrees of freedom and the use of automatic relevance determination 
priors on components8,51,78. Moreover, by combining normative mod-
eling with LICA, we employ a previously validated approach that has 
been shown to increase sensitivity in detecting cross-modal effects 
in clinical populations37.
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At the same time, it needs to be pointed out that face processing 
involves an extended neural network across the whole brain, including 
other structures such as the amygdala, superior temporal sulcus and 
occipital and frontal cortex37,74,82,83. It may thus seem too simplistic to 
reduce face processing to a single brain region. However, the FFG is 
claimed to be the core node of a distributed face processing network, as 
substantiated by FFG lesion studies84,85, and its fine-grained functional 
heterogeneity warrants careful examination in isolation. Additionally, 
implementing cross-modal analyses presents additional challenges, 
such as obtaining sufficiently large sample sizes with all participants 
having available data across all imaging modalities. Here, from a sam-
ple of over 600 individuals in the EU–AIMS LEAP dataset, we were able 
to conduct an analysis in just over 200 individuals who had available 
imaging data across the four different modalities. Whole-brain analyses 
based on multivariate techniques will ultimately require larger sample 
sizes. In the same context, although our prior work suggests that face 
processing is related to sex-differential factors in autism86, in the cur-
rent study we did not run sex-stratified analyses owing to the small 
number of female participants. Future studies with larger sample sizes 
of both sexes should investigate this further. Furthermore, previous 
studies have linked handedness with face processing, particularly 
showing an association between atypical lateralization and left hand-
edness87,88. Owing to the small number of left-handed or ambidextrous 
individuals in our sample, it is not surprising that we did not find an 
association with handedness. Still, future research should explore 
this question in the context of autism. Moreover, there is variability 
across studies in the task paradigms and comparison stimuli they 
employ for localizing face processing-related activation. Comparison 
stimuli vary in the degree to which they resemble living objects or 
faces (for example, geometrical shapes, houses, scenes, scrambled 
stimuli and greebles) or in their state (dynamic versus static stimuli). 
Differences in these stimuli have been shown to produce variability 
in the extent, strength and patterns of the activation in the FFG89,90. 
While the localization and peak location of the FFA are relatively unaf-
fected by the specific task and comparison stimuli employed89, it is 
important to acknowledge that the choice of comparison stimuli is a 
limitation, which may affect the face specificity of task-based findings. 
For example, comparison stimuli with face-like features may increase 
specificity toward face processing. Thus, while future studies should 
investigate which paradigms and comparison stimuli are most sensi-
tive to elicit autism-related differences in face processing-related FFA 
activation, we are confident that the functional responses within the 
FFG observed in our study can be largely attributed to the processing 
of face-like features. Finally, while both unimodal and more easily 
implemented behavioral tools, such as eye-tracking, continue to play 
an important role in the diagnostic process and biological charac-
terization of autism91,92, integrating and supplementing these with 
multimodal approaches can enhance diagnostic accuracy and offer 
deeper insights into the multifaceted, biological underpinnings of 
the condition.

Conclusions
Integrating information from multiple imaging modalities allows 
us to gain a more holistic and robust understanding of the complex 
neural processes underlying core clinical and cognitive features 
associated with autism. The present results suggest that the FFG is 
a central region differentially implicated across different neural sig-
nals and category-selective regions in autistic and NAI and that this 
cross-modally informs the mechanisms associated with core social 
functioning in autism. Eventually, elucidating more precise, integrated 
and individual-level neural associations of core cognitive and clinical 
features will pave the way for further work identifying stratification, 
mechanistic and prognostic biomarkers and the development of more 
personalized support, thereby eventually improving the quality of 
lives of autistic individuals.

Methods
Sample characterization
Participants were part of the EU–AIMS/AIMS-2-TRIALS LEAP cohort47,48. 
They underwent comprehensive clinical, cognitive and MRI assessment 
at one of six collaborating sites. All autistic participants had an existing 
clinical diagnosis of autism that was confirmed using the combined 
information of gold-standard diagnostic instruments, the ADI revised55 
and the ADOS93,94. The study was approved by the respective research 
ethics committees at each site (via the Integrated Research Applica-
tion System; Supplementary Table 9). Informed written consent was 
obtained from all participants or, for minors or those unable to give 
informed consent, from a parent or legal guardian. Participants did 
receive compensation for study visits. Exclusion criteria included the 
presence of any MRI contraindications (for example, metal implants, 
braces or claustrophobia) or failure to give informed written consent 
to MRI scanning, as well as substantial hearing or visual impairments 
not corrected by glasses or hearing aids. Individuals with an intelligence 
quotient (IQ) below 50 were excluded. In the autistic group, psychiatric 
conditions (except for psychosis or bipolar disorder) were allowed, 
while in the NAI group, parent or self-report of a psychiatric disorder 
was an exclusion criterion. A history of alcohol and/or substance abuse 
or dependence in the past year was an exclusion criterion for both 
groups. Individuals were included if they were on stable medication  
(at least 8 weeks) at entrance point and over the course of the baseline 
visit. For further details on the sample and exclusion and inclusion 
criteria, see Supplementary Methods and our earlier papers47,48. For 
inclusion and exclusion criteria per modality, see Supplementary 
Methods and Extended Data Fig. 5. The final sample has both complete 
imaging data across four different imaging modalities and phenotypic 
information available consisting of 99 autistic (71 males, 28 females) 
and 105 NAI (71 males, 34 females) between 7 and 30 years (Table 1). For 
a distribution of FIQ and handedness, see Supplementary Figs. 10 and 
11, for information on the ethnicity of participants, see Supplementary 
Table 10, and on medication use, see Supplementary Table 11.

Clinical and cognitive measures
We split available autism-associated measures into two sets of fea-
ture sets on the basis of the construct they measure (1) social–com-
municative features comprising measures of difficulties with social 
communication and daily living skills (that is, ADOS social affect, ADI 
communication, ADI social, Vineland adaptive behavior scale56 with 
communication, daily living and socialization subscales), face match-
ing performance (that is, Hariri faces task58–60) and social sensitivity to 
complex emotions (that is, RMET57) and (2) nonsocial features compris-
ing RRBs (that is, ADOS RRB and ADI RRB, the RBS61), systemizing (that 
is, the SQ62–64) and shape-matching performance (that is, Hariri shapes 
task, as the control condition to the Hariri faces task) (Supplementary 
Methods and Supplementary Table 12). To tackle missing clinical data 
and to further avoid reducing the sample size, we used imputed clinical 
data (derived from Extra Trees regression)95, as in previous work with 
this dataset41,96.

ROI for FFG
All analyses were restricted to the right and left FFG on the basis of 
the HOA (Oxford Center for Functional MRI of the Brain) adjusted to 
have 100% coverage across all individuals for each imaging modality 
(Supplementary Methods).

Imaging modalities
For MRI and EEG data acquisition parameters and detailed preprocess-
ing steps per modality, see Supplementary Methods and Supplemen-
tary Tables 13–14. In summary, the features for subsequent normative 
modeling were as follows (1) structure: voxel-based morphometry 
(VBM)-derived, voxel-wise GM volumes, (2) rs-fMRI: seed-based correla-
tion between the FFA and the remaining FFG, (3) task-fMRI: T-contrast 
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maps reflecting sensitivity to faces and (4) EEG: the principal compo-
nent of source-reconstructed activation obtained across different 
cortical FFG parcels.

Normative modeling
Normative modeling is an emerging statistical technique that allows 
parsing heterogeneity by charting variation in brain–behavior map-
pings relative to a normative range and provides statistical inference 
at the level of the individual97. The term ‘normative’ should not be seen 
as incompatible with the neurodiversity framework as it simply refers 
to statistical norms, such as growth charts, that vary by demographics, 
such as age and sex. Here, we trained normative models using Bayesian 
linear regression98 for each brain imaging modality within the right 
and left FFG region of interest (ROI) independently using age, sex and 
scanning site as covariates. A B-spline basis expansion of the covariate 
vector was used to model nonlinear effects of age. Normative models 
were derived in an unbiased manner across the entire sample under 
tenfold cross-validation37,49,99. To estimate voxel-wise/time point-wise 
deviations for each modality in each individual, we derived norma-
tive probability maps that quantify the deviation from the norma-
tive model summarized in Z-scores. These subject-specific Z-score 
images provide a statistical estimate of how much each individual’s 
recorded value differs from the predicted value at each voxel/time 
point. The accuracy of the normative model was evaluated using the 
correlation between the recorded and the predicted voxel values (Rho), 
mean standardized log loss, standardized mean squared error and 
the EV (Supplementary Fig. 1) as well as based on the forward models 
(Extended Data Fig. 1). Furthermore, we compared model performance 
when modeling age linearly (without a B-spline basis expansion; Sup-
plementary Fig. 2). To assess whether autistic and NAI differed in their 
extreme deviations based on unimodal features, thresholded Z-scores 
(Z > |2.6| (refs. 21,37,100), corresponding to the 99.5th percentile) 
were compared between the two groups using a two-sample t-test 
(Supplementary Methods). Code is available at https://github.com/
amarquand/PCNtoolkit.

LICA
To gain more comprehensive insights into cross-modal signatures of 
face processing, we merged the different individual-level deviations 
from all imaging modalities (GM volume, FFA connectivity, T-maps con-
trasting the faces to the shapes condition and the principal components 
of the source-reconstructed time series) using LICA51 (Supplementary 
Methods). This is a Bayesian extension of the single modality ICA model, 
which provides an automatic and simultaneous decomposition of the 
brain features into ICs that characterize the intersubject brain vari-
ability. These multiple decompositions share a mixing matrix (that is, 
subject course) across individual feature factorizations that reflect 
the subject contributions to each IC. Here, LICA was used to merge the 
unthresholded Z-deviation maps derived from normative modeling 
across the four different imaging modalities within the right and left 
FFG ROIs. Each measure per hemisphere was treated separately result-
ing in eight input maps (that is, modalities). Hemispheres were modeled 
separately given known brain asymmetric differences in autism21,34 
and to study the hemispheric contributions and model the different 
noise characteristics individually. We estimated 50 ICs on the basis of 
our sample size and following recommendations described in earlier 
papers37,41,42,53 (that is, sample size ~N/4). To evaluate the robustness 
of our selected model order (N = 50), we reran LICA using different 
dimensional factorizations of subject loadings (N = 40 and N = 60) and 
computed correlations among them.

Group differences
The subject loadings of all ICs were compared between autistic and 
NAI using a two-sample t-test. Normality and equal variances of 
subject loadings across the groups were formally tested using the 

Kolmogorov–Smirnov test and Levene’s test, respectively (Supple-
mentary Table 15). Multiple comparisons were corrected for using 
the FDR101. ICs showing significant group differences were further 
characterized by plotting each contributing modality’s spatial map 
and temporal profile (Z thresholded at the 95th percentile). To fur-
ther characterize the most implicated regions within the FFG per 
modality, we computed the overlap between suprathreshold voxels 
and a structural (that is, the HOA, which covers the entire FFG) and a 
functional atlas (that is, a probabilistic functional atlas of the occip-
ito-temporal cortex9, which covers category-specific FFG patches) 
(Supplementary Methods).

Multimodal components
Next, given the current work’s focus on multimodal neural sources, 
we tested the hypothesis that multimodal components performed 
superior to unimodal components in differentiating autistic from NAI. 
For this, we calculated a MMI per IC to quantify the multimodal nature 
of modalities in each IC42 (Supplementary Methods). The MMI ranges 
from 0 (equating to 100% unimodal contribution) to 1 (equating to 
equal contributions from all modalities). Multimodal components were 
defined as each single imaging modality (that is, regardless of hemi-
sphere) not having more than a 90% contribution to each component 
and a MMI below 0.1 (Supplementary Fig. 4). Components below this 
threshold were treated as unimodal.

Autism classification
Next, we implemented two SVM classifiers with a linear kernel—one 
using unimodal and one using multimodal components as features to 
test for the added value of multimodal features. The SVM was trained 
and evaluated using tenfold cross-validation. Class weighting was 
used to account for group size imbalance. The AUC was used as the 
performance metric to assess the classifier’s discrimination ability. 
To test for significant differences in AUC between multimodal and 
unimodal components, we generated a null distribution of AUC dif-
ferences by shuffling the cross-validated scores 10,000 times and 
re-evaluating the classifier performance and computed the likelihood 
of observing the observed AUC difference under the null hypothesis. 
To test for robustness of the results, we reran analyses across differ-
ent thresholds resulting in slightly varying degrees of multimodality 
ranging between 85% and 99% of single modality contributions. Given 
that each threshold resulted in a different number of unimodal versus 
multimodal components, we further checked whether results remained 
stable when forcing uni- and multimodal components to have the same 
number of features (Supplementary Methods).

Clinical–cognitive associations
To test for the clinical relevance of multimodal ICs, we ran CCA102 
modeling the multivariate relationship between multimodal ICs and 
cognitive, clinical features related to either (1) social–communicative 
features related to social functioning and face processing in autism 
or (2) nonsocial features associated with autism. The statistical sig-
nificance of the CCA modes was assessed by a complete permuta-
tion inference algorithm103, where both brain and behavior data were 
permuted separately across all participants with 10,000 iterations 
(Supplementary Methods). To visualize the spatial and temporal pat-
terns of each imaging modality associated with each clinical cognitive 
measure, we computed the correlations between the original imaging 
data (that is, the Z-deviation maps) and the canonical imaging variate 
derived from the CCA104. Significance of correlation maps was assessed 
with 1,000 permutations, and significant clusters or time points were 
next visualized and characterized in terms of their functional and 
anatomical overlap with the VIS atlas9 (Fig. 3f) and the HOA (Fig. 3k and 
Supplementary Methods). To assess the robustness of CCA results, we 
set a range of multimodal thresholds between 85% and 99% and selected 
ICs with modality contributions exceeding this threshold. We then 
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reran the CCA for each threshold to assess stability of results across 
varying degrees of multimodality.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
LEAP data are shared through an application process codesigned with 
autistic people that preserves security and privacy—contact the cor-
responding author (D.L.F., Dorothea.floris@uzh.ch) for further details 
and application forms. Scripts used to implement the experimental task 
are covered by a material transfer agreement, which can be obtained 
through the corresponding author. The VIS atlas is available under 
https://download.brainvoyager.com/data/visfAtlas.zip. The HOA is 
distributed with fsl (http://www.fmrib.ox.ac.uk/fsl/), for further infor-
mation see https://ftp.nmr.mgh.harvard.edu/pub/dist/freesurfer/
tutorial_packages/centos6/fsl_507/doc/wiki/Atlases.html. Source data 
are provided with this paper.

Code availability
Normative modeling code is available at https://github.com/amar-
quand/PCNtoolkit. LICA code is available at https://github.com/allera/
Llera_elife_2019_1/tree/master/matlab_flica_toolbox. CCA code is avail-
able at https://github.com/andersonwinkler/PermCCA.
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Extended Data Fig. 1 | Example forward models across the modalities. 
Forward models are shown (estimated across all individuals) depicting the spatial 
and temporal representations of the voxel-wise / timepoint-wise normative 
model for each imaging modality per hemisphere. For imaging modalities 
(structure, task-fMRI, resting-state fMRI) the normative model of the peak 
activation voxel within the fusiform face area (FFA) is shown, whereas for EEG at 
timepoint 170 ms. The regression line depicts the predicted values between 7 and 

30 years of age along with centiles of confidence (95th and 99th). The blue dots 
are the true values for nonautistic males in the KCL site, whereas the red dots are 
the true values for the autistic males in the KCL site. Given that the categorical 
covariates (sex, site) will render slightly different slopes, here, we only plotted 
the trajectories in males and in the largest acquisition site (KCL) for descriptive 
purposes. Abbreviations: FFA=fusiform face area; NAI=nonautistic individuals; 
L=left; R=right.
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Extended Data Fig. 2 | Fifty independent components. We identified 50 
independent components using Linked ICA. These are ordered according to how 
multimodal they are (that is, multimodal index). Each color represents one of 
the eight feature maps (‘modalities’) fed into the model. Overall, across these, 
the right hemisphere (51.7%) and the left hemisphere (48.3%) showed equal 

contributions. Single modality contributions were as follows: EEG R (35.0%) > EEG 
L (33.2%) > rs-fMRI R (11.2%) > rs-fMRI L (9.6%) > task-fMRI R (3.5%) > task-fMRI L 
(3.4%) > structure L (2.1%) > structure R (2.1%). Abbreviations: IC=independent 
component; L=left; R=right.
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Extended Data Fig. 3 | Support Vector Machine classification. We ran a 
support vector machine (SVM) classification algorithm to test whether the 
multimodal independent components (ICs) outperformed the unimodal ICs in 
discriminating autistic from nonautistic individuals. a) Data are presented as the 
area under the receiver operating characteristic curve (AUC) along with the 95% 
confidence interval (CI) as a function of different thresholds between 85% to 99% 

that define whether an IC is multimodal or unimodal. b) Data are presented as 
the AUC along with the 95% CI when forcing uni- and multimodal features to have 
the same number of ICs in each fold. In the beginning (up to six ICs) there are no 
differences, which become apparent when increasing the number of ICs included 
as features. Abbreviations: IC=independent component; AUC= area under the 
receiver operating characteristic curve; CI=confidence interval.
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Extended Data Fig. 4 | Canonical correlation analysis between the 
multimodal ICs and nonsocial features. The multivariate association (that 
is, canonical correlation) was not significant between the eleven multimodal 
independent components (ICs) and the nonsocial features associated with 
autism (r = 0.45, pFDR = 0.64). Panel a shows the loadings of each multimodal 
component contributing to the CCA mode, while panel b) shows the loadings 

of each nonsocial feature contributing to the CCA mode. Panel c shows the 
canonical correlation scatterplot color-coded by the highest contributing 
nonsocial feature (ADOS RRB). The x-axis depicts the projected behavioral 
CCA variate and the y-axis the multimodal ICs CCA variates. Abbreviations: 
IC=independent component; CCA=canonical correlation analysis.
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Extended Data Fig. 5 | Flowchart and exclusion criteria per imaging modality. Each imaging modality had a different amount of data available. Different exclusion 
criteria within modality could apply to several subjects; reported numbers are thus intersecting. Abbreviations: FD=framewise displacement in mm.
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